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2Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS & Université Paris Cité,
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Dissolution of fractured and porous media introduces a positive feedback between fluid flow and
reactant transport, leading to the emergence of pronounced, fingerlike channels. We investigate the
formation of these structures using a microfluidic Hele-Shaw cell with a soluble bottom. Our experiments
show that the shape of dissolution fingers is invariant and reveals itself over time as the fingers extend into
the system. By combining reactive-transport theory and conformal mapping techniques we derive these
invariant forms. We relate these results to natural dissolution fingers in karst landscapes, and illustrate how
to determine the groundwater flow rate responsible for their formation based on the finger shape.
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Climatic conditions can leave a permanent mark on the
landscape in the shapes and forms left behind by geological
processes. Geochemical transformations are an unusual
class of pattern-forming systems, in that the pattern does
not decay once the driving force is removed [1–3]. While
mechanical erosion shapes river valleys and mountain
ridges [4–7], chemical erosion shapes caves and karst
towers, as well as smaller surface forms, such as grooves,
rills, or solution pans [8–12]. An intriguing example of
spontaneously forming dissolution structures are solution
pipes [Fig. 1(a)]. These fingerlike channels are caused by
the infiltration of limestone formations by rainwater, which
has become acidic through the absorption of carbon dioxide
from the atmosphere and soil [13,14]. Such pipes are
abundant in nature and often have regular forms, sug-
gesting that they might represent invariant asymptotic
forms of reactive-transport processes. In this Letter, we
report theoretical and experimental evidence of an under-
lying time-invariant form for dissolution fingers, which
reveals itself during the growth process.
The existence of invariant solutions is a compelling

characteristic of many unstable growth processes, particu-
larly since the early stages are often characterized by a
chaotic sea of fingerlike structures [15,16]. And yet, in the
longtime limit, the pattern often simplifies, with the
appearance of invariant growth forms which advance into
the system without changing their shape. A well-known
example is the Saffman-Taylor finger, which emerges as an
asymptotic solution in viscous fingering [17], or the
Ivantsov paraboloid [18], which is the corresponding
solution in solidification. Other examples include the
regular shapes of flames [19] or crystals growing in a

capillary [20]. In natural systems, a similar concept was
used to describe stalactites [21], icicles [22,23], karst
pinnacles [24] and travertine cones [25].
The importance of these invariant solutions lies in their

independence from the initial conditions; the ideal shapes
attained in the longtime limit are characterized by a small
number of parameters, which record the physical condi-
tions under which the growth occurred. For example, the
width of a Saffman-Taylor finger is linked to the capillary
number (involving viscosity, flow rate, and surface tension)
[17], whereas the invariant shape of a crystal growing in a
capillary is a function of solution supersaturation [20]. Our
aim is to find a similar connection for dissolution fingers,
which should enable us to obtain paleoenvironmental or
even paleoclimatic data from the period in which they were
formed.
Arguably, the simplest system in which to study dis-

solution instabilities is a Hele-Shaw cell with a soluble

FIG. 1. (a) Solution pipes in limestone bedrock (Smerdyna,
Poland). (b) Dissolution fingers formed in a microfluidic system.
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bottom. A classical Hele-Shaw cell consists of two closely
spaced flat plates with a small gap between them
[Fig. 2(a)]. The average velocity in a thin film of liquid
within the cell is linked with the pressure gradient through
the Darcy’s law, v ¼ −M∇p, where the mobility
M ¼ h2=12μ, h is the gap between the upper and lower
surface [Fig. 2(b)], and μ represents the fluid viscosity. The
mobility can thus be changed in two different ways: either
by changing the viscosity of the fluid (as in the classical
Saffman-Taylor experiment) or by modifying the depth of
the Hele-Shaw cell.
A variable depth can be achieved by replacing part of the

bottom plate with a soluble gypsum chip, as illustrated in
Fig. 2(a). Fresh water, injected by a syringe pump,
dissolves the gypsum layer from the left, becoming
saturated with calcium ions in the process. Gradually,
the dissolved region (with aperture hmax) appears at the
inlet side, while the rest of the system maintains its initial
aperture (h0), as illustrated in Figs. 2(b) and 2(c). The
boundary between these two regions, initially planar,
becomes unstable due to a reactive-infiltration instability
[26,27]: if small perturbations appear in the dissolution
front, the flow will increase locally due to the higher
mobility. This increased flow carries an undersaturated
solution deeper inside the system. As a result, small
inhomogeneities tend to grow and transform into highly
permeable, fingerlike flow channels, as depicted in
Fig. 1(b), similar in shape to the natural solution pipes
in Fig. 1(a).

To investigate the shape of such fingers, we performed
microfluidic experiments, introducing small cuts in the
gypsum layer near the inlet, to trigger the formation of
fingers in those locations [Fig. 1(b)]. We conducted both
two-finger and single-finger experiments: the former to
quantify the interaction between the fingers, and the latter
to capture the invariant shapes of individual fingers.
In the two-finger system (Fig. 3), the individual fingers

compete strongly: the longer finger, offering the path of
least resistance, captures an ever-increasing portion of the
flow at the expense of the shorter one. Interestingly, even
though the shorter finger begins to move more slowly as it
loses flow, the longer finger does not accelerate [Fig. 3(b)],
unaffected by the fact that it is focusing an increasing
fraction of the flow injected into the system. This is
fundamentally different from most models of fingered
growth [28–30] which predict a speedup in the longer
finger.
Equally striking is an analysis of the finger shapes. If we

trace the boundaries of the fingers at different moments in
time and superimpose them in such a way that their tips
overlap, we observe that they have been tracing the same
invariant shape from the outset [Fig. 3(a)]. Over time, an
invariant part of the finger simply shifts in the flow
direction, and an increasingly longer invariant finger
emerges. Parametrizing the shape of the finger as xfðy; tÞ
the invariance condition becomes

xfðy; t1Þ − xtipðt1Þ ¼ xfðy; t2Þ − xtipðt2Þ; ð1Þ

where xtipðtÞ is the x position of the tip at time t.
Intriguingly, this behavior is observed only in the longer
finger. By contrast, the shorter finger does not maintain its
shape; a close examination of Fig. 3(a) reveals that it
becomes progressively wider as it slows down.
The emergence of invariant shapes can be studied in

more detail in single-finger experiments, using a larger
aspect ratio microfluidic cell (5 cm × 1 cm). The growing

FIG. 2. The experimental setup. (a) The chip is a three-layer
sandwich. The top polycarbonate plate has two networks of
microfluidic channels: the inlet, delivering a uniform flow of fresh
water into the system, and the outlet, draining fully saturated water.
The bottom plate is flat, except for a shallow rectangular
(3.3 × 3.8 cm) indentation filled with gypsum. The two plates
are glued together by a double-coated tape, which at the same time
introduces an aperture of thickness h0. (b),(c) Fresh water flowing
into the system (dashed arrows) gradually dissolves the gypsum,
effectively introducing two phases: dissolved (with aperture hmax)
and undissolved (h0). The two phases are separated by a transition
region with a characteristic length scale lp.

FIG. 3. (a) Outlines of the fingers, xfðy; tÞ, from the experiment
depicted in Fig. 1(b), captured at different moments of time and
superposed at the tips. The body of the longer finger retains its
shape once it has emerged. The experiment was conducted at a
volumetric flow rate Qtot ¼ 0.5 ml=h, h0 ¼ 210 μm, and
hmax ¼ 710 μm. (b) The position of the tip versus time, xtipðtÞ.
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fingers have a regular shape, becoming more elongated at
higher flow rates (Fig. 5). To find the invariant shape
theoretically, we start with the equations describing flow
and reactant transport in a Hele-Shaw cell. The average
velocity vðx; yÞ, comes from a lubrication (narrow aperture)
approximation to the Stokes equations:

v ¼ −
h2

12μ
∇p; ∇ · ðhvÞ ¼ 0; ð2Þ

where ∇ is a two-dimensional gradient operator. The
transport of calcium ions in the aqueous phase is described
in terms of their undersaturation c, which is the difference
between the saturation concentration csat and the average
Ca2þ concentration in the fluid film. The vertically aver-
aged concentration field in the fully dissolved finger body
is described by the two-dimensional transport equation

∇ · ðhmaxvc −Dhmax∇cÞ ¼ 0; ð3Þ
where D is the diffusion coefficient of the calcium ions. A
more detailed derivation can be found in Supplemental
Material (SM), Sec. I [31].
Since the widths of the fingers are large, the dissolution

process is transport limited. The relevant parameter here is
the Damköhler number Da ¼ kW2=Dhmax [see Eq. (8) in
the SM [31] ], where k is the reaction rate constant, and W
is the width of the system. In our experiments Da is of the
order of 1000; it can be even larger in natural systems such
as solution pipes, where the diameter can be of the order of
1 m. Large values of Da indicate that the dissolution
reaction is very fast compared to ion diffusion across the
finger, implying that the solution saturates essentially
instantaneously as it crosses the reaction front separating
dissolved and undissolved material. This corresponds to a
Dirichlet condition c ¼ 0 at the boundary of the finger, and
allows us to approximate the finger evolution as a moving
boundary (Stefan) problem; a schematic is shown in Fig. 4.
The local growth rate of the finger is determined by the
diffusive flux of ions at the boundary (see SM, Sec. III [31])

unðtÞ ¼ −αD
hmax

hmax − h0
ðn · ∇cÞΓ; ð4Þ

where n is the outward normal to the finger boundary Γ.
The coefficient α ¼ νm=ð1 − φÞ converts the flux of ions
into a dissolved volume; it is determined by the molar
volume (νm) and the porosity (φ) of the soluble material.
Solutions of Eq. (3) are characterized by the dimension-

less Péclet number, which is a measure of the relative
importance of advective and diffusive transport,
Pe ¼ Qtot=ðDhmaxÞ, where Qtot is the total volumetric flow
rate entering the system [see Eq. (9) in the SM]; in our
experiments, Péclet numbers are in the range 50–500. For
large Péclet numbers the fingers are strongly elongated,
with a small aspect ratio, w0ðxÞ ¼ dw=dx ≪ 1. One can

then assume that the flow rate and concentration profiles
are locally analogous to those between the two parallel
absorbing walls separated by distance wðxÞ. The flow is
then simply a plug flow

vðx; yÞ ¼ QðxÞ
wðxÞhmax

ex þO(w0ðxÞ)ey; ð5Þ

whereQðxÞ is the total flow through the finger cross section
at x. The problem of finding the concentration profile
between two parallel absorbing walls is known as the
Graetz problem [38], and for plug flow (5) the slowest
spatially decaying mode is of the form [39]

cðx; yÞ ¼ πc̄ðxÞ
2

cos
πy
wðxÞ ; ð6Þ

where axial diffusion has been neglected. In Eq. (6), c̄ðxÞ is
the average undersaturation in a cross section of the finger
perpendicular to the direction of flow.
The flux of calcium ions within a cross section of the

finger contains contributions from ion advection Qc̄ and
the diffusive fluxes, which are absorbed at the finger
boundary, JdðxÞ ¼ −Dhmaxn · ∇c [Fig. 4(a)]. The latter
can be approximated as JdðxÞ ¼ −Dhmax∂yc by neglecting
terms O(w0ðxÞ), as in Eq. (5). For steady state transport
these fluxes balance:

ðQc̄Þ0 ¼ −Dhmaxc̄
π2

w
: ð7Þ

Next, we make use of the observation that the emerging
body of the finger keeps its shape and translates only
[Eq. (1)]. Points along the boundary move with the same x

FIG. 4. (a) Schematic view of a single dissolution finger with a
width profile wðxÞ, diffusive flux Jd, volumetric flow rate Q
through the finger cross section, and total concentration flux Qc̄
through the cross section. (b)–(d) Because of the invariance of the
tip, the flow through a cross section located at distance l0 from the
tip of any finger (b), should be the same as the flow through the
base of a finger of length l0 (c). The total flow through the finger
base is estimated analytically by approximating a finger with a
thin line of the same length (d).
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velocity U, which is linked with the normal growth rate (4)
by un ¼ Unx. In particular, this means that downstream of
any cross section, the total volume of gypsum dissolved
over time δt is Uðhmax − h0ÞwðxÞδt. This must be propor-
tional to the incoming number of ions Qc̄ðxÞδt with
proportionality constant α (Fig. 4):

Uðhmax − h0Þw ¼ αQc̄: ð8Þ

The volumetric flux inside a finger of length l,Qðx; lÞ, is
constrained by the observation that the shape of the finger,
starting from its tip (xtip ¼ l), remains the same during its
evolution. This identity in shape implies that the flow field
should also remain unchanged (SM, Sec. III [31]); thus
Qðx; lÞ should be a function of the distance from the tip
only Qðx; lÞ ¼ Q(xtipðtÞ − x). In particular, as shown in
Figs. 4(b) and 4(c), the total flow through the base (x ¼ 0)
of the finger of length l0, Qð0; l0Þ≡Q0ðl0Þ, should be the
same as the flow at the cross section x ¼ xtip − l0 of the
same finger, captured at the later time

Q(xtipðtÞ − l0) ¼ Q0ðl0Þ: ð9Þ

To calculate Q0ðl0Þ, we approximate the finger by an
infinitely thin line confined to a channel of width W
[Fig. 4(d)], and use conformal mapping to derive the
corresponding pressure field analytically. Even though
the thin-finger approximation will not be an entirely
faithful representation of the flow field near the finger,
global quantities, such as the total flow focused in the
finger, should be represented with good accuracy, as they
primarily depend on the length of the finger.
The volumetric flux entering the finger base can be

expressed as Q0ðl0Þ ¼ Qtotfðl0=WÞ where W is the width
of the Hele-Shaw cell. The function fðξÞ can be determined
from the pressure field derived in [40], by integrating the
leakage flux around the exterior of the finger:

fðξÞ ¼ 1 −
2

π
arctan½cschðπξÞ�: ð10Þ

Combining (7), (8) and (10) we get the slope of the finger

dw
dx̃

¼ Dhmaxπ
2

Q0ðx̃Þ
¼ π2

Pe
fðx̃=WÞ−1; ð11Þ

where x̃ ¼ xtip − x is the distance from the tip. The shape is
then obtained as an integral of (11):

wðx̃Þ − w0 ¼
π2

Pe

Z
x̃

x0

fðζ=WÞ−1dζ: ð12Þ

Since Eq. (11) defines only the slope of the finger,
Eq. (12) includes an additional degree of freedom, corre-
sponding to a translation of the entire shape by w0.

Additionally, the location of xtip should be adjusted to
account for the transition from a finite size finger to the
needle shape used in the conformal mapping.
Equation (12) describes the body of the finger, apart

from the tip. A comparison of the predicted shape with
experimental observations is indicated by the white lines in
Fig. 5. However, the same approach cannot be applied in
the tip region for two reasons. First, the assumption of a
large aspect ratio, w0ðxÞ ≪ 1, no longer holds near the tip.
Second, the separation between reactive and diffusive
timescales (and corresponding length scales) no longer
holds. Near the tip, the flow becomes focused by the
converging boundaries of the finger. The penetration length
lp (Fig. 2) increases due to the higher fluid velocity, and
becomes comparable to the radius of curvature of the tip.
Hence, a two-phase approximation with a sharp interface is
not applicable in this region. Existing models of dissolution
finger tips [41,42] assume a sharp interface and therefore
depend only on the Péclet number. A proper theory of the
tip shape should involve both Péclet and Damköhler
numbers and would require resolving the partially dis-
solved region between the two phases. Such a solution
could then be matched with the solution for the body at x0.
Still, a number of conclusions can be drawn based on

Eq. (12) alone. In particular, sufficiently far from the tip, the
flow saturates to Qtot with the corresponding slope
w0 ¼ π2=Pe. This suggests the possibility of deducing
the flow rate in the finger from its shape. Such measure-
ments should be taken as far from the tip as possible but not
too close to the base, where concave inlet structures
connecting the finger to the system edges become notice-
able. A suitable location is indicated by the black dashed
line in Fig. 5(b).
The model can also be employed to understand the

dynamics of interacting fingers. The key lies in Eq. (9),
which shows that to maintain the invariance of the finger,
the flow through any cross section comoving with the tip
must be kept constant. When a finger wins the competition,
and the flow through its base (Q0) increases, it is easy to

FIG. 5. Experimentally generated dissolution fingers with the
theoretically predicted shapes (white) based on Eq. (12). The
experimental parameters are (a) Qtot ¼ 0.12 ml=h, h0 ¼ 70 μm
and hmax ¼ 570 μm, and (b) Qtot ¼ 0.16 ml=h, h0 ¼ 70 μm and
hmax ¼ 270 μm. The black dashed line indicates the region in
which the total flow in the finger can be estimated from the slope.
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meet the invariant flow condition by redirecting part of the
excess flow to the sides of the finger. As for the shorter
finger, since it is losing the competition, the flow entering
its base decreases, making it impossible to maintain the
same flow rates in its body. Lower flows result in higher
slopes of the finger sides [cf. Eq. (11)], causing the finger to
become more bulky with time.
To interpret natural forms, such as the solution pipes

shown in Fig. 1, we must consider three spatial dimensions.
Here, the invariance condition gives an equation for the
radius of the pipe aðxÞ as a function of volumetric flow rate
through the cross section (see SM, Sec. IV [31]):

da
dx

¼ −
πaD
2Q

ðj0;1Þ2; ð13Þ

where j0;1 is the first zero of the Bessel function J0. From
this equation, we can estimate the flow in natural fingers, as
described earlier.
Taking as an example the solution pipe in Fig. 1(a), the

slope of the sides, da=dx is about 1=10, which gives the
characteristic Péclet number, Pe ¼ Q=Da ≈ 100. Taking
the diffusion constant of calcium ions as D ¼ 10−5 cm2=s
and the pipe radius a ≈ 30 cm gives an average velocity of
about 10−5 cm=s, which is a reasonable value [43], given
the high porosity and permeability of the underlying
rocks [44].
In practice we rarely encounter fingers in isolation or in

pairs; instead,we observe an entire group, as depicted in SM,
Fig. S1 (microfluidic experiment) or Fig. S3 (natural forms).
For the finger to keep its shape, we need only to ensure that
the volumetric flow to the base of a given finger does not
decrease over time. This can be easily achieved if the finger
locally outcompetes its neighbors. Therefore, we can iden-
tify the fingers that are locally the longest (e.g., in Fig. S1C,
there are five such fingers), measure their slopes, and
average the results over the group.
In this Letter, we have summarized experimental results

showing that an individual dissolution finger emerges with
a shape that is invariant from its inception. This is different
from the classical Saffman-Taylor finger, which only
obtains its invariant shape at long times. We presented
an analysis, based on reactive-transport theory, that allowed
us to describe this invariant shape. Field measurements of
the slope of the solution pipe allow us to estimate the flow
in natural fingers during their formation. This may provide
information about the environmental conditions under
which they developed.
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[11] A. Guérin, J. Derr, S. Courrech Du Pont, and M. Berhanu,
Streamwise dissolution patterns created by a flowing water
film, Phys. Rev. Lett. 125, 194502 (2020).

[12] J. M. Huang, J. Tong, M. Shelley, and L. Ristroph,
Ultra-sharp pinnacles sculpted by natural convective
dissolution, Proc. Natl. Acad. Sci. U.S.A. 117, 23339
(2020).

[13] J. De Waele, S.-E. Lauritzen, and M. Parise, On the
formation of dissolution pipes in quaternary coastal calca-
reous arenites in mediterranean settings, Earth Surf. Proc-
esses Landforms 36, 143 (2011).

[14] M. Lipar, P. Szymczak, S. Q. White, and J. A. Webb,
Solution pipes and focused vertical water flow: Geomor-
phology and modelling, Earth-Sci. Rev. 218, 103635
(2021).

[15] P. Meakin, Fractals, Scaling and Growth Far From
Equilibrium (Cambridge University Press, Cambridge,
England, 1998).
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