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ABSTRACT: The diffusion coefficients of globular and fully unfolded proteins can be
predicted with high accuracy solely from their mass or chain length. However, this approach
fails for intrinsically disordered proteins (IDPs) containing structural domains. We propose a
rapid predictive methodology for estimating the diffusion coefficients of IDPs. The
methodology uses accelerated conformational sampling based on self-avoiding random
walks and includes hydrodynamic interactions between coarse-grained protein subunits,
modeled using the generalized Rotne−Prager−Yamakawa approximation. To estimate the
hydrodynamic radius, we rely on the minimum dissipation approximation recently introduced
by Cichocki et al. Using a large set of experimentally measured hydrodynamic radii of IDPs
over a wide range of chain lengths and domain contributions, we demonstrate that our
predictions are more accurate than the Kirkwood approximation and phenomenological
approaches. Our technique may prove to be valuable in predicting the hydrodynamic
properties of both fully unstructured and multidomain disordered proteins.

I ntrinsically disordered proteins (IDPs) constitute an
extensive class of biological macromolecules, and their role

in the homeostasis of a living cell has been increasingly
recognized in recent decades.1,2 The frequency of long
intrinsically disordered regions (IDRs) in proteins differs
significantly between the kingdoms of life, ranging from 2% in
archaea to 33% in eukaryotes.3 The IDP molecules display
different degrees of structural disorder. Their chains can
encompass either several folded globular domains or super-
secondary structures connected by flexible linkers, sparse
secondary structural elements, or can be completely natively
unstructured. Disordered proteins exhibit a notable character-
istic, the absence of a stable, well-defined relative spatial
arrangement of their fragments. Instead, their equilibrium
properties can be described through a broad set of rapidly
interconverting conformers, posing a challenge for analysis,
particularly in the context of long chains.4

The average geometric properties of IDPs, including their
shape and size, are determined by the equilibrium ensemble of
conformational states. This equilibrium state is intricately
influenced by environmental conditions,5 such as temperature,6

ionic strength,7,8 osmolality,9 crowding,10 post-translational
modifications,11 and the presence of specific molecular binding
partners.12 The formation of transient or more stable non-
covalent complexes introduces another nontrivial dependence
of the IDP equilibrium geometry on environmental factors.

Because the shape and availability of the binding sites
necessary for the interaction of IDP with ligands, other proteins,
and nucleic acids are strongly influenced by the environment,
IDPs often act as higher-order regulators in key cellular
processes such as gene expression,11,13 signaling,2,14 or
extracellular biomineralization.15 The different conformations
of these flexible proteins enable IDPs to perform their multiple
functions.1 In particular, it is worth emphasizing the important
roles of IDPs in health and disease, e.g., the role of the p53
protein as a tumor suppressor,16 mutations of which are often
responsible for human cancers, the function of 4E-BPs in the
inhibition of eukaryotic translation initiation,11,17−19 the
significance of GW182 protein in the recruitment of the
multiproteinmachinery necessary for microRNA-mediated gene
silencing,20−22 or the importance of Tau, FUS, and α-synuclein
proteins in neurodegenerative diseases.23,24 Because the elastic
properties of these biomolecules are responsible for the proper
functioning of IDPs in the cellular context, i.e., for the
association of complexes and the formation of biomolecular
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condensates via liquid−liquid phase separation such as, e.g.,
RNA-processing membraneless organelles,25,26 much attention
has been paid to the hydrodynamic properties of IDPs.
Experimental techniques, such as analytical ultracentrifugation
(AUC), size exclusion chromatography (SEC), pulsed-field
gradient nuclear magnetic resonance (PFG-NMR), dynamic
light scattering (DLS), and fluorescence correlation spectros-
copy (FCS), offer insights into hydrodynamic parameters (as
reviewed by Białobrzewski et al.27). However, due to the distinct
limitations of each experimental approach, ongoing research
aims to devise phenomenological methods for calculating the
hydrodynamic radius (Rh). These methods may involve deriving
Rh from the radius of gyration (Rg) determined by small-angle X-
ray scattering (SAXS)28,29 or exploiting the conformational
backbone propensity of IDPs.30,31 However, it has recently been
noted that inferring structural properties of the IDP conforma-
tional ensembles from SAXS is prone to a high degree of
uncertainty.32

A theoretical Monte Carlo approach was also developed on
the basis of a bead chain model showing that proper
consideration of the excluded volume effect is critical for
estimating the Rh value of the disordered N-terminal Sic1
fragment,33 in accordance with FCS experimental results.34

Simultaneously, significant effort is being invested in
developing numerical models that extract the characteristics of
IDPs from conformational ensembles obtained using molecular
dynamics (MD) simulations, deep learning, or energy
minimization algorithms.35−47 However, the molecular flexi-
bility of IDPs introduces substantial complexities when
determining their hydrodynamic properties. Two main issues
here are the large number of degrees of freedom and the long
time scales of relaxation of the internal coordinates of the
molecules. These factors prohibit direct calculation of the
experimentally relevant long-time diffusion coefficient from
either molecular or Brownian dynamics trajectories. One
popular approximation that circumvents this difficulty is to
assume that the macromolecule is rigidly frozen in one of a large
number of possible conformations. Transport properties are
then calculated by treating the molecule as a rigid body, and the
results are averaged over an equilibrium ensemble.48−51

Nevertheless, the validity and accuracy of this approximation
remain uncertain. Additionally, the generation of conforma-
tional ensembles can be a bottleneck for long chains (beyond
∼300 amino acid residues) because it requires time-consuming
MD simulations and/or the construction of new databases of
short peptide conformations.

There is, therefore, a strong need to develop a numerically
efficient solution that would enable reliable calculation of the
long-time diffusion coefficient of any long chain IDP, such as
one with 1000 amino acid residues, solely on the basis of its
sequence information.

In this study, we introduce a new theoretical approach for
both generating conformational ensembles of IDPs and
calculating their hydrodynamic properties. This method enables
a swift estimation of the diffusion coefficient for long IDPs in a
matter of minutes, with superior accuracy compared to that of
existing methods. This assertion is substantiated through
rigorous testing of the model on a diverse set of experimental
results obtained for 43 proteins. The data set includes both
literature data and Rh values measured for a set of new IDP
constructs using FCS under mild conditions (see the Supporting
Information).

We present our results in terms of the hydrodynamic radius of
a molecule, Rh. This radius represents the size of a solid sphere
that possesses the same translational diffusion coefficient, D, as
the given molecule under identical buffer conditions. Therefore,
Rh = kBT/6πηD, where T is the temperature and η is the
viscosity.

An important observation by Fixman52,53 is that the diffusion
coefficient of a flexible macromolecule is time-dependent, with
well-defined short- and long-time limits. The disparity between
the two is attributed to the effects associated with relaxation of
the internal coordinates of themolecule, as well as rotation of the
macromolecule as a whole.52,54,55 The positivity of the
dissipation rate in the system implies that the long-time
diffusion coefficient (Dl) is always smaller than the short-time
diffusivity (Ds).

53 The focus of theoretical approaches should be
the determination of the former quantity, as it is the one
measured in experiments utilizing techniques like FCS, AUC, or
DLS. Unfortunately, the calculation of Dl is significantly more
challenging than that of Ds because it involves the computation
of time-dependent quantities, such as the memory function,
which describes the relaxation effects. An additional point to
keep in mind is that the value of the short-time diffusion
coefficient depends on the choice of the point that one
tracks.55−58 In contrast, the long-time diffusivity is independent
of the choice of reference point.59

The methods for predicting the diffusion coefficient can be
broadly split into three categories: atomistic, phenomenological,
and coarse-grained. For small proteins, high-resolution, atom-
istic MD methods can be used,60 but they require either
simulating the surrounding water molecules explicitly, which is
very computationally intensive, or an implicit solvent scheme. In
the case of implicit solvent methods, addressing hydrodynamic
interactions between distant parts of the molecule61−64 and
thermalization65 pose significant challenges. Additionally, even
for the smallest proteins, it is prohibitively difficult to obtain
statistically meaningful data over the 10−100 ms scale, which
would enable the direct computation of the long-time diffusion
coefficient.

The other extreme consists of phenomenological models that
predict Rh from the number of residues N and possibly other
parameters, such as the total charge or amino acid composition.
Theoretical considerations of Rouse, whomodeled a protein as a
Gaussian chain,66 provided a foundation to the power law
relationship Rh ∼ N1/2. The classical Rouse model employs
random displacements between the monomers. If we assume
complete independence of displacements between each
consecutive pair of monomers, the central limit theorem dictates
that as N approaches infinity, the squared end-to-end distance
should conform to a scaled χ2(3) distribution. Consequently, the
dimensions of such an idealized chain are expected to scale with

N . Later work of Zimm included the effect of excluded
volume,67 which resulted in the scaling Rh ∼ Nγ with γ = 0.588.

Phenomenological size−length relationships that include
other variables involve a number of fitting parameters. As a
result, their range of applicability outside of the fitting data set is
difficult to assess. An alternative phenomenological approach
proposed by Pesce et al.29 employs the radius of gyration
obtained from SAXS experiments to estimate Rh. This is
substantiated by the observation that within the Kirkwood−
Riseman approximation68 Rh and Rg share the same scaling
relationship withN as long as the pair-displacement distribution
converges under appropriate scaling to a Gaussian for large N
values.
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Finally, coarse-grained models, like our method, employ
larger units (typically one or two per amino acid residue) as
building blocks for the structure prediction scheme, along with
approximate interaction potentials between subunits, to
simulate the equilibrium ensemble of configurations for a
givenmolecule. These configurations are then combined with an
approximation of the hydrodynamic properties to compute the
diffusion coefficient. Essentially, the computation of the latter
for elastic macromolecules addresses two interconnected
challenges: predicting the conformations of molecules on the
basis of available biochemical data and then using these
conformations to predict hydrodynamic properties.

The different exponents in the power law relationships of
Rouse66 and Zimm67 demonstrate that even the most basic
method for approximating configurations must take into
account excluded volume interactions.

A software that can accommodate excluded volume
interactions for a disordered chain is Flexible Meccano
(FM).37 In addition to volume exclusion, it considers the
distribution of Ramachandran angles determined from crystallo-
graphic protein structures when sampling conformations.
However, FM treats the entire chain as unstructured, so it
cannot be used to model proteins that possess both globular and
unfolded segments, which are in fact much more common than
fully unstructured chains. Unfortunately, FMhas a closed license
that precludes necessary modifications to accommodate folded
regions of proteins.

The complex angle distributions used by FM are crucial when
computing NMR parameters that are sensitive to short-range
details of the pair distribution function, such as residual dipolar
couplings, paramagnetic relaxation enhancement, or J coupling.
However, upon closer examination, the pair-distance distribu-
tion generated by FM and a simpler model presented in this
paper, globule-linker model (GLM; described below), become
virtually identical for amino acids separated by >15 residues
along the chain.

The highly localized differences between structures at small
sequential distances have a minimal influence on the estimations
of Rh. It is important to recall that for amino acid residues
separated by a distance r, the dipolar coupling decays as r−3,
while the decay rate of hydrodynamic interactions (HI) is only
r−1. Therefore, HI are long-range and less sensitive to near-
neighbor distributions, with contributions to the diffusion
coefficient of near neighbors and far neighbors being O(N) and
O(N2−γ) = O(N1.4), respectively.

Guided by these considerations, we have implemented the
simplest extension of Zimm’s chain, the globule-linker model
(GLM), designed to comprehensively represent IDPs that
contain globular domains connected by unstructured fragments.
In particular, the GLM approach reflects the idea that the
hydrodynamic radius corresponding to the experimentally
measured long-time diffusion coefficient can be predicted
under a minimal model that incorporates knowledge of domain
boundaries in long protein chains and excluded volume
interactions. In the model (Figure 1A−C), we represented the
protein as an assembly of spheres of different sizes. Within the
GLM approach, the conformational sampling is split into four
stages: selection of domain boundaries, computation of steric
radii of approximating spheres for globular domains, generation
of locations of the domains and linkers, and addition of the
hydration layer to the linkers.

First, the protein sequence fragments to be treated as folded
domains and mimicked by larger beads within GLM are selected
using disorder probability P predicted by Disopred3.71 A
fragment is assumed to be ordered if the P value is <50% for at
least three subsequent amino acid residues, and the ordered
fragments within a single folded domain can be linked by loops,
whose length does not exceed 14 residues.72 Because Disopred3
has been trained on the experimental data sets to obtain
position-specific scores calculated for each amino acid residue,71

the P value involves implicitly the sequence specificity, reflecting
the intramolecular interactions responsible for domain folding.
Together with taking into account the experimentally
established limit for the loop length,72 this approach enables
us to create a biochemically relevant semiempirical model of
globular domain boundaries. Such a globule boundary-
annotated amino acid sequence is passed to the next stage of
the modeling pipeline.

Second, the steric sizes of the approximating beads are
computed. The structured domains are represented by a single
larger sphere each, with the size depending on their mass m
computed with the equation Rh = (3m/4πρglobular)1/3 + ahydration,
where ρglobular = 0.52 Da/Å3,73 with a single layer hydration shell
taken to be ahydration = 3 Å thick. In the case of unstructured
linkers between the domains, the beads representing amino acid
residues of the linker are presumed to be indistinguishable. The
composition of such linker sequences is known to be statistically
biased toward the disorder-promoting residues (Pro, hydro-
philic and charged residues) and deficient in hydrophobic and
aromatic residues.74,75 The significance of the composition−
conformation relationship was analyzed for IDPs in great detail

Figure 1.Construction of the coarse-grained globule-linker model (GLM) for an illustratory IDP, H6−SUMO−CNOT1(800−999), containing three
ordered domains of different sizes (no. 28 in Table S1). (A) Sequence with highlighted ordered (orange) and disordered (blue) segments, and domain
boundaries marked by square brackets. (B) Representative full atom conformation generated by AlphaFold2 (for visualization purposes only;69,70

beads with van der Waals radii; hydrogen atoms omitted for the sake of clarity). Ordered clusters (orange) form dense blobs connected with linkers
(blue). (C) Visualization of a representative configuration generated using the GLM method in which beads are displayed with their hydrodynamic
radii.
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in terms of polar, polyampholytic, and polyelectrolytic tracts
with different charge patterning (reviewed by Das et al.75).
Although it is clear that the dimensions of the charged IDP as a
whole can be significantly influenced by electrostatic inter-
actions depending on the solution conditions7 or charge
patterning,76 it seems reasonable to assume that, in solutions
providing both sufficient hydration and ionic strength, the
interactions between the polar and charged residues within the
unstructured linker become less pronounced due to effective
screening, and the exact pairwise potentials between the linker
residues can be neglected. Each unstructured segment of length
N is thus modeled as a chain of N identical spheres, each with a
diameter equal to the Cα−Cα distance, and we obtain a list of
steric radii of beads, which is passed on to the next modeling
step.

Third, the centers of the beads are randomly sampled
according to a generalization of a self-avoiding random walk.
The distribution can be defined by first considering an auxiliary
distribution of random walks of chains of spheres defined by
demanding that distances between the centers of consecutive
spheres along the chains are equal to the sum of their respective
radii, and that each vector joining centers of adjacent spheres has
a spherically uniform distribution. We then define the self-
avoiding random walk of spheres (SARWS) to have the sphere
centers distributed according to the random walk of spheres,
conditional on the absence of self-intersections. Sampling from
this distribution is achieved by a recursive algorithm described in
the Supporting Information, which offers accelerated sampling
as compared to a one-by-one randomization. The SARWS
algorithm ensures that the excluded volume of the chain is
accounted for.

The fourth and final stage of the conformer generation
process takes in the locations of the centers of the spheres
generated in the previous step and adjusts their size to better
reflect the hydrodynamic thickness of the linkers. We trans-
formed the sampled conformations into a hydrodynamic model
by increasing bead sizes in the disordered fragments of generated
conformations to an Rdisordered of 4.2 Å, corresponding to the
median value for all amino acids.77 In the resulting hydro-
dynamic model of linkers, the neighboring beads show
substantial overlaps, requiring a careful treatment of the mobility
matrices (see ref 78 for details). Note that the value of Rdisordered
has an only minor impact on the final results, because the
hydrodynamic radius of long slender filaments depends
logarithmically on their thickness.79−82

To compute Rh from the estimated ensembles, we have
implemented two algorithms: the Kirkwood formula and the
minimum dissipation approximation (MDA) method of
Cichocki et al.59 Within the first approach,83 the hydrodynamic
radius of a macromolecule is approximated by

= +
= =R N a r

1 1 1 1

i

N

i j j i

N

ijh
K 2

1 1,

i

k
jjjjjjj

y

{
zzzzzzz (1)

where N is the total number of beads in the IDP model, ai is the
hydrodynamic radius of bead i, rij = |rj − ri| is the distance
between beads i and j, and the angle brackets denote the average
over the equilibrium ensemble. One can show that this
corresponds to the ensemble-averaged short-time diffusion
coefficient of the geometric center of the macromolecule, rc =
N−1∑i=1

N ri. Note that the geometric center fluctuates as the
shape of the molecule evolves and does not correspond to any

fixed position within it. A simplified form of the Kirkwood
formula is often used42,84,85

= =R N r
1 1 1

i

N

j j i

N

ijh
K 2

1 1, (2)

where the single-bead terms 1/ai are dropped, as their
contribution becomes negligible in the large N limit. This is
the form that we will use in the work presented here.

A better estimate of Rh, corresponding to the long-time
diffusion coefficient, requires a more in-depth description of the
hydrodynamic interactions between the beads. To this end, one
introduces mobility matrix μ,54 which links the velocities of the
beads with the forces acting on them, according to

=U Fi
j

ij j
(3)

where Ui is the velocity of bead i, whereas Fj is the force with
which bead j acts on the fluid. On the basis of the mobility
matrix, one defines amatrixA indexed by the bead labels (i, j),Aij
= 2πηTr⟨μij⟩ and its inverse B = A−1. One can then construct the
MDA59 for Rh as

=R B
i j

ijh
MDA

, (4)

Note that eq 4 is general and can be used for different models of
hydrodynamic interactions, both simple models (e.g., Rotne−
Prager far-field approximation86) and more sophisticated
approaches, like the multipole expansion method.87,88 In this
work, we use the generalized Rotne−Prager approximation to
calculate the mobility matrix, as described in refs 89−91. This
approximation is now also available as a Python package,
pygrpy.92 For non-overlapping beads, the elements of matrix
A have then a particularly simple form: Aij = ⟨1/rij⟩ for i ≠ j, and
Aii = 1/ai. The formulas for overlapping beads can be found in
the Supporting Information.

The MDA corresponds to the calculation of the short-time
diffusion coefficient of the diffusion center of a molecule,58

which is a point inside the molecule where Ds is minimal. The
position of the diffusion center is rd = ∑i=1

N xiri, with the weights
given by xi = ∑jBij/∑k,jBkj. Because Ds is always larger than its
long-time counterpart,Dl, MDA provides the best estimation for
the long-time diffusion coefficient of all of the methods that
utilizeDs for this purpose. TheMDA turns out to bemore robust
when dealing with large differences in the sizes of beads used to
model constituent parts of the macromolecule, because in such
cases the equal weights of the geometric center of the
macromolecule used in the Kirkwood formula differ significantly
from the optimal weights of the diffusion center.

We combined each method of generating conformers with
each method of computing Rh, which resulted in four different
theoretical approaches, the predictions of which (Table S2)
were then compared with experimental data. For this purpose,
we have obtained 15 new IDP constructs covering a wide range
of chain lenghts, folded domain contents, and charge states and
determined their Rh using FCS (Figure 2 and Figures S2−S6; for
further experimental details, see the Supporting Information).

The experimental benchmark set (Table S1) was thus
composed of both the new FCS measurements and Rh values
selected from the literature on the basis of the following criteria.
The proteins had sequences that could be unambiguously
identified in the literature or in the UniProtKB database and
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were measured under well-defined, mild conditions (temper-
ature of 20−26 °C, buffer of pH 7−8, and ionic strength
corresponding to 75−300 mM NaCl), and their hydrodynamic
radii were determined directly from appropriate experiments
without conversions from other experimental quantities, such as
Rg.

29,94−111 This is, to our best knowledge, the largest
benchmark set encompassing experimental Rh values for 38
IDPs and six globular model proteins, measured under
comparable conditions (Figure 3).

The results of tests performed for our four theoretical
approaches against the benchmark set are listed in Table 1, and
Figure 4 shows a visual comparison of the deviations between
theory and experiment. Additionally, we provide various power
law fits112−114 for comparison of the prediction accuracy (Table
S3).

We compare the accuracy of the previous and new model
under six metrics (Table 1): the square root of the mean square
deviation (RMSD), the square root of the mean square relative
deviation (RMSRD), Pearson’s coefficient (R2), Pearson’s
coefficient adjusted for fitting parameters (R2

adj), the third
quartile of the absolute error (Q3

AE), and the third quartile of the
relative error (Q75

RE). Whenever a fitting procedure is required,
we use leave-one-out cross-validation to compute error metrics.
We also have chosen to test the relative deviations to reduce the
undue weight given to the new, very long sequences in our data
set. Similarly, outlier-robust metrics of the third quartile were
included to reduce the impact of a single-sequence mispre-
diction on the final comparisons. In all evaluation metrics, the
MDA+GLM approach performs the best. Surprisingly, it is the
only model that performs better than the power law baseline in
any of the evaluation metrics.

Interestingly, it is apparent from the comparison of the results
obtained using MDA+GLMwith those fromMDA+GLM(ND)
in Table 1 and Figure 4 (A and B) that the proper identification
of the globular domain boundaries proves to be the main
condition for successfully estimating the Rh value of an IDP, with
better accuracy than all other tested approaches. This means that
the pairwise interactions between the linker amino acid residues
influence Rh to a lesser extent, while the sizes of the globular
domains and their relative spatial distribution are very
important.

It should be mentioned, however, that a significant
contribution to the discrepancies between the experimental
and predicted Rh values (Figure S8) comes from the intrinsic
properties of the individual experimental methods, which suffer
from typical errors or limitations and are usually not taken into
account when reporting the final experimental results. PGF-
NMR measurements are the most unambiguous and accurate,
but their effective application is limited to smaller proteins (up
to 200−300 amino acid residues long) at high concentrations. It
is worth noting that the agreement of the values of Rh predicted
by MDA+GLM with the PGF-NMR results is excellent (Figure
S8C). FCS is the only method that addresses the self-diffusion of
molecules at the low-concentration limit. Raw FCS measure-
ments can be refined to exclude possible oligomerization or
aggregation during the experiment on the basis of the count

Figure 2. Examples of normalized FCS autocorrelation curves with raw
fitting residuals for an intrinsically disordered H6−SUMO−
GW182SD−mCherry (N = 809; Rh = 66 ± 6 Å) (green) in comparison
with apoferritin (N = 4200; Rh = 58 ± 3 Å) (black). The crystal
structure of apoferritin (Protein Data Bank entry 2w0o93) and the
putative conformation of H6−SUMO−GW182SD−mCherry pre-
dicted by AlphaFold69 are shown for the purpose of illustration,
preserving the relative sizes of the solvent accessible surfaces of atoms.

Figure 3. (A) Experimental Rh values plotted vs the number of amino acid residues in the protein chain, N, and power law curve fitted to Rh values of
folded proteins (FPs) together with the 95% confidence band. (B) Direct comparison of the predicted vs measured Rh values for all of the proteins
modeled using the MDA+GLM approach.
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rates, but it is impossible to avoid proteolytic instability of
proteins and, consequently, the appearance of impurities with a
lower molar mass, which may potentially result in apparently
lower values of Rh (Figure S8B). On the contrary, SEC is the
easiest approach for removing lower-mass impurities, but it
involves diffusion of molecules at higher concentrations through
a medium with pores of a specific shape under the influence of
pressure. An additional common disadvantage is calibration
based on Rh of standard proteins determined under various
conditions and the lack of appropriate propagation of the
calibration experimental uncertainty. Consequently, SEC
measurements can be highly scattered (Figure S8D). The
largest outlier in our analysis concerns Rh determined using SEC
for fesselin without providing experimental uncertainty (Id. 43,
Tables S1 and S2 and Figures S7 and S8D). The DLS method is
the most prone to overestimating experimental values (Figure
S8E), because the presence of even a small number of aggregates
with a larger molar mass generates a huge contribution to the
intensity of scattered light. Finally, AUC yields sedimentation
coefficients, and their interpretation in terms of exact values of
Rh requires some assumptions that are not obvious for IDPs,
such as, e.g., partial specific protein volume.115 The second
largest outlier in our set is the OMM-64 protein (Id. 39, Tables

S1 and S2 and Figures S7 and S8F) with the Rh value determined
using AUC, which is very close to the power law curve for
completely denatured proteins.116

In conclusion, we have presented a simple, first-principles
model for the prediction of Rh without any fitting parameters
and achieved favorable comparison with a large benchmark set.
The sizes and positions of the globular domains proved to be the
dominating factors that influence the hydrodynamic properties
of the IDP chain as a whole. Moreover, due to the relative
simplicity of the model, all of the calculations for a given protein
can be performed in ∼1 min on a typical laptop, which is
contrasted with MD simulation-based conformer generation
methods that require supercomputers and take many days.
Moreover, the MDA+GLM approach demonstrates satisfactory
convergence even with ensemble sizes as small as 40 conformers
(Figure S1).

Our benchmark set, in which the previously known IDPs were
complemented by a set of newly obtained proteins, constitutes a
significant step forward in predicting the hydrodynamic
properties of IDPs. It includes a higher degree of conformational
variety, with a stronger emphasis on multidomain proteins,
longer chains, and amuch wider range of charge states compared
to the reference sets used previously.30,112 This diversity allows

Table 1. Comparison of Error Statistics of Various Modelsa

model nfp RMSD (Å) RMSRD (%) R2 R2
adj Q3

AE (Å) Q3
RE (%)

MDA+GLM 0 7.09 18.15 0.71 0.71 6.80 22.51
MDA+GLM(ND) 0 9.48 28.02 0.48 0.48 11.88 29.31
KR+GLM 0 12.82 34.69 0.05 0.05 17.59 42.95
KR+GLM(ND) 0 9.25 27.31 0.50 0.50 11.11 29.44
random coil 1 9.60 27.71 0.47 0.45 10.28 33.69
power law 2 8.46 24.80 0.59 0.56 9.63 26.08
power law (ref 112) 2 12.01 36.94 0.16 0.12 14.37 39.51
PPII-based (ref 30) 3 17.25 49.09 −0.72 −0.86 20.62 59.54
PPII and |Q|-based (ref 31) 5 18.97 47.71 −1.08 −1.36 19.60 54.77
sequence-based (ref 112) 7 22.90 50.78 −2.05 −2.66 19.59 58.32

anfp is the number of fitting parameters. ND indicates no domain information. Q3 is the third quartile.

Figure 4. Comparison of different methods of estimation of Rh. Boxes show interquartile ranges with median confidence bands marked by notches.
MDA with GLM ensemble generation (A) performs best on the IDP benchmark set with standard errors of 18.15% and 7.09 Å (compared to 24.80%
and 8.46 Å for a simple power law). Methods based on the Kirkwood−Riseman Rh estimation (C and D) typically underestimate hydrodynamic size of
themolecule. Power law fits with one free parameter (E) and two free parameters (F) evaluated using leave-one-out cross-validation are compared with
the formerly reported power law112 (G) and models based on polyproline II structure propensities without30 (H) and with31 (I) regard to the charge,
and a sequence-based model112 (J) that takes into account the total charge of the molecule. Theoretical methods with no knowledge of the presence of
domains in the IDP (ND; B and D) significantly overestimate the hydrodynamic size of the molecule. Domain data can be incorporated into our
ensemble generation engine leading to more accurate estimates of Rh (A). Note that experimental uncertainty also contributes to the errors presented
here and in Table 1.
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for more reliable testing of theoretical models. In particular, the
presence of large polyanionic proteins in our set revealed that
the Rh values obtained using phenomenological models
corrected to account for the absolute net charge seem to be
overestimated [Figure 4 (I and J)].

The sequence specificity effects are neglected in our model for
the linker fragments, which is one of the possible sources of
uncertainty. However, in our opinion, it is an acceptable level of
error for such a quick numerical method. Further developments
of theMDA+GLM approach are needed to take into account the
dependence of Rh on the environmental conditions6−8 and the
formation of complexes. More subtle effects related to the
conformational properties of the linkers can be also included
using sequence-based conformational ensembles.45,47,117 Never-
theless, our results demonstrate that the relatively simple
globule-linker model for conformational ensemble construction,
in combination with the minimum dissipation approximation,
can serve as the starting point for developing further
phenomenological corrections. These improvements could
incorporate factors such as amino acid sequence composition,
residue charge, and counterion binding. When using the MDA
+GLM approach, all excluded volume effects are already
correctly accounted for, with any further deviations hinting at
the interesting physical and chemical properties of the
molecules.
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