
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 9

1 The ”action-angle” coordinates

Digression: the Darboux theorem: Let ω be a symplectic form on M, dimM = 2n. Then in a
neighbourhood of any point there exist local coordinates (qi, pi) such that

ω = dpi ∧ dqi.

The coordinates (qi, pi) are called the Darboux coordinates (another name: the canonical coordinates)
for ω. Note that the Darboux coordinates are not unique. Given such coordinates (q, p), any
local symplectomorphism F , i.e. a local diffeomorphism preserving ω, will produce new Darboux
coordinates (F ∗q, F ∗p).

Description of the ”action-angle” coordinates: In the context of the Arnold–Liouville theorem,
we will build specific Darboux coordinates on M , the ”action-angle” coordinates. Let N := Mc be a
fixed common level set of the functions g1, . . . , gn.
The ”angles”: Note that, although we have defined the angles ϕ1, . . . , ϕn on a single level set, in fact
these functions are defined also on the neighbour levels and depend smoothly on the level. Indeed,
we can repeat the construction of the map ψ : Rn → N on neighbour levels. As a result we will get
a n-parameter family of maps ψc : Rn → Mc to which there corresponds a n-parameter family of
linear maps Ac : Rn → Rn such that the following diagram is commutative:

Rn Ac−→ Rn

↓ p ↓ ψc

Tn −→ Mc

.

The maps ψc and Ac smoothly depend on c, consequently so do the angles on Mc.
The (g, ϕ)-coordinates: We claim that in a neighbourhood of N the functions g1, . . . , gn together
with the angles ϕ1, . . . , ϕn form a system of local coordinates. Indeed, the functions g1, . . . , gn are
functionally independent by the assumption. They are also independent of the angles, because they
are constant on the vector fields η(g1), . . . , η(gn) which are linear combinations of ∂

∂ϕ1
, . . . , ∂

∂ϕn
.

The ”action-angle” coordinates (I, ϕ): These are coordinates such that: 1) the functions (I1, . . . , In)
depend only on g; 2) ω = dI i ∧ dϕi. In particular, (I, ϕ) are the Darboux coordinates on (M,ω).
The initial differential equation in different coordinate systems: Recall that in the ϕ-coordinates on
N the hamiltonian vector field η(H)|N has the form η(H) = (a1, . . . , an) for some ai ∈ R. The
corresponding differential equation is of the form:

d−→ϕ
dt

= −→a (c),
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and its solutions are
−→ϕ (t) = −→ϕ (0) + t−→a (c).

Thus in the (g, ϕ)-coordinates the flow of η(H) is given by the equation

d−→g
dt

= 0,
d−→ϕ
dt

= −→a (g).

Analogously, in the (I, ϕ)-coordinates the initial equation is of the form

d
−→
I

dt
= 0,

d−→ϕ
dt

= −→a (I).

However, due to the fact that (I, ϕ)-coordinates are canonical, we get −→a (I) = − ∂H

∂
−→
I
, ∂H

∂
−→ϕ = 0. Thus,

knowing the ”action-angle” coordinates, we can easily calculate the vector of ”frequences” −→a .
Finally the solutions of this equation are given by

−→
I = const,−→ϕ (t) = −→ϕ (0)− t

∂H

∂
−→
I
.

Construction of the ”action-angle” coordinates (a sketch): Geometrically we can explain
this construction as follows.

Let (M,ω), dimM = 2n, be a symplectic manifold and g : M → B a lagrangian fibration, i.e.
a surjective submersion all fibers of which are lagrangian submanifolds in M . Let c ∈ B. Let us
explain how the construction of the action of 8Rn on Mc := g−1(c) described in the previous section
can be done simultaneously for all points from some neighbourhood U of c.

Namely, let α ∈ T ∗c B and let f ∈ E(B) be such that dcf = α. It is easy to see that the
vector field η(g∗f), η := ω−1, is tangent to Mc (because η(g∗f)g∗h = 0 for any f, h ∈ E(B)) and its
restriction η(g∗f)|B is independent of the choice of f (if f ′ is another function with dcf

′ = α, we have
(g∗f − g∗f ′)|B ≡ 0 and η(g∗f − g∗f ′)|B ≡ 0). Thus we get a linear mapping α 7→ v(α) := η(g∗f)|B :
T ∗c B → Γ (TB), i.e. an action of the abelian (commutative) Lie algebra T ∗c B on Mc. Integrating
this action (i.e. passing from vector fields to their flows) we get an action of the abelian group T ∗c B
on Mc. Recall that fixing a point xc ∈ Mc we obtain a lattice Λxc ⊂ T ∗c B, the stabilizer of xc with
respect to this action.

Now allow c to move over U . Repeating this construction for all points in U , we will have to
choose xc ∈ Mc, i.e. a section of g. Let us do this smoothly. As a result our lattice Λxc will depend
smoothly on c and we will get n one-forms l1, . . . , ln ∈ Γ (T ∗B), the generators of this lattice.

It turns out that: 1) the section c 7→ xc can be so chosen that its image will be a lagrangian
submanifold in M ; 2) if it will be chosen in such a way, the corresponding one-forms l1, . . . , ln will
be closed, i.e. locally li = dIi for some functions Ii.

These last are the action coordinates we are looking for.
Analytically one can calculate the action coordinates as follows.

Fact. If U ⊂ B is small enough the symplectic form ω is exact on g−1(U).

Proof We will use the De Rham theorem: Hk
DR(M,R) ∼= (Hk(M,R))∗. Here Hk

DR(M,R) stands for
the space of the k-th De Rham cohomology, i.e. the factor space of closed modulo exact smooth
k-forms. Hk(M,R) is the space of the so-called singular k-th homology. It is known that it is
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isomorphic to its ”smooth variant”, which can be described as follows. Let Ck(M,R) denote the
space of finite formal linear combinations aifi, where ai ∈ R and fi are smooth k-simplices in
M , i.e. smooth maps from open neighbourhoods of k-dimensional simplices in Rk to M . The
boundary operator ∂k : Ck(M,R) → Ck−1(M,R) satisfies the identity ∂k−1 ◦ ∂k = 0, so one can set
Hk(M,R) := ker ∂k/ im ∂k+1.

Given α ∈ Γ (
∧k T ∗M), aifi ∈ Ck(M,R), put 〈α, aifi〉 := ai

∫
im(fi)

α. The De Rham theorem says

that in fact this pairing 1) induces a pairing between Hk
DR(M,R) and Hk(M,R) (this follows from

the Stokes formula); 2) the induced pairing is nondegenerate.
In particular, it follows from the De Rham theorem that if the integral of a closed k-form over

all the smooth k-cycles (i.e. the elements of ker ∂k) is zero, then this form is exact.
Now any 2-cycle f in g−1(U) is homotopically equivalent to some cocycle f̃ in Mc, c ∈ U . Thus∫

im f
ω =

∫
im f̃

ω = 0. The last equality holds due to the fact that the restriction of ω to Mc is zero.
¤

Let λ be the corresponding potential, dλ = ω. Let γ1,c, . . . , γn,c be the smooth closed curves on
Mc

∼= TN representing the basis of H1(Mc,R) ∼= Rn. Put

Ii(c) := (1/2π)

∫

γi,c

λ.

Fact. 1. This does not depend on the choice of the representatives.

2. This does not depend on the choice of the potential.

Proof follows from the Stokes formula.

Example (harmonic oscillator I): Let M = R2, H = (1/2)(p2+q2), ω = dp∧dq. Then in the polar
coordinates q = r cosϕ, p = r sinϕ we have dp ∧ dq = − sinϕdr ∧ r sinϕdϕ + cosϕrdϕ ∧ cosϕdr =
−rdr ∧ dϕ = d(−r2/2) ∧ dϕ. Hence I = −H.

Example (harmonic oscillator II): Let M = R2, H = (1/2)(a2p2 + b2q2), ω = dp ∧ dq. The
hamiltonian vector field is η(H) = −a2p∂

∂q
+ b2q ∂

∂p
, here η = ω−1 = − ∂

∂p
∧ ∂

∂q
. The level sets

Mc = {(q, p) | H(q, p) = c} are ellipses {(q, p) | q2/(2c/b2) + q2/(2c/a2) = 1} with the semiaxes√
2c/b,

√
2c/a. Note that the standard parametrization of the ellipse, ϕ 7→ (

√
2c/b cosϕ,

√
2c/a sinϕ)

is not a trajectory of η(H)
The receipt gives I(c) = 1

2π

∫
Mc
pdq = 1

2π

∫
Mc

ω = − c
ab

, which up to − 1
2π

is the area of the figure

M c := {(q, p) | q2/(2c/b2) + q2/(2c/a2) 6 1} bounded by the ellipse. From this we conclude that
H = −abI and that the solution of the hamiltonian system

q̇ = −a2p, ṗ = b2q

is given by H = c, ϕ(t) = ϕ(0)− t∂H
∂I

= ϕ(0) + tab or, in other words, by

t 7→ (
√

2c/b cos(t0 + tab),
√

2c/a sin(t0 + tab)).
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