Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 8

1 Hamiltonian reduction and the Arnold-Liouville theorem

Reduction of a hamiltonian system on (M,w): Let v = n(H),n := w ', H € £(M). Assume
that p : M — M’ is surjective submersion such that 7 is projectable with respect to p and H is
constant along the fibers of p. Then v is also projectable with respect to p. Indeed, p,v = '(H’),
where 1 := p,n, H € E(M’) is the unique function such that H = p*H’. The hamiltonian system
on (M',n) given by the hamiltonian vector field v’ := p,v is called the reduction of the initial
hamiltonian system with respect to p.

First integrals and reduction: Assume that g € £(M) is a first integral of the hamiltonian vector
field v = n(H), i.e. vg = 0. The last can be rewritten as n(H)g = 0, or, equivalently, {H, g}, = 0.
Consider the foliation F := {g = const} of the level sets of the function g (we assume that dg # 0
everywhere) and the dual 1-dimensional foliation K generated by n(g). Then H is constant along
the leaves of K (because n(g)H = —n(H)g = 0) and the system can be reduced with respect to the
projection M — M /K (at least locally, since locally the factor space M /K is good).

Conclusion: any first integral allows to reduce a bihamiltonian system on (M, w),dim M = 2n, to a
new hamiltonian system which is defined on a symplectic manifold of dimension 2n — 2.

More generally: k first integrals gy, ..., gy in involution (i.e. such that {g;,g;} = 0) allow to reduce
the number of independent variables by 2k.

Even more generally: Assume there exists S C £(M), a Lie subalgebra with respect to {, },, consisting
of the first integrals of a hamiltonian system. Then it can be reduced to a hamiltonian system on a
smaller symplectic manifold. The last is a symplectic leaf of the reduced Poisson structure obtained
by the reduction of n with respect to the action of the Lie algebra n(S) C I'(TM). The dimension
of this manifold depends on the structure of the Lie algebra (S, {, },|s)-

The Arnold-Liouville theorem: Let (M,w) be symplectic, dim M = 2n. Assume a hamiltonian

vector field v(H) admits n functionally independent integrals g; = H, ¢gs, .. ., gn in involution. Then
1. if the common level sets M, := {x € M | g; = ¢;;1 = 1,...,n} of these integrals are compact
and connected, they are diffeomorphic to (n-dimensional) tori T" = {(¢1, .. ., ¢,)mod27};

2. the restriction of the initial hamiltonian equation to T" gives an almost periodic motion on T",
i.e. in the "angle coordinates” ¢ the equation has the form
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here @ = (ay,...,a,) is a constant vector depending only on the level;

3. the initial equation can be integrated in ”quadratures”, i.e. the solutions can be obtained by
means of a finite number of algebraic operations and operations of taking integral.

Proof. The functional independence of ¢,...,g, means linear independence of the differentials
dgy, . ..,dg, at each point of M.. By the implicit function theorem M. is a submanifold of M.

LEMMA 1 The vector fields n(g1), - .. ,n(gn) are commuting, tangent to M. and linearly independent
at each point of M..

Proof The linear independence follows from that of dgy, ..., dg, and from nondegeneracy of . The
vector fields are tangent to M. because 1(g;)g; = {g:, g;} = 0. The equality 7({gi, 9;}) = [1(g:),n(9g;)]
shows the commuting property. U

LEMMA 2 Let N be a compact connected n-dimensional manifold which has n linearly independent
(at each point) commuting vector fields vy, ..., v,. Then N is diffeomorphic to n-dimensional torus.

Sketch of proof Let Gt,i =1,...,n, be the corresponding 1-parametric groups of diffeomorphisms of N. In
other words, %hzo(}ﬁx = |, for any x € N and G?HQ = Gﬁl ) G? = G? o Gfl for any t1,t2 € R (and
GY =1d,G;" = (GY)71). Note that G! exist since by compactness of N the vector fields v; are complete.

Due to the commuting property of vector fields the diffeomorphisms also commute: G o GE-I = G;’ oGl
Thus the n-parametric family of diffeomorphisms G* : N — N,G*t := Gil -Gt = (ty,...,t,), has the
property Gttt = Gto G = G¥ 0 Gt (and G® = Id, Gt = (G*)~1). In other words, we get an action of the
commutative group R" on N.

LEMMA 3 This action is transitive, i.e. for any two points xg,x; € N there exists t such that Gtzg = x1.

Proof Fix xg and consider the map v : R — N, (t) := G*zy. This map is a local diffeomorphism: there
exists an open set U,0 C U C R" such that ¢|¢ is a diffeomorphism onto V' := ¢ (U). Indeed, the derivative
¢'(0) sends the standard basis {e1,...,e,} of R™ to {v1]zg,---,Unlaz,}- The last vectors are independent,
hence 9/(0) is nondegenerate and we can use the inverse function theorem.

Now connect xg with 1 by a curve and cover this curve by a finite number of sets similar to V.



Choose a point y; in each of the pairwise intersections of these sets and put yg := zg, ym = z1. It is
clear that there exist t; such that Gty; = y;,1. Finally, put t :=to+--- +t,,_1. O

LEMMA 4 The stabilizer G, := {t € R™ | Gtzy = xo} CR™ of the point xg € N with respect to this action
s a discrete additive subgroup of R™, independent of the choice of xg.

Proof Given any action of a group G on a set X, one proves immediately that the stabilizers are subgroups
and the stabilizers of points lying on one orbit are conjugate. Here N consists of one orbit and the group is
commutative. Thus G, is a subgroup, the same for any point.

To prove that it is discrete, observe that the set U can not contain any point of G, different from 0. [J

LEMMA 5 For any discrete subgroup H C R™ there exist linearly independent vectors ly, ...l € R™ k < n,
such that H = {Zle zili | zi € Z}.

For the proof see the book: V. I. Arnold ”Metody matematyczne mechaniki klasycznej”, Chapter 49.

Now we are ready to finish the proof of Lemma 2. Any orbit O of a (smooth) action of a Lie group G on
a manifold is diffeomorphic to the factor manifold G/G,, where z¢ € O is any element. In our case O = N
is diffeomorphic R" /G, = TF x R"* = {(p1,..., 0691, - »Yn_k)}, pimod2w. By compactness of N we
conclude that k =n and N =2 T". O

So we have proven the first item of the A—L theorem. To show item 2 fix ¢ and observe that the
diffeomorphism T" — N := M, can be included to the following commutative diagram:

A

R — R"
Ip Ly
™ — N

Here p is the natural projection and A is the linear isomorphism mapping the vectors 2meq, ...,
2me,, where ey, ..., e, is the standard base in R", to [y, ..., L,.
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Obviously, n(H) = v; = ¥.(E), where E; is the constant vector field on R" equal to e; at 0.
Thus in the p-coordinates on N the hamiltonian vector field n(H) has the form n(H) = (a1, ..., a,)
for some q; € R. [

In order to prove item 3 of the A-L theorem we will build special coordinates on M, the ”action-
angle” coordinates.



