
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 8

1 Hamiltonian reduction and the Arnold-Liouville theorem

Reduction of a hamiltonian system on (M,ω): Let v = η(H), η := ω−1, H ∈ E(M). Assume
that p : M → M ′ is surjective submersion such that η is projectable with respect to p and H is
constant along the fibers of p. Then v is also projectable with respect to p. Indeed, p∗v = η′(H ′),
where η′ := p∗η,H ′ ∈ E(M ′) is the unique function such that H = p∗H ′. The hamiltonian system
on (M ′, η′) given by the hamiltonian vector field v′ := p∗v is called the reduction of the initial
hamiltonian system with respect to p.

First integrals and reduction: Assume that g ∈ E(M) is a first integral of the hamiltonian vector
field v = η(H), i.e. vg = 0. The last can be rewritten as η(H)g = 0, or, equivalently, {H, g}η = 0.
Consider the foliation F := {g = const} of the level sets of the function g (we assume that dg 6= 0
everywhere) and the dual 1-dimensional foliation K generated by η(g). Then H is constant along
the leaves of K (because η(g)H = −η(H)g = 0) and the system can be reduced with respect to the
projection M →M/K (at least locally, since locally the factor space M/K is good).

Conclusion: any first integral allows to reduce a bihamiltonian system on (M,ω), dimM = 2n, to a
new hamiltonian system which is defined on a symplectic manifold of dimension 2n− 2.

More generally: k first integrals g1, . . . , gk in involution (i.e. such that {gi, gj} = 0) allow to reduce
the number of independent variables by 2k.

Even more generally: Assume there exists S ⊂ E(M), a Lie subalgebra with respect to {, }η consisting
of the first integrals of a hamiltonian system. Then it can be reduced to a hamiltonian system on a
smaller symplectic manifold. The last is a symplectic leaf of the reduced Poisson structure obtained
by the reduction of η with respect to the action of the Lie algebra η(S) ⊂ Γ (TM). The dimension
of this manifold depends on the structure of the Lie algebra (S, {, }η|S).

The Arnold–Liouville theorem: Let (M,ω) be symplectic, dimM = 2n. Assume a hamiltonian
vector field v(H) admits n functionally independent integrals g1 = H, g2, . . . , gn in involution. Then

1. if the common level sets Mc := {x ∈ M | gi = ci, i = 1, . . . , n} of these integrals are compact
and connected, they are diffeomorphic to (n-dimensional) tori Tn = {(ϕ1, . . . , ϕn)mod2π};

2. the restriction of the initial hamiltonian equation to Tn gives an almost periodic motion on Tn,
i.e. in the ”angle coordinates” ϕ the equation has the form

d−→ϕ
dt

= −→a ,
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here −→a = (a1, . . . , an) is a constant vector depending only on the level;

3. the initial equation can be integrated in ”quadratures”, i.e. the solutions can be obtained by
means of a finite number of algebraic operations and operations of taking integral.

Proof. The functional independence of g1, . . . , gn means linear independence of the differentials
dg1, . . . , dgn at each point of Mc. By the implicit function theorem Mc is a submanifold of M .

Lemma 1 The vector fields η(g1), . . . , η(gn) are commuting, tangent to Mc and linearly independent
at each point of Mc.

Proof The linear independence follows from that of dg1, . . . , dgn and from nondegeneracy of η. The
vector fields are tangent to Mc because η(gi)gj = {gi, gj} = 0. The equality η({gi, gj}) = [η(gi), η(gj)]
shows the commuting property. ¤

Lemma 2 Let N be a compact connected n-dimensional manifold which has n linearly independent
(at each point) commuting vector fields v1, . . . , vn. Then N is diffeomorphic to n-dimensional torus.

Sketch of proof Let Gt
i, i = 1, . . . , n, be the corresponding 1-parametric groups of diffeomorphisms of N . In

other words, d
dt |t=0G

t
ix = vi|x for any x ∈ N and Gt1+t2

i = Gt1
i ◦ Gt2

i = Gt2
i ◦ Gt1

i for any t1, t2 ∈ R (and
G0

i = Id, G−t
i = (Gt

i)
−1). Note that Gt

i exist since by compactness of N the vector fields vi are complete.
Due to the commuting property of vector fields the diffeomorphisms also commute: Gt

i ◦Gt′
j = Gt′

j ◦Gt
i.

Thus the n-parametric family of diffeomorphisms Gt : N → N,Gt := Gt1
1 · · ·Gtn

n , t := (t1, . . . , tn), has the
property Gt+t′ = Gt ◦Gt′ = Gt′ ◦Gt (and G0 = Id, G−t = (Gt)−1). In other words, we get an action of the
commutative group Rn on N .

Lemma 3 This action is transitive, i.e. for any two points x0, x1 ∈ N there exists t such that Gtx0 = x1.

Proof Fix x0 and consider the map ψ : Rn → N,ψ(t) := Gtx0. This map is a local diffeomorphism: there
exists an open set U,0 ⊂ U ⊂ Rn such that ψ|U is a diffeomorphism onto V := ψ(U). Indeed, the derivative
ψ′(0) sends the standard basis {e1, . . . , en} of Rn to {v1|x0 , . . . , vn|x0}. The last vectors are independent,
hence ψ′(0) is nondegenerate and we can use the inverse function theorem.

Now connect x0 with x1 by a curve and cover this curve by a finite number of sets similar to V .
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Choose a point yi in each of the pairwise intersections of these sets and put y0 := x0, ym := x1. It is
clear that there exist ti such that Gtiyi = yi+1. Finally, put t := t0 + · · ·+ tm−1. ¤

Lemma 4 The stabilizer Gx0 := {t ∈ Rn | Gtx0 = x0} ⊂ Rn of the point x0 ∈ N with respect to this action
is a discrete additive subgroup of Rn, independent of the choice of x0.

Proof Given any action of a group G on a set X, one proves immediately that the stabilizers are subgroups
and the stabilizers of points lying on one orbit are conjugate. Here N consists of one orbit and the group is
commutative. Thus Gx0 is a subgroup, the same for any point.

To prove that it is discrete, observe that the set U can not contain any point of Gx0 different from 0. ¤

Lemma 5 For any discrete subgroup H ⊂ Rn there exist linearly independent vectors l1, . . . , lk ∈ Rn, k 6 n,
such that H = {∑k

i=1 zili | zi ∈ Z}.
For the proof see the book: V. I. Arnold ”Metody matematyczne mechaniki klasycznej”, Chapter 49.

Now we are ready to finish the proof of Lemma 2. Any orbit O of a (smooth) action of a Lie group G on
a manifold is diffeomorphic to the factor manifold G/Gx0 , where x0 ∈ O is any element. In our case O = N

is diffeomorphic Rn/Gx0
∼= Tk × Rn−k = {(ϕ1, . . . , ϕk; y1, . . . , yn−k)}, ϕimod2π. By compactness of N we

conclude that k = n and N ∼= Tn. ¤
So we have proven the first item of the A–L theorem. To show item 2 fix c and observe that the

diffeomorphism Tn → N := Mc can be included to the following commutative diagram:

Rn A−→ Rn

↓ p ↓ ψ
Tn −→ N

.

Here p is the natural projection and A is the linear isomorphism mapping the vectors 2πe1, . . . ,
2πen, where e1, . . . , en is the standard base in Rn, to l1, . . . , ln.

Obviously, η(H) = v1 = ψ∗(E1), where E1 is the constant vector field on Rn equal to e1 at 0.
Thus in the ϕ-coordinates on N the hamiltonian vector field η(H) has the form η(H) = (a1, . . . , an)
for some ai ∈ R. ¤

In order to prove item 3 of the A–L theorem we will build special coordinates on M , the ”action-
angle” coordinates.
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