
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 7

1 Symplectic and Poisson reduction

Digression on linear algebra of skew-symmetric bilinear forms: Let V be a vector space,
ω ∈ ∧2 V ∗,W ⊂ V a subspace. We put W⊥ω := {v ∈ V | ω(v,W ) = 0} and kerω := V ⊥ω =
{v ∈ V | ω(v, w) = 0 ∀w ∈ V }. We say that W is isotropic (coisotropic) if W ⊂ W⊥ω (respectively
W ⊃ W⊥ω). In case when ω is nondegenerate, or, in other words, symplectic, we call W lagrangian,
if it is maximal isotropic (i.e. W is isotropic and for any isotropic W ′ ⊃ W we have W ′ = W ).
Equivalently, W is lagrangian if it is minimal coisotropic.

Examples: Let e1, . . . , e2n be a basis of V , e1, . . . , e2n be the dual basis of V ∗, ω = e1∧en+1+· · · en∧e2n.
Then Wl := 〈e1, . . . , el〉 is isotropic for any l 6 n, W⊥ω

l = 〈e1, . . . en, en+l+1, . . . e2n〉 is coisotropic, Wn

is lagrangian.

A coisotropic submanifold of a symplectic manifold (M,ω): A submanifold N ⊂M such that
TxN is a coisotropic subspace of the sympectic vector space (TxM,ωx) for any x ∈M .

Fact. Let f1, . . . , fk ∈ E(M) be such that N = {x ∈ M | f1(x) = 0, . . . fk(x) = 0}. Then N is
coisotropic if and only if {fi, fj}|N ≡ 0, i, j = 1, . . . , k.

Proof Let η := ω−1, then (TxN)⊥ωx = 〈η(f1)|x, . . . , η(fk)|x〉. Indeed, if w ∈ TxN , we have
ωx(w, η(fi)|x) = −ωx(η(fi)|x, w) = −dxfi(w) = 0. So the inclusion (TxN)⊥ωx ⊂ TxN is equivalent
to the equality dxfj(η(fi)|x) = 0, i, j = 1, . . . , k. On the other hand, dxfj(η(fi)|x) = (η(fi)fj)|x =
{fi, fj}|x. ¤
A coisotropic foliation of a symplectic manifold (M,ω): A foliation F on M such that each
leaf locally is a coisotropic submanifold.

Fact. Let U ⊂M be an open set such that F on U is given by {x ∈ U | f1(x) = c1, . . . fk(x) = ck}
for some f1, . . . , fk ∈ E(U). Then N is coisotropic if and only if {fi, fj} ≡ 0 on U for any i, j =
1, . . . , k.

Linear version of symplectic reduction: Let (V, ω) be a symplectic vector space, W ⊂ V a
coisotropic subspace (i.e. W⊥ω ⊂ W ). Put W ′ := W/W⊥ω and let p : W → W ′ be the natural
projection. Then there exists a unique symplectic form ω′ on W ′ such that

p∗ω′ = ω|W ,
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i.e. ω(v, w) = ω′(pv, pw) for any v, w ∈W . To show this we observe that W⊥ω = kerω|W , so we can
put ω′(v +W⊥ω, w +W⊥ω) := ω(v, w).

Digression on factor manifolds: Let M be a manifold and K a foliation on M . The relation
”x ∼ y ⇔ (x and y belong to the same leaf)” is an equivalence relation on M and we shall denote
by M/K the topological quotient space M/ ∼. We say that M/K is good if the space M/K has a
structure of a smooth (analytic) manifold whose underlying topology is the quotient one such that
the canonical projection M →M/K is a smooth (analytic) submersion (recall that a smooth map is
a submersion if the tangent map i s surjective at each point). If such a smooth (analytic) structure
exists it is unique.

Note that for any foliation K and small enough open sets U ⊂M the factor space U/K is good.

Symplectic reduction on a symplectic manifold (M,ω): Let N ⊂M be a coisotropic subman-
ifold. Put Dx := (TxN)⊥ωx ⊂ TxM .

Fact. D := {Dx}x∈N is a integrable distribution on N .

Proof Let f1, . . . , fk ∈ E(U) be local functions defining N . Then Dx = 〈η(f1)|x, . . . , η(fk)|x〉 and
[η(fi), η(fj)]|x = ηx({fi, fj}|x) = 0. ¤

Put K for the foliation such that TK = D Assume that N ′ := N/K is good and put p : N → N ′

for the natural projection.

Fact. There exists a unique symplectic form ω′ on N ′ such that

p∗ω′ = ω|N .

Proof Perform the linear symplectic reduction at each point. ¤
Example: Let M := T ∗R2 ∼= R4 and let ω = dp ∧ dq be the canonical form. Let N := {(q, p) |
H(q, p) = 1}, H(q, p) = q2

1 + q2
2 + (p1)2 + (p2)2. Then TK is generated by η(H) = 2(q1

∂
∂p1 − p1 ∂

∂q1
+

q2
∂
∂p2 −p2 ∂

∂q2
). This vector field has 3 first integrals: H, f1 := (q2

1 +(p1)2)−(q2
2 +(p2)2), f2 := 2(q1p

2−
q2p

1). Put f3 := 2(q1q2 + p1p2) and consider the map ϕ : R4 → R4 given by (q, p) 7→ (H, f1, f2, f3).
Restricting the map ϕ to the sphere N = S3, we get the map ψ : N → R3. In fact, because of the
relation f 2

2 + f 2
3 = H2 − f 2

1 the image of ψ lies in the 2-dimensional sphere N ′ := S2 in R3.

Exercise: 1) If f ′ := (f ′1, f
′
2, f

′
3) ∈ N ′, the preimage ψ−1(f) is a ”great circle” on N contained in the

plane

(1 + f ′1)q2 − f ′3q1 + f ′2p
1 = 0

(1 + f ′1)p
2 − f ′2q1 − f ′3p

1 = 0

for f 6= (0, 0,−1) and in the plane {q1 = 0, p1 = 0} for f = (0, 0,−1). 2) This plane is a complex
one dimensional subspace of the space C2 ∼= R4, where the complex coordinates are given by q1 +
ip1, q2 + ip2.

The fibration ψ : S3 → S2 is called the Hopf fibration. As a result of the symplectic reduction
we get a symplectic structure on S2 ∼= CP1. Analogous construction gives a symplectic structure on
CPn.
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A particular case of Poisson reduction (informally): Let F be a coisotropic foliation on (M,ω)
and let D := {Dx}x∈M , Dx := (TxF)⊥ωx . Then D is an integrable distribution, put K for the foliation
such that TK = D. Assume that M ′ := M/K is good.

Now perform the symplectic reduction with respect to each leaf of F . As a result we will get
a foliation of M ′ by a symplectic (immersed) submanifolds. In fact this is a symplectic foliation of
some degenerate Poisson structure η′ on M ′.

Digression on projectability of tensor fields: Let p : M →M ′ be a surjective submersion. Put
p∗,x : TxM → Tp(x)M

′ for the tangent map. A vector field v ∈ Γ (TM) is said to be projectable with
respect to p if there exists a vector field v′ ∈ Γ (TM ′) such that v′p(x) = p∗,xvx for any x ∈M .

Let (x1, . . . , xk, y1, . . . , yl) be local coordinates on M such that (x1, . . . , xk) are local coordinates
on M ′ and p is given by p(x, y) = x. Then v is projectable if and only if v = ui(x) ∂

∂xi + wj(x, y) ∂
∂yj

(and if v is so, v′ = ui(x) ∂
∂xi ).

Analogously, one can define the projectability of bivector fields and show that η = ηij(x, y) ∂
∂xi ∧

∂
∂xj +ζtu(x, y) ∂

∂xt ∧ ∂
∂yu +ξrs(x, y) ∂

∂yr ∧ ∂
∂ys is projectable if and only if ηij(x, y) = ηij(x) is independent

of y.

Poisson reduction formally: Let p : M → M ′ be a surjective submersion, K be the foliation of
the fibers of p. Let η ∈ Γ (

∧2 TM) be a nondegenerate Poisson structure and let ω := η−1.

Fact. (Liebermann, Weinstein) The following conditions are equivalent: 1) η is projectable with
respect to p; 2) the distribution D,D := {Dx}x∈M , Dx := (TxK)⊥ωx , is integrable; 3) the set of
functions S := p∗(E(M ′)) constant along K is a Lie subalgebra with respect to {, }η.

Moreover, if η is projectable, η′ := p∗η is Poisson and the map p is Poisson, i.e. p∗ : (E(M ′), {, }η′) →
(E(M), {, }η) is a homomorphism of Lie algebras.

Proof Locally the leaves of K are given by {x1 = c1, . . . , xk = ck} in the (x, y)-coordinates,
so Dx = 〈η(x1)|x, . . . , η(xk)|x〉 (we do not assume {xi, xj}η = 0). D is integrable if and only
if [η(xi), η(xj)] = η({xi, xj}) is a linear combination of η(x1), . . . , η(xk). Let us show that this
last condition is equivalent to condition 3). Indeed, put f(x, y) := {xi, xj}η and observe, that
η(f) = ∂f

∂xtη(x
t) + ∂f

∂yuη(y
u). Thus η(f) is a linear combination of η(x1), . . . , η(xk) if and only if the

function f does not depend on y, i.e. belongs to S. So we have proven 2) ⇐⇒ 3).
Since ηij(x, y) = f(x, y) (see the previous subsection), we see that η is projectable if and only if

f does not depend on y, hence 1) ⇐⇒ 3).
Finally, if η is projectable, the Poisson bracket corresponding to η′ is the restriction of {, }η to S,

hence satisfies the JI. ¤
Dual pairs of foliations (Poisson maps): Note that in the construction above we get a foliation
F such that TF = (TK)⊥ω. Since taking the skew-orthogonal complement of a subspace twice gives
the initial subspace, we also have TK = (TF)⊥ω. In such a situation we say that the foliations
K,F (and the natural projections M → M/K,M → M/F) form a dual pair. In the particular case
discussed in the context of symplectic reduction F was a coisotropic foliation and K an isotropic one
(since TK = (TF)⊥ω ⊂ TF).
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