Algebraic and geometric aspects of modern theory of integrable systems

Lecture 7

1 Symplectic and Poisson reduction

Digression on linear algebra of skew-symmetric bilinear forms: Let V be a vector space, $\omega \in \bigwedge^2 V^*, W \subset V$ a subspace. We put $W^{\perp \omega} := \{v \in V \mid \omega(v, W) = 0\}$ and ker $\omega := V^{\perp \omega} = \{v \in V \mid \omega(v, w) = 0 \forall w \in V\}$. We say that W is *isotropic (coisotropic)* if $W \subset W^{\perp \omega}$ (respectively $W \supset W^{\perp \omega}$). In case when ω is nondegenerate, or, in other words, symplectic, we call W lagrangian, if it is maximal isotropic (i.e. W is isotropic and for any isotropic $W' \supset W$ we have W' = W). Equivalently, W is lagrangian if it is minimal coisotropic.

Examples: Let e_1, \ldots, e_{2n} be a basis of V, e^1, \ldots, e^{2n} be the dual basis of $V^*, \omega = e^1 \wedge e^{n+1} + \cdots + e^n \wedge e^{2n}$. Then $W_l := \langle e_1, \ldots, e_l \rangle$ is isotropic for any $l \leq n$, $W_l^{\perp \omega} = \langle e_1, \ldots, e_n, e_{n+l+1}, \ldots, e_{2n} \rangle$ is coisotropic, W_n is lagrangian.

A coisotropic submanifold of a symplectic manifold (M, ω) : A submanifold $N \subset M$ such that $T_x N$ is a coisotropic subspace of the symplectic vector space $(T_x M, \omega_x)$ for any $x \in M$.

FACT. Let $f_1, \ldots, f_k \in \mathcal{E}(M)$ be such that $N = \{x \in M \mid f_1(x) = 0, \ldots, f_k(x) = 0\}$. Then N is coisotropic if and only if $\{f_i, f_j\}|_N \equiv 0, i, j = 1, \ldots, k$.

Proof Let $\eta := \omega^{-1}$, then $(T_x N)^{\perp \omega_x} = \langle \eta(f_1)|_x, \ldots, \eta(f_k)|_x \rangle$. Indeed, if $w \in T_x N$, we have $\omega_x(w, \eta(f_i)|_x) = -\omega_x(\eta(f_i)|_x, w) = -d_x f_i(w) = 0$. So the inclusion $(T_x N)^{\perp \omega_x} \subset T_x N$ is equivalent to the equality $d_x f_j(\eta(f_i)|_x) = 0, i, j = 1, \ldots, k$. On the other hand, $d_x f_j(\eta(f_i)|_x) = (\eta(f_i)f_j)|_x = \{f_i, f_j\}|_x$. \Box

A coisotropic foliation of a symplectic manifold (M, ω) : A foliation \mathcal{F} on M such that each leaf locally is a coisotropic submanifold.

FACT. Let $U \subset M$ be an open set such that \mathcal{F} on U is given by $\{x \in U \mid f_1(x) = c_1, \dots, f_k(x) = c_k\}$ for some $f_1, \dots, f_k \in \mathcal{E}(U)$. Then N is coisotropic if and only if $\{f_i, f_j\} \equiv 0$ on U for any $i, j = 1, \dots, k$.

Linear version of symplectic reduction: Let (V, ω) be a symplectic vector space, $W \subset V$ a coisotropic subspace (i.e. $W^{\perp \omega} \subset W$). Put $W' := W/W^{\perp \omega}$ and let $p : W \to W'$ be the natural projection. Then there exists a unique symplectic form ω' on W' such that

$$p^*\omega' = \omega|_{W_1}$$

i.e. $\omega(v, w) = \omega'(pv, pw)$ for any $v, w \in W$. To show this we observe that $W^{\perp \omega} = \ker \omega|_W$, so we can put $\omega'(v + W^{\perp \omega}, w + W^{\perp \omega}) := \omega(v, w)$.

Digression on factor manifolds: Let M be a manifold and \mathcal{K} a foliation on M. The relation " $x \sim y \Leftrightarrow (x \text{ and } y \text{ belong to the same leaf})$ " is an equivalence relation on M and we shall denote by M/\mathcal{K} the topological quotient space M/\sim . We say that M/\mathcal{K} is good if the space M/\mathcal{K} has a structure of a smooth (analytic) manifold whose underlying topology is the quotient one such that the canonical projection $M \to M/\mathcal{K}$ is a smooth (analytic) submersion (recall that a smooth map is a submersion if the tangent map is surjective at each point). If such a smooth (analytic) structure exists it is unique.

Note that for any foliation \mathcal{K} and small enough open sets $U \subset M$ the factor space U/\mathcal{K} is good.

Symplectic reduction on a symplectic manifold (M, ω) : Let $N \subset M$ be a coisotropic submanifold. Put $D_x := (T_x N)^{\perp \omega_x} \subset T_x M$.

FACT. $\mathcal{D} := \{D_x\}_{x \in N}$ is a integrable distribution on N.

Proof Let $f_1, \ldots, f_k \in \mathcal{E}(U)$ be local functions defining N. Then $D_x = \langle \eta(f_1)|_x, \ldots, \eta(f_k)|_x \rangle$ and $[\eta(f_i), \eta(f_j)]|_x = \eta_x(\{f_i, f_j\}|_x) = 0.$

Put \mathcal{K} for the foliation such that $T\mathcal{K} = \mathcal{D}$ Assume that $N' := N/\mathcal{K}$ is good and put $p : N \to N'$ for the natural projection.

FACT. There exists a unique symplectic form ω' on N' such that

$$p^*\omega' = \omega|_N.$$

Proof Perform the linear symplectic reduction at each point. \Box

Example: Let $M := T^* \mathbb{R}^2 \cong \mathbb{R}^4$ and let $\omega = dp \wedge dq$ be the canonical form. Let $N := \{(q, p) \mid H(q, p) = 1\}, H(q, p) = q_1^2 + q_2^2 + (p^1)^2 + (p^2)^2$. Then $T\mathcal{K}$ is generated by $\eta(H) = 2(q_1\frac{\partial}{\partial p^1} - p^1\frac{\partial}{\partial q_1} + q_2\frac{\partial}{\partial p^2} - p^2\frac{\partial}{\partial q_2})$. This vector field has 3 first integrals: $H, f_1 := (q_1^2 + (p^1)^2) - (q_2^2 + (p^2)^2), f_2 := 2(q_1p^2 - q_2p^1)$. Put $f_3 := 2(q_1q_2 + p^1p^2)$ and consider the map $\varphi : \mathbb{R}^4 \to \mathbb{R}^4$ given by $(q, p) \mapsto (H, f_1, f_2, f_3)$. Restricting the map φ to the sphere $N = S^3$, we get the map $\psi : N \to \mathbb{R}^3$. In fact, because of the relation $f_2^2 + f_3^2 = H^2 - f_1^2$ the image of ψ lies in the 2-dimensional sphere $N' := S^2$ in \mathbb{R}^3 .

Exercise: 1) If $f' := (f'_1, f'_2, f'_3) \in N'$, the preimage $\psi^{-1}(f)$ is a "great circle" on N contained in the plane

$$(1 + f'_1)q_2 - f'_3q_1 + f'_2p^1 = 0 (1 + f'_1)p^2 - f'_2q_1 - f'_3p^1 = 0$$

for $f \neq (0, 0, -1)$ and in the plane $\{q_1 = 0, p^1 = 0\}$ for f = (0, 0, -1). 2) This plane is a complex one dimensional subspace of the space $\mathbb{C}^2 \cong \mathbb{R}^4$, where the complex coordinates are given by $q_1 + ip^1, q_2 + ip^2$.

The fibration $\psi: S^3 \to S^2$ is called the *Hopf fibration*. As a result of the symplectic reduction we get a symplectic structure on $S^2 \cong \mathbb{CP}^1$. Analogous construction gives a symplectic structure on \mathbb{CP}^n .

A particular case of Poisson reduction (informally): Let \mathcal{F} be a coisotropic foliation on (M, ω) and let $\mathcal{D} := \{D_x\}_{x \in M}, D_x := (T_x \mathcal{F})^{\perp \omega_x}$. Then \mathcal{D} is an integrable distribution, put \mathcal{K} for the foliation such that $T\mathcal{K} = \mathcal{D}$. Assume that $M' := M/\mathcal{K}$ is good.

Now perform the symplectic reduction with respect to each leaf of \mathcal{F} . As a result we will get a foliation of M' by a symplectic (immersed) submanifolds. In fact this is a symplectic foliation of some degenerate Poisson structure η' on M'.

Digression on projectability of tensor fields: Let $p: M \to M'$ be a surjective submersion. Put $p_{*,x}: T_xM \to T_{p(x)}M'$ for the tangent map. A vector field $v \in \Gamma(TM)$ is said to be *projectable* with respect to p if there exists a vector field $v' \in \Gamma(TM')$ such that $v'_{p(x)} = p_{*,x}v_x$ for any $x \in M$.

Let $(x^1, \ldots, x^k, y^1, \ldots, y^l)$ be local coordinates on M such that (x^1, \ldots, x^k) are local coordinates on M' and p is given by p(x, y) = x. Then v is projectable if and only if $v = u^i(x)\frac{\partial}{\partial x^i} + w^j(x, y)\frac{\partial}{\partial y^j}$ (and if v is so, $v' = u^i(x)\frac{\partial}{\partial x^i}$).

Analogously, one can define the projectability of bivector fields and show that $\eta = \eta^{ij}(x,y)\frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial y^{ij}} + \zeta^{tu}(x,y)\frac{\partial}{\partial x^t} \wedge \frac{\partial}{\partial y^u} + \xi^{rs}(x,y)\frac{\partial}{\partial y^r} \wedge \frac{\partial}{\partial y^s}$ is projectable if and only if $\eta^{ij}(x,y) = \eta^{ij}(x)$ is independent of y.

Poisson reduction formally: Let $p: M \to M'$ be a surjective submersion, \mathcal{K} be the foliation of the fibers of p. Let $\eta \in \Gamma(\bigwedge^2 TM)$ be a nondegenerate Poisson structure and let $\omega := \eta^{-1}$.

FACT. (Liebermann, Weinstein) The following conditions are equivalent: 1) η is projectable with respect to p; 2) the distribution $\mathcal{D}, \mathcal{D} := \{D_x\}_{x \in M}, D_x := (T_x \mathcal{K})^{\perp \omega_x}$, is integrable; 3) the set of functions $S := p^*(\mathcal{E}(M'))$ constant along \mathcal{K} is a Lie subalgebra with respect to $\{,\}_{\eta}$.

Moreover, if η is projectable, $\eta' := p_*\eta$ is Poisson and the map p is Poisson, i.e. $p^* : (\mathcal{E}(M'), \{,\}_{\eta'}) \to (\mathcal{E}(M), \{,\}_{\eta})$ is a homomorphism of Lie algebras.

Proof Locally the leaves of \mathcal{K} are given by $\{x_1 = c_1, \ldots, x_k = c_k\}$ in the (x, y)-coordinates, so $D_x = \langle \eta(x_1)|_x, \ldots, \eta(x_k)|_x \rangle$ (we do not assume $\{x_i, x_j\}_{\eta} = 0$). \mathcal{D} is integrable if and only if $[\eta(x_i), \eta(x_j)] = \eta(\{x_i, x_j\})$ is a linear combination of $\eta(x_1), \ldots, \eta(x_k)$. Let us show that this last condition is equivalent to condition 3). Indeed, put $f(x, y) := \{x_i, x_j\}_{\eta}$ and observe, that $\eta(f) = \frac{\partial f}{\partial x^t} \eta(x^t) + \frac{\partial f}{\partial y^u} \eta(y^u)$. Thus $\eta(f)$ is a linear combination of $\eta(x_1), \ldots, \eta(x_k)$ if and only if the function f does not depend on y, i.e. belongs to S. So we have proven 2) \iff 3).

Since $\eta^{ij}(x,y) = f(x,y)$ (see the previous subsection), we see that η is projectable if and only if f does not depend on y, hence $1) \iff 3$).

Finally, if η is projectable, the Poisson bracket corresponding to η' is the restriction of $\{,\}_{\eta}$ to S, hence satisfies the JI. \Box

Dual pairs of foliations (Poisson maps): Note that in the construction above we get a foliation \mathcal{F} such that $T\mathcal{F} = (T\mathcal{K})^{\perp \omega}$. Since taking the skew-orthogonal complement of a subspace twice gives the initial subspace, we also have $T\mathcal{K} = (T\mathcal{F})^{\perp \omega}$. In such a situation we say that the foliations \mathcal{K}, \mathcal{F} (and the natural projections $M \to M/\mathcal{K}, M \to M/\mathcal{F}$) form a *dual pair*. In the particular case discussed in the context of symplectic reduction \mathcal{F} was a coisotropic foliation and \mathcal{K} an isotropic one (since $T\mathcal{K} = (T\mathcal{F})^{\perp \omega} \subset T\mathcal{F}$).