Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 7

1 Symplectic and Poisson reduction

Digression on linear algebra of skew-symmetric bilinear forms: Let V' be a vector space,
we N’V W C V a subspace. We put W := {v € V | w(v,W) = 0} and kerw := VI =
{v eV |ww)=0VYw eV} Wesay that W is isotropic (coisotropic) if W C W (respectively
W D W+¥). In case when w is nondegenerate, or, in other words, symplectic, we call W lagrangian,
if it is maximal isotropic (i.e. W is isotropic and for any isotropic W’ D W we have W/ = W).
Equivalently, W is lagrangian if it is minimal coisotropic.

Examples: Let ey, . .., e, beabasisof V., el, ..., e* be the dual basis of V*, w = el Ae" 4. - e Ae?m.
Then W, := (ey, ..., ¢) is isotropic for any | < n, W = {e1,...€n, €ntit1, - - - €2,) is coisotropic, W,
is lagrangian.

A coisotropic submanifold of a symplectic manifold (M,w): A submanifold N C M such that
T, N is a coisotropic subspace of the sympectic vector space (T, M, w,) for any x € M.

Fact. Let fi,..., fr € E(M) be such that N = {z € M | fi(z) =0,... fy(z) = 0}. Then N is
coisotropic if and only if {f;, fi}n =0,7,7=1,... k.

Proof Let n = w7, then (T,N)*= = n(fi)le,---,n(fe)lz). Indeed, if w € T,N, we have
we(w,n(fi)lz) = —weM(fi)|s,w) = —dyfi(w) = 0. So the inclusion (T, N)*“= C T, N is equivalent
to the equality d,f;(n(fi)|z) = 0,7, = 1,...,k. On the other hand, d,f;(n(fi)|.) = n(fi)fi)l. =

A coisotropic foliation of a symplectic manifold (M,w): A foliation F on M such that each
leaf locally is a coisotropic submanifold.

Fact. Let U C M be an open set such that F on U is given by {x € U | fi(z) = ¢y, ... fr(x) = ¢}
for some fi,..., fr € E(U). Then N is coisotropic if and only if {f;, f;} = 0 on U for any 7,5 =
1,... k.

Linear version of symplectic reduction: Let (V,w) be a symplectic vector space, W C V a
coisotropic subspace (i.e. Wt c W). Put W’ := W/W= and let p : W — W’ be the natural
projection. Then there exists a unique symplectic form «’ on W’ such that

p*w, = C’L)|VV7



i.e. w(v,w) = w(pv,pw) for any v,w € W. To show this we observe that W+* = ker w|y, so we can
put w'(v + W w + W) 1= w(v, w).

Digression on factor manifolds: Let M be a manifold and I a foliation on M. The relation
"r ~ 1y < (x and y belong to the same leaf)” is an equivalence relation on M and we shall denote
by M/K the topological quotient space M/ ~. We say that M /K is good if the space M /K has a
structure of a smooth (analytic) manifold whose underlying topology is the quotient one such that
the canonical projection M — M /K is a smooth (analytic) submersion (recall that a smooth map is
a submersion if the tangent map i s surjective at each point). If such a smooth (analytic) structure
exists it is unique.

Note that for any foliation K and small enough open sets U C M the factor space U/K is good.

Symplectic reduction on a symplectic manifold (M,w): Let N C M be a coisotropic subman-
ifold. Put D, := (T,N)** C T, M.

Fact. D :={D,}.en is a integrable distribution on N.

Proof Let fi,..., fr € E(U) be local functions defining N. Then D, = (n(f1)|z, ..., n(fx)].) and

[n(f2). n(fi)lle = n({ fi, fi}]a) = 0. O
Put K for the foliation such that TKC = D Assume that N’ := N/K is good and put p : N — N’

for the natural projection.
FacT. There exists a unique symplectic form w’ on N’ such that
* ./
prw = w|nN.

Proof Perform the linear symplectic reduction at each point. [

Example: Let M := T*R? = R? and let w = dp A dg be the canonical form. Let N := {(q,p) |
H(q,p) = 1}, H(q,p) = 4 + g5 + (p')* + (p*)*. Then TK is generated by 1(H) = 2(q15r —p' 5 +
qgaa—p2 —p2§—q2). This vector field has 3 first integrals: H, f1 := (¢f + (p")?) — (g5 + (p*)?), f2 := 2(q1p* —
@p'). Put f3 :=2(qig2 + p'p?) and consider the map ¢ : R* — R* given by (¢,p) — (H, f1, f2. f3)-
Restricting the map ¢ to the sphere N = S?, we get the map 1 : N — R3. In fact, because of the
relation f3 + f2 = H? — f? the image of ¢ lies in the 2-dimensional sphere N’ := S? in R3,
Ezercise: 1) If f':= (f{, f4, f4) € N’, the preimage 1) ~'(f) is a "great circle” on N contained in the
plane

(14 M — fim + fip' =
(L+ fp* = fom — fasp' =

for f # (0,0,—1) and in the plane {¢; = 0,p' = 0} for f = (0,0,—1). 2) This plane is a complex
one dimensional subspace of the space C?> = R* where the complex coordinates are given by ¢ +
1 2
P, g2 + 1T,

The fibration 1 : S — S? is called the Hopf fibration. As a result of the symplectic reduction

we get a symplectic structure on S? = CP!. Analogous construction gives a symplectic structure on
CP".

o O



A particular case of Poisson reduction (informally): Let F be a coisotropic foliation on (M, w)
and let D := {D,}penr, Dy := (T, F)**=. Then D is an integrable distribution, put K for the foliation
such that T/C = D. Assume that M := M/K is good.

Now perform the symplectic reduction with respect to each leaf of F. As a result we will get
a foliation of M’ by a symplectic (immersed) submanifolds. In fact this is a symplectic foliation of
some degenerate Poisson structure ' on M’.

Digression on projectability of tensor fields: Let p : M — M’ be a surjective submersion. Put
Pia : ToM — TpmyM' for the tangent map. A vector field v € I'(T'M) is said to be projectable with
respect to p if there exists a vector field v’ € I'(T'M") such that v, = p.,v, for any z € M.

Let (zt,...,2% y',...,9'") be local coordinates on M such that (z!,...,2¥) are local coordinates

on M’ and p is given by p(z,y) = z. Then v is projectable if and only if v = u'(z)Z; + wj(x,y)%

(and if v is so, v’ = u'(z) 2;).

Analogously, one can define the projectability of bivector fields and show that n = 7% (x,y) aaxi A
% + (", y)% A 88? +£7(x, y)aay,. A adys is projectable if and only if n”/(x,y) = 1" (z) is independent
of y.

Poisson reduction formally: Let p : M — M’ be a surjective submersion, K be the foliation of
the fibers of p. Let n € I'(\°>TM) be a nondegenerate Poisson structure and let w := .

Fact. (Liebermann, Weinstein) The following conditions are equivalent: 1) 7 is projectable with
respect to p; 2) the distribution D, D := {D,}een, Dp = (T,K) *=, is integrable; 3) the set of
functions S := p*(E(M’)) constant along K is a Lie subalgebra with respect to {, },,.

Moreover, if 1 is projectable, " := p,n is Poisson and the map p is Poisson, i.e. p* : (£(M’),{, }y) —
(E(M),{,},) is a homomorphism of Lie algebras.

Proof Locally the leaves of K are given by {x; = ¢1,...,2x = ¢} in the (z,y)-coordinates,
so D, = (n(z1)|g,...,n(xk)|s) (we do not assume {z;,z;}, = 0). D is integrable if and only
if [n(z;),n(x;)] = n({xi,z;}) is a linear combination of 7(z1),...,n(zx). Let us show that this
last condition is equivalent to condition 3). Indeed, put f(z,y) := {z;,2;}, and observe, that
n(f) = %n(wt) + 837];77(3/“). Thus 7(f) is a linear combination of n(xy),...,n(xx) if and only if the
function f does not depend on y, i.e. belongs to S. So we have proven 2) <= 3).

Since 7" (x,y) = f(x,y) (see the previous subsection), we see that 7 is projectable if and only if
f does not depend on y, hence 1) <= 3).

Finally, if n is projectable, the Poisson bracket corresponding to 7’ is the restriction of {, }, to S,
hence satisfies the JI. O

Dual pairs of foliations (Poisson maps): Note that in the construction above we get a foliation
F such that TF = (TK)**. Since taking the skew-orthogonal complement of a subspace twice gives
the initial subspace, we also have TK = (T'F)**. In such a situation we say that the foliations
K, F (and the natural projections M — M /K, M — M/F) form a dual pair. In the particular case
discussed in the context of symplectic reduction F was a coisotropic foliation and /C an isotropic one

(since TK = (TF)* C TF).



