# Algebraic and geometric aspects of modern theory of integrable systems 

Lecture 7

## 1 Symplectic and Poisson reduction

Digression on linear algebra of skew-symmetric bilinear forms: Let $V$ be a vector space, $\omega \in \bigwedge^{2} V^{*}, W \subset V$ a subspace. We put $W^{\perp \omega}:=\{v \in V \mid \omega(v, W)=0\}$ and ker $\omega:=V^{\perp \omega}=$ $\{v \in V \mid \omega(v, w)=0 \forall w \in V\}$. We say that $W$ is isotropic (coisotropic) if $W \subset W^{\perp \omega}$ (respectively $\left.W \supset W^{\perp \omega}\right)$. In case when $\omega$ is nondegenerate, or, in other words, symplectic, we call $W$ lagrangian, if it is maximal isotropic (i.e. $W$ is isotropic and for any isotropic $W^{\prime} \supset W$ we have $W^{\prime}=W$ ). Equivalently, $W$ is lagrangian if it is minimal coisotropic.
Examples: Let $e_{1}, \ldots, e_{2 n}$ be a basis of $V, e^{1}, \ldots, e^{2 n}$ be the dual basis of $V^{*}, \omega=e^{1} \wedge e^{n+1}+\cdots e^{n} \wedge e^{2 n}$. Then $W_{l}:=\left\langle e_{1}, \ldots, e_{l}\right\rangle$ is isotropic for any $l \leqslant n, W_{l}^{\perp \omega}=\left\langle e_{1}, \ldots e_{n}, e_{n+l+1}, \ldots e_{2 n}\right\rangle$ is coisotropic, $W_{n}$ is lagrangian.
A coisotropic submanifold of a symplectic manifold $(M, \omega):$ A submanifold $N \subset M$ such that $T_{x} N$ is a coisotropic subspace of the sympectic vector space $\left(T_{x} M, \omega_{x}\right)$ for any $x \in M$.

FAct. Let $f_{1}, \ldots, f_{k} \in \mathcal{E}(M)$ be such that $N=\left\{x \in M \mid f_{1}(x)=0, \ldots f_{k}(x)=0\right\}$. Then $N$ is coisotropic if and only if $\left.\left\{f_{i}, f_{j}\right\}\right|_{N} \equiv 0, i, j=1, \ldots, k$.

Proof Let $\eta:=\omega^{-1}$, then $\left(T_{x} N\right)^{\perp \omega_{x}}=\left\langle\left.\eta\left(f_{1}\right)\right|_{x}, \ldots,\left.\eta\left(f_{k}\right)\right|_{x}\right\rangle$. Indeed, if $w \in T_{x} N$, we have $\omega_{x}\left(w,\left.\eta\left(f_{i}\right)\right|_{x}\right)=-\omega_{x}\left(\left.\eta\left(f_{i}\right)\right|_{x}, w\right)=-d_{x} f_{i}(w)=0$. So the inclusion $\left(T_{x} N\right)^{\perp \omega_{x}} \subset T_{x} N$ is equivalent to the equality $d_{x} f_{j}\left(\left.\eta\left(f_{i}\right)\right|_{x}\right)=0, i, j=1, \ldots, k$. On the other hand, $d_{x} f_{j}\left(\left.\eta\left(f_{i}\right)\right|_{x}\right)=\left.\left(\eta\left(f_{i}\right) f_{j}\right)\right|_{x}=$ $\left.\left\{f_{i}, f_{j}\right\}\right|_{x}$.

A coisotropic foliation of a symplectic manifold $(M, \omega)$ : A foliation $\mathcal{F}$ on $M$ such that each leaf locally is a coisotropic submanifold.

FACT. Let $U \subset M$ be an open set such that $\mathcal{F}$ on $U$ is given by $\left\{x \in U \mid f_{1}(x)=c_{1}, \ldots f_{k}(x)=c_{k}\right\}$ for some $f_{1}, \ldots, f_{k} \in \mathcal{E}(U)$. Then $N$ is coisotropic if and only if $\left\{f_{i}, f_{j}\right\} \equiv 0$ on $U$ for any $i, j=$ $1, \ldots, k$.

Linear version of symplectic reduction: Let $(V, \omega)$ be a symplectic vector space, $W \subset V$ a coisotropic subspace (i.e. $W^{\perp \omega} \subset W$ ). Put $W^{\prime}:=W / W^{\perp \omega}$ and let $p: W \rightarrow W^{\prime}$ be the natural projection. Then there exists a unique symplectic form $\omega^{\prime}$ on $W^{\prime}$ such that

$$
p^{*} \omega^{\prime}=\left.\omega\right|_{W},
$$

i.e. $\omega(v, w)=\omega^{\prime}(p v, p w)$ for any $v, w \in W$. To show this we observe that $W^{\perp \omega}=\left.\operatorname{ker} \omega\right|_{W}$, so we can put $\omega^{\prime}\left(v+W^{\perp \omega}, w+W^{\perp \omega}\right):=\omega(v, w)$.
Digression on factor manifolds: Let $M$ be a manifold and $\mathcal{K}$ a foliation on $M$. The relation " $x \sim y \Leftrightarrow(x$ and $y$ belong to the same leaf)" is an equivalence relation on $M$ and we shall denote by $M / \mathcal{K}$ the topological quotient space $M / \sim$. We say that $M / \mathcal{K}$ is good if the space $M / \mathcal{K}$ has a structure of a smooth (analytic) manifold whose underlying topology is the quotient one such that the canonical projection $M \rightarrow M / \mathcal{K}$ is a smooth (analytic) submersion (recall that a smooth map is a submersion if the tangent map is surjective at each point). If such a smooth (analytic) structure exists it is unique.

Note that for any foliation $\mathcal{K}$ and small enough open sets $U \subset M$ the factor space $U / \mathcal{K}$ is good.
Symplectic reduction on a symplectic manifold $(M, \omega)$ : Let $N \subset M$ be a coisotropic submanifold. Put $D_{x}:=\left(T_{x} N\right)^{\perp \omega_{x}} \subset T_{x} M$.

FACT. $\mathcal{D}:=\left\{D_{x}\right\}_{x \in N}$ is a integrable distribution on $N$.
Proof Let $f_{1}, \ldots, f_{k} \in \mathcal{E}(U)$ be local functions defining $N$. Then $D_{x}=\left\langle\left.\eta\left(f_{1}\right)\right|_{x}, \ldots,\left.\eta\left(f_{k}\right)\right|_{x}\right\rangle$ and $\left.\left[\eta\left(f_{i}\right), \eta\left(f_{j}\right)\right]\right|_{x}=\eta_{x}\left(\left.\left\{f_{i}, f_{j}\right\}\right|_{x}\right)=0$.

Put $\mathcal{K}$ for the foliation such that $T \mathcal{K}=\mathcal{D}$ Assume that $N^{\prime}:=N / \mathcal{K}$ is good and put $p: N \rightarrow N^{\prime}$ for the natural projection.

Fact. There exists a unique symplectic form $\omega^{\prime}$ on $N^{\prime}$ such that

$$
p^{*} \omega^{\prime}=\left.\omega\right|_{N}
$$

Proof Perform the linear symplectic reduction at each point.
Example: Let $M:=T^{*} \mathbb{R}^{2} \cong \mathbb{R}^{4}$ and let $\omega=d p \wedge d q$ be the canonical form. Let $N:=\{(q, p) \mid$ $H(q, p)=1\}, H(q, p)=q_{1}^{2}+q_{2}^{2}+\left(p^{1}\right)^{2}+\left(p^{2}\right)^{2}$. Then $T \mathcal{K}$ is generated by $\eta(H)=2\left(q_{1} \frac{\partial}{\partial p^{1}}-p^{1} \frac{\partial}{\partial q_{1}}+\right.$ $\left.q_{2} \frac{\partial}{\partial p^{2}}-p^{2} \frac{\partial}{\partial q_{2}}\right)$. This vector field has 3 first integrals: $H, f_{1}:=\left(q_{1}^{2}+\left(p^{1}\right)^{2}\right)-\left(q_{2}^{2}+\left(p^{2}\right)^{2}\right), f_{2}:=2\left(q_{1} p^{2}-\right.$ $\left.q_{2} p^{1}\right)$. Put $f_{3}:=2\left(q_{1} q_{2}+p^{1} p^{2}\right)$ and consider the map $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by $(q, p) \mapsto\left(H, f_{1}, f_{2}, f_{3}\right)$. Restricting the map $\varphi$ to the sphere $N=S^{3}$, we get the map $\psi: N \rightarrow \mathbb{R}^{3}$. In fact, because of the relation $f_{2}^{2}+f_{3}^{2}=H^{2}-f_{1}^{2}$ the image of $\psi$ lies in the 2-dimensional sphere $N^{\prime}:=S^{2}$ in $\mathbb{R}^{3}$.
Exercise: 1) If $f^{\prime}:=\left(f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}\right) \in N^{\prime}$, the preimage $\psi^{-1}(f)$ is a "great circle" on $N$ contained in the plane

$$
\begin{aligned}
& \left(1+f_{1}^{\prime}\right) q_{2}-f_{3}^{\prime} q_{1}+f_{2}^{\prime} p^{1}=0 \\
& \left(1+f_{1}^{\prime}\right) p^{2}-f_{2}^{\prime} q_{1}-f_{3}^{\prime} p^{1}=0
\end{aligned}
$$

for $f \neq(0,0,-1)$ and in the plane $\left\{q_{1}=0, p^{1}=0\right\}$ for $f=(0,0,-1)$. 2) This plane is a complex one dimensional subspace of the space $\mathbb{C}^{2} \cong \mathbb{R}^{4}$, where the complex coordinates are given by $q_{1}+$ $i p^{1}, q_{2}+i p^{2}$.

The fibration $\psi: S^{3} \rightarrow S^{2}$ is called the Hopf fibration. As a result of the symplectic reduction we get a symplectic structure on $S^{2} \cong \mathbb{C P}^{1}$. Analogous construction gives a symplectic structure on $\mathbb{C P}^{n}$.

A particular case of Poisson reduction (informally): Let $\mathcal{F}$ be a coisotropic foliation on $(M, \omega)$ and let $\mathcal{D}:=\left\{D_{x}\right\}_{x \in M}, D_{x}:=\left(T_{x} \mathcal{F}\right)^{\perp \omega_{x}}$. Then $\mathcal{D}$ is an integrable distribution, put $\mathcal{K}$ for the foliation such that $T \mathcal{K}=\mathcal{D}$. Assume that $M^{\prime}:=M / \mathcal{K}$ is good.

Now perform the symplectic reduction with respect to each leaf of $\mathcal{F}$. As a result we will get a foliation of $M^{\prime}$ by a symplectic (immersed) submanifolds. In fact this is a symplectic foliation of some degenerate Poisson structure $\eta^{\prime}$ on $M^{\prime}$.
Digression on projectability of tensor fields: Let $p: M \rightarrow M^{\prime}$ be a surjective submersion. Put $p_{*, x}: T_{x} M \rightarrow T_{p(x)} M^{\prime}$ for the tangent map. A vector field $v \in \Gamma(T M)$ is said to be projectable with respect to $p$ if there exists a vector field $v^{\prime} \in \Gamma\left(T M^{\prime}\right)$ such that $v_{p(x)}^{\prime}=p_{*, x} v_{x}$ for any $x \in M$.

Let $\left(x^{1}, \ldots, x^{k}, y^{1}, \ldots, y^{l}\right)$ be local coordinates on $M$ such that $\left(x^{1}, \ldots, x^{k}\right)$ are local coordinates on $M^{\prime}$ and $p$ is given by $p(x, y)=x$. Then $v$ is projectable if and only if $v=u^{i}(x) \frac{\partial}{\partial x^{i}}+w^{j}(x, y) \frac{\partial}{\partial y^{j}}$ (and if $v$ is so, $\left.v^{\prime}=u^{i}(x) \frac{\partial}{\partial x^{i}}\right)$.

Analogously, one can define the projectability of bivector fields and show that $\eta=\eta^{i j}(x, y) \frac{\partial}{\partial x^{i}} \wedge$ $\frac{\partial}{\partial x^{j}}+\zeta^{t u}(x, y) \frac{\partial}{\partial x^{t}} \wedge \frac{\partial}{\partial y^{u}}+\xi^{r s}(x, y) \frac{\partial}{\partial y^{r}} \wedge \frac{\partial}{\partial y^{s}}$ is projectable if and only if $\eta^{i j}(x, y)=\eta^{i j}(x)$ is independent of $y$.

Poisson reduction formally: Let $p: M \rightarrow M^{\prime}$ be a surjective submersion, $\mathcal{K}$ be the foliation of the fibers of $p$. Let $\eta \in \Gamma\left(\bigwedge^{2} T M\right)$ be a nondegenerate Poisson structure and let $\omega:=\eta^{-1}$.

Fact. (Liebermann, Weinstein) The following conditions are equivalent: 1) $\eta$ is projectable with respect to $p$; 2) the distribution $\mathcal{D}, \mathcal{D}:=\left\{D_{x}\right\}_{x \in M}, D_{x}:=\left(T_{x} \mathcal{K}\right)^{\perp \omega_{x}}$, is integrable; 3) the set of functions $S:=p^{*}\left(\mathcal{E}\left(M^{\prime}\right)\right)$ constant along $\mathcal{K}$ is a Lie subalgebra with respect to $\{,\}_{\eta}$.

Moreover, if $\eta$ is projectable, $\eta^{\prime}:=p_{*} \eta$ is Poisson and the map $p$ is Poisson, i.e. $p^{*}:\left(\mathcal{E}\left(M^{\prime}\right),\{,\}_{\eta^{\prime}}\right) \rightarrow$ $\left(\mathcal{E}(M),\{,\}_{\eta}\right)$ is a homomorphism of Lie algebras.

Proof Locally the leaves of $\mathcal{K}$ are given by $\left\{x_{1}=c_{1}, \ldots, x_{k}=c_{k}\right\}$ in the $(x, y)$-coordinates, so $D_{x}=\left\langle\left.\eta\left(x_{1}\right)\right|_{x}, \ldots,\left.\eta\left(x_{k}\right)\right|_{x}\right\rangle$ (we do not assume $\left\{x_{i}, x_{j}\right\}_{\eta}=0$ ). $\mathcal{D}$ is integrable if and only if $\left[\eta\left(x_{i}\right), \eta\left(x_{j}\right)\right]=\eta\left(\left\{x_{i}, x_{j}\right\}\right)$ is a linear combination of $\eta\left(x_{1}\right), \ldots, \eta\left(x_{k}\right)$. Let us show that this last condition is equivalent to condition 3). Indeed, put $f(x, y):=\left\{x_{i}, x_{j}\right\}_{\eta}$ and observe, that $\eta(f)=\frac{\partial f}{\partial x^{t}} \eta\left(x^{t}\right)+\frac{\partial f}{\partial y^{u}} \eta\left(y^{u}\right)$. Thus $\eta(f)$ is a linear combination of $\eta\left(x_{1}\right), \ldots, \eta\left(x_{k}\right)$ if and only if the function $f$ does not depend on $y$, i.e. belongs to $S$. So we have proven 2$) \Longleftrightarrow 3$ ).

Since $\eta^{i j}(x, y)=f(x, y)$ (see the previous subsection), we see that $\eta$ is projectable if and only if $f$ does not depend on $y$, hence 1$) \Longleftrightarrow 3$ ).

Finally, if $\eta$ is projectable, the Poisson bracket corresponding to $\eta^{\prime}$ is the restriction of $\{,\}_{\eta}$ to $S$, hence satisfies the JI.

Dual pairs of foliations (Poisson maps): Note that in the construction above we get a foliation $\mathcal{F}$ such that $T \mathcal{F}=(T \mathcal{K})^{\perp \omega}$. Since taking the skew-orthogonal complement of a subspace twice gives the initial subspace, we also have $T \mathcal{K}=(T \mathcal{F})^{\perp \omega}$. In such a situation we say that the foliations $\mathcal{K}, \mathcal{F}$ (and the natural projections $M \rightarrow M / \mathcal{K}, M \rightarrow M / \mathcal{F}$ ) form a dual pair. In the particular case discussed in the context of symplectic reduction $\mathcal{F}$ was a coisotropic foliation and $\mathcal{K}$ an isotropic one (since $\left.T \mathcal{K}=(T \mathcal{F})^{\perp \omega} \subset T \mathcal{F}\right)$.

