# Algebraic and geometric aspects of modern theory of integrable systems 

Lectures 5-6

## 1 Lie-Poisson structures

Definition I: Let $(\mathfrak{g},[]$,$) be a finite-dimensional Lie algebra, \mathfrak{g}^{*}$ its dual space (space of linear functionals on $\mathfrak{g}$ ). Given $f, g \in \mathcal{E}\left(\mathfrak{g}^{*}\right)$ define $\{f, g\}_{\mathfrak{g}}(x):=\left\langle x,\left[\left.d f\right|_{x},\left.d g\right|_{x}\right]\right\rangle, x \in \mathfrak{g}^{*}$. Here we identify $T_{x}^{*} \mathfrak{g}^{*}$ with $\mathfrak{g},\langle$,$\rangle stands for the canonical pairing between vectors and covectors.$
Digression: Let $M$ be a manifold, $\{\}:, \mathcal{E}(M) \times \mathcal{E}(M) \rightarrow \mathcal{E}(M)$ a bilinear operation being a differentiation with respect to each argument: $\{f g, h\}=f\{g, h\}+g\{f, h\},\{f, g h\}=\{f, g\} h+$ $\{f, h\} g$. Then it can be shown that there is a tensor $\eta \in \Gamma\left(\bigotimes^{2} T M\right)$ such that $\{f, g\}=\eta(d f, d g)$. Let us show this in the case when $\{$,$\} is skew-symmetric.$

Indeed, since $\{f, \cdot\},\{g, \cdot\}$ are differentiations they are vector fields, say $X_{f}, X_{g}$. Let $f \in \mathcal{E}(M)$ be such that $\left.d f\right|_{x}=0$ for some $x \in M$. Then $\left\langle\left. X_{f}\right|_{x},\left.d g\right|_{x}\right\rangle=\left(X_{f} g\right)(x)=\{f, g\}(x)=-\{g, f\}(x)=$ $-\left(X_{g} f\right)(x)=-\left\langle\left. X_{g}\right|_{x},\left.d f\right|_{x}\right\rangle=0$. Here $g \in \mathcal{E}(M)$ is arbitrary, hence $\left.X_{f}\right|_{x}=0$. Thus the map $\left.\left.d f\right|_{x} \rightarrow X_{f}\right|_{x}$ depends only on the value of $d f$ at $x$, i.e. is given by a morphism $T^{*} M \rightarrow T M$.
Definition II: Let $(\mathfrak{g},[]$,$) be a finite-dimensional Lie algebra, e_{1}, \ldots, e_{n} \in \mathfrak{g}$ its basis, $x_{1}=e_{1}, \ldots, x_{n}=$ $e_{n}$ these vectors regarded as linear functions on $\mathfrak{g}^{*}$ (in particular $x_{1}, \ldots, x_{n}$ are linear coordinates on $\left.\mathfrak{g}^{*}\right)$. Let $\left[e_{i}, e_{j}\right]=c_{i j}^{k} e_{k}\left(c_{i j}^{k}\right.$ are called the structure constants corresponding to the basis $\left.e_{1}, \ldots, e_{n}\right)$. Put $\eta_{\mathfrak{g}}:=c_{i j}^{k} x_{k} \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}}$.

Fact. The bivector corresponding to the bracket $\{,\}_{\mathfrak{g}}$ coincides with $\eta_{\mathfrak{g}}$.
Proof Let $\eta=\eta^{i j}(x) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}}$ be the bivector corresponding to $\{,\}_{\mathfrak{g}}$. Take $f:=x_{i}, g:=x_{j}$, then $\{f, g\}(x)=\eta^{i j}(x)$. On the other hand, by Definition I, $\{f, g\}(x)=\left\langle x,\left[x_{i}, x_{j}\right]\right\rangle=c_{i j}^{k} x_{k}$.
Exercise: 1) Let $\eta \in \Gamma\left(\bigwedge^{2} T M\right)$, in local coordinates $\eta=\eta^{i j}(x) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}}$. Show that the JI for $\{\},,\{f, g\}=\eta^{i j}(x) \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}$ holds if and only if the expression

$$
[\eta, \eta]_{S}^{i j k}:=\sum_{c . p ., i, j, k} \eta^{i r}(x) \frac{\partial}{\partial x^{r}} \eta^{j k}(x)
$$

vanishes for all $i, j, k \in\{1, \ldots, n\}$. 2) Show that, given $\eta, \zeta \in \Gamma\left(\bigwedge^{2} T M\right), \eta=\eta^{i j}(x) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}}, \zeta=$ $\zeta^{i j}(x) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}}$, the expression

$$
[\eta, \zeta]_{S}^{i j k}:=\frac{1}{2} \sum_{c . p . i, j, k} \eta^{i r}(x) \frac{\partial}{\partial x^{r}} \zeta^{j k}(x)+\zeta^{i r}(x) \frac{\partial}{\partial x^{r}} \eta^{j k}(x)
$$

is a local representation of a trivector on $M$ (called the Schouten bracket of $\eta$ and $\zeta$ ). 3) If $\eta=$ $v_{1} \wedge v_{2}, \zeta=w_{1} \wedge w_{2}, v_{i}, w_{i} \in \Gamma(T M)$, then

$$
[\eta, \zeta]_{S} \sim\left[v_{1}, w_{1}\right] \wedge v_{2} \wedge w_{2}+v_{1} \wedge\left[v_{2}, w_{1}\right] \wedge w_{2}+v_{2} \wedge\left[v_{1}, w_{2}\right] \wedge w_{1}+v_{1} \wedge w_{1} \wedge\left[v_{2}, w_{2}\right]
$$

Here $\sim$ means equality up to a constant.
Proof of the Jacobi identity for the Lie-Poisson structure: $\left[\eta_{\mathfrak{g}}, \eta_{\mathfrak{g}}\right]_{S}^{i j k}=\sum_{c . p ., i, j, k} c_{i r}^{l} x_{l} c_{j k}^{r}$. The last expression vanishes for all $i, j, k$ if and only if $\sum_{c . p . i, j, k} c_{i r}^{l} c_{j k}^{r}=0$ for all $l, i, j, k$, which is equivalent to the JI for [,].

## 2 Actions of Lie algebras and symplectic foliations of LiePoisson structures

An action of a Lie algebra $\mathfrak{g}$ on a manifold: A homomorphism of Lie algebras $\rho:(\mathfrak{g},[],) \rightarrow$ $(\Gamma(T M),[]$,$) (in the target space [,] stands for the commutator of vector fields) is called a (right)$ action of $\mathfrak{g}$ on $M$.
Orbits of an action $\rho:(\mathfrak{g},[],) \rightarrow(\Gamma(T M),[]):$, Put $D_{x}:=\left\{\left.\rho(v)\right|_{x} \mid v \in \mathfrak{g}\right\}, x \in M$.
FACt. Let $\mathfrak{g}$ be finite-dimensional. Then the generalized distribution $\mathcal{D}:=\left\{D_{x}\right\}_{x \in M}$ is integrable.
Proof The distribution $\mathcal{D}$ is involutive: $[\rho(v), \rho(w)]=\rho([v, w])$. Thus in the analytic category the proof follows from the generalized Frobenius theorem (note that in fact the same argument works for infinite-dimensional $\mathfrak{g}$ as well). We skip the proof in the smooth case (roughly it consists in integrating the action of the Lie algebra to a local action of the corresponding Lie group).

The leaves of the corresponding generalized foliation are called the orbits of the action $\rho$. If the Lie algebra $\mathfrak{g}$ is finite-dimensional, the action can be "integrated" to a local action of a Lie group $G$ such that $\mathfrak{g}$ is its Lie algebra. Then the orbits of the Lie algebra action and of the Lie group action coincide.

Linear representations and actions: Let $V$ be a vector space and $A \in \operatorname{End}(V)$ a linear operator. It induces a uniquely defined vector field $\tilde{A}$ on $V$ given by $x \mapsto(x, A x): V \rightarrow V \times V \cong T V$. If $e_{1}, \ldots, e_{n}$ is a basis of $V, x^{1}, \ldots, x^{n}$ the dual basis of $V^{*}$ and $A e_{i}=A_{j i} e_{j}$, we have $\tilde{A}=A_{j i} x^{i} \frac{\partial}{\partial x^{j}}$.

Exercise: The map $A \mapsto \tilde{A}: \operatorname{End}(V) \rightarrow \Gamma(T V)$ is an action of the Lie algebra $\operatorname{End}(V)$ on $V$.
Let $L:(\mathfrak{g},[],) \rightarrow(\operatorname{End}(V),[]$,$) be a representation of a Lie algebra \mathfrak{g}$ in a vector space $V$. Then the map $\tilde{L}: \mathfrak{g} \rightarrow \Gamma(T M), \tilde{L}(x):=\widetilde{L(x)}$ is an action of $\mathfrak{g}$ on the manifold $V$.

The adjoint and coadjoint actions: Let $(\mathfrak{g},[]$,$) be a Lie algebra. The homomorphism v \mapsto \operatorname{ad}_{v}$ : $\mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$, where $\operatorname{ad}_{v} w:=[v, w]$, gives the adjoint representation (of $\mathfrak{g}$ on $\mathfrak{g}$ ). The corresponding action $x \mapsto \widetilde{\operatorname{ad}_{x}}: \mathfrak{g} \rightarrow \Gamma(T \mathfrak{g})$ is also called adjoint. The homomorphism $v \mapsto \operatorname{ad}_{v}^{*}: \mathfrak{g} \rightarrow \operatorname{End}\left(\mathfrak{g}^{*}\right)$, where $\mathrm{ad}_{v}^{*}$ is the transposed operator to $\mathrm{ad}_{v}$, and the corresponding action $x \mapsto \operatorname{ad}_{x}^{*}: \mathfrak{g} \rightarrow \Gamma\left(T \mathfrak{g}^{*}\right)$ are called the coadjoint representation and action, respectively.
The symplectic leaves of the Lie-Poisson structure $\eta_{\mathfrak{g}}$ on $\mathfrak{g}^{*}$ coincide with the orbits of the coadjoint action : Indeed, the tangent spaces to symplectic leaves are spanned by the vector
fields $\eta_{\mathfrak{g}}\left(x_{i}\right)=c_{i j}^{k} x_{k} \frac{\partial}{\partial x_{j}}, i=1, \ldots, n$. Since $\operatorname{ad}_{v} e_{i}=v^{j} c_{j i}^{k} e_{k}$, where $v=v^{j} e_{j}$, the matrix $A_{k i}$ of the operator $\mathrm{ad}_{v}$ of the adjoint representation is given by $A_{k i}=v^{j} c_{j i}^{k}$ and that of the coadjoint one by $A_{k i}=v^{j} c_{j k}^{i}$. Hence the tangent spaces to the orbits of the coadjoint action are spanned by the vector fields $c_{j k}^{i} x_{i} \frac{\partial}{\partial x_{k}}, j=1, \ldots, n$.
An invariant symmetric bilinear form on ( $\mathfrak{g},[$,$] ): A symmetric bilinear form (, ): \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ satisfying the equality $\left(\operatorname{ad}_{x} y, z\right)=-\left(y, \operatorname{ad}_{x} z\right)$ for any $x, y, z \in \mathfrak{g}$.
FACt. Let (, ) be a nondegenerate invariant symmetric bilinear form on $\mathfrak{g}$. Identify $\mathfrak{g}$ with $\mathfrak{g}^{*}$ by means of the map $v \mapsto(v, \cdot)$. Then the adjoint orbits become coadjoint ones under this identification.
Proof Indeed, if $A: \mathfrak{g} \rightarrow \mathfrak{g}$ is a linear operator the transposed operator $A^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ becomes the adjoint one under this identification: $\left(A^{*} y, z\right)=(y, A z)$ for any $y, z \in \mathfrak{g}$. Thus $\mathrm{ad}_{x}^{*}$ becomes $-\mathrm{ad}_{x}$.

Notations (for the Lie algebras): $\mathfrak{g l}(n, \mathbb{R}):=\{n \times n$ - matrices with real entries $\}, \mathfrak{s l}(n, \mathbb{R}):=$ $\{x \in \mathfrak{g l}(n, \mathbb{R}) \mid \operatorname{Tr}(x)=0\}, \mathfrak{s o}(n, \mathbb{R}):=\left\{x \in \mathfrak{g l}(n, \mathbb{R}) \mid x=-x^{T}\right\}, \mathfrak{s p}(n, \mathbb{R}):=\{x \in \mathfrak{g l}(2 n, \mathbb{R}) \mid$ $\left.x J+J x^{T}=0\right\}$, here $J=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right], I_{n}$ being the identity $n \times n$-matrix. It is easy to see that $x \in \mathfrak{s p}(n, \mathbb{R})$ if and only if $x=\left[\begin{array}{cc}a & b \\ c & -a^{T}\end{array}\right]$, here $a, b, c, \in \mathfrak{g l}(n, \mathbb{R}), b=b^{T}, c=c^{T}$.

The sets above are Lie algebras with respect to the commutator of matrices.
Notations (for the Lie Groups): $G L(n, \mathbb{R}):=\{X \in \mathfrak{g l}(n, \mathbb{R}) \mid \operatorname{det} X \neq 0\}, S L(n, \mathbb{R}):=\{X \in$ $\mathfrak{g l}(n, \mathbb{R}) \mid \operatorname{det} X=1\}, S O(n, \mathbb{R}):=\left\{X \in \mathfrak{g l}(n, \mathbb{R}) \mid X X^{T}=I_{n}\right\}, S P(n, \mathbb{R}):=\{X \in \mathfrak{g l}(2 n, \mathbb{R}) \mid$ $\left.X J X^{T}=J\right\}$. All these sets are groups with respect to the matrix multiplication. It is easy to see that if $x \in \mathfrak{g}$, where $\mathfrak{g}$ is one of the Lie algebras above, then $\exp (x) \in G$, where $G$ is the corresponding Lie group. Also $\mathfrak{g}=T_{I} G$.

The Lie algebras from Examples 1-5, below, have an invariant nondegenerate symmetric form $(x, y)=\operatorname{Tr}(x y)$ by means of which we can make an identification $\mathfrak{g} \cong \mathfrak{g}^{*}$. The coadjoint orbits are identified with the adjoint ones, which can be described as the orbits of the corresponding Lie group with respect to the conjugation of matrices: $\left\{X x X^{-1} \mid X \in G\right\}, x \in \mathfrak{g}$.
Example 1: $\mathfrak{g}:=\mathfrak{g l}(n, \mathbb{R}), \mathcal{C}_{\eta_{\mathfrak{g}}}(\mathfrak{g})=\mathcal{F} u n\left(\operatorname{Tr}(x), \operatorname{Tr}\left(x^{2}\right), \ldots, \operatorname{Tr}\left(x^{n}\right)\right)$.
Example 2: $\mathfrak{g}:=\mathfrak{s l}(n, \mathbb{R}), \mathcal{C}_{\eta_{\mathfrak{g}}}(\mathfrak{g})=\mathcal{F} u n\left(\operatorname{Tr}\left(x^{2}\right), \ldots, \operatorname{Tr}\left(x^{n}\right)\right)$. In particular, for $n=2$ we have a basis $e_{1}:=e_{11}-e_{22}, e_{2}:=e_{12}, e_{2}:=e_{21}$ and the commutation relations $\left[e_{1}, e_{2}\right]=2 e_{2},\left[e_{1}, e_{3}\right]=$ $-2 e_{3},\left[e_{2}, e_{3}\right]=e_{1}$. Hence $\eta_{\mathfrak{g}}=x_{1} \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}+2 x_{2} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}}-2 x_{3} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{3}}$. The Casimir function $\operatorname{Tr}\left(x^{2}\right)$ reads as $x_{1}^{2} / 2+2 x_{2} x_{3}$. The symplectic leaves are the 1 -sheet hyperboloids, sheets of 2 -sheet hyperboloids, two sheets of the cone (without zero) and the point 0 .
Example 3: $\mathfrak{g}:=\mathfrak{s o}(2 n, \mathbb{R}), \mathcal{C}_{\eta_{\mathfrak{g}}}(\mathfrak{g})=\mathcal{F} u n\left(\operatorname{Tr}\left(x^{2}\right), \operatorname{Tr}\left(x^{4}\right) \ldots, \operatorname{Tr}\left(x^{2 n-2}\right), \operatorname{Pf}(x)\right)$.
Example 4: $\mathfrak{g}:=\mathfrak{s o}(2 n+1, \mathbb{R}), \mathcal{C}_{\eta_{\mathfrak{g}}}(\mathfrak{g})=\mathcal{F} u n\left(\operatorname{Tr}\left(x^{2}\right), \operatorname{Tr}\left(x^{4}\right) \ldots, \operatorname{Tr}\left(x^{2 n}\right)\right)$.
Example 5: $\mathfrak{g}:=\mathfrak{s p}(n, \mathbb{R}), \mathcal{C}_{\eta_{\mathfrak{g}}}(\mathfrak{g})=\mathcal{F} u n\left(\operatorname{Tr}\left(x^{2}\right), \operatorname{Tr}\left(x^{4}\right) \ldots, \operatorname{Tr}\left(x^{2 n}\right)\right)$.
Example 6 (the Heisenberg algebra): $\mathfrak{g}:=\mathbb{R}^{3},\left[e_{1}, e_{2}\right]=e_{3}$, here $e_{1}, e_{2}, e_{3}$ is the standard basis of $\mathbb{R}^{3}$. We have $\eta_{\mathfrak{g}}=x_{3} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}}, \mathcal{C}_{\eta_{\mathfrak{g}}}(\mathfrak{g})=\mathcal{F}$ un $\left(x_{3}\right)$, so the coadjoint orbits consist of the planes $\left\{x_{3}=c\right\}, c \neq 0$ and of the points of the plane $\left\{x_{3}=0\right\}$. The adjoint orbits are generated by the vector fields $c_{i j}^{k} x^{i} \frac{\partial}{\partial x^{k}}$, where $\left\{x^{i}\right\}$ is the basis dual to $\left\{x_{i}\right\}$, i. e. by $x^{1} \frac{\partial}{\partial x^{3}}, x^{2} \frac{\partial}{\partial x^{3}}$, so they are the lines parallel to the $x_{3}$-axis and the points of this axis.

