Algebraic and geometric aspects of modern theory of integrable systems

Lecture 4

1 Symplectic and nondegenerate Poisson manifolds

A symplectic form on M: A differential 2-form (2-form for short) ω on M such that

- 1. ω is nondegenerate, i.e. ω^{\flat} is an isomorphism of bundles, or, equivalently, $\omega_{ij}(x)$ is a nondegenerate matrix for any x in some (consequently in any) local coordinate system;
- 2. $d\omega = 0$.

A nondegenerate Poisson structure on M: A bivector field (bivector for short) η such that $\eta^{\sharp}: T^*M \to TM$ is inverse to $\omega^{\flat}: TM \to T^*M$ for some symplectic form ω .

The Poisson bracket on $\mathcal{E}(M)$: Given a bivector field $\eta : T^*M \to TM$ (not necessarily Poisson), put $\{f, g\} := \eta(df)g, f, g \in \mathcal{E}(M)$. (From now on we will often skip \sharp and \flat indices.) Then $\{,\}$ is a bilinear skew-symmetric operation on $\mathcal{E}(M)$. We say that $\eta(f) := \eta(df)$ is a *hamiltonian* vector field corresponding to the function f.

FACT. Let η be a nondegenerate bivector. Then it is Poisson if and only if $\{,\}$ satisfies the Jacobi identity, $\sum_{c.p. f, g, h} \{\{f, g\}, h\} = 0$. \Box

Proof Put $\omega := \eta^{-1}$, i.e. $\omega(\eta(\alpha), v) = \alpha(v)$ for any vector field v and 1-form α . Then $\eta(f)\omega(\eta(g), \eta(h)) = \eta(f)(dg(\eta(h))) = \eta(f)(\eta(h)g) = \eta(f)\{h,g\} = \{f, \{h,g\}\} = -\{f, \{g,h\}\}$ and $\omega([\eta(f), \eta(g)], \eta(h)) = -\omega(\eta(h), [\eta(f), \eta(g)]) = -dh([\eta(f), \eta(g)]) = -[\eta(f), \eta(g)]h = -\eta(f)\eta(g)h + \eta(g)\eta(f)h = -\eta(f)\{g,h\} + \eta(g)\{f,h\} = -\{f, \{g,h\}\} + \{g, \{f,h\}\}.$ Thus $d\omega(\eta(f), \eta(g), \eta(h)) = \sum_{c.p. f,g,h} \eta(f)\omega(\eta(g), \eta(h)) - \omega([\eta(f), \eta(g)], \eta(h)) = -\sum_{c.p. f,g,h} \{g, \{f,h\}\}.$ So, if $d\omega = 0$, then $\{,\}$ satisfies the Jacobi identity.

Conversely, if the JI holds, $d\omega$ vanishes on all hamiltonian vector fields. To finish the proof it remains to note that the hamiltonian vector fields span $T_x M$ at any $x \in M$. Indeed, it is enough to take $\eta(x^i)$, where (x^i) are local coordinates.

Example: the canonical symplectic structure on the cotangent bundle T^*Q : Let $\pi_Q : T^*Q \to Q$ be a cotangent bundle to a manifold Q. There is a canonical differential 1-form $\lambda \in \Gamma(T^*M), M := T^*Q$ determined uniquely by the following condition: for any $\alpha \in \Gamma(T^*Q)$, the following equality holds $\alpha^*\lambda = \alpha$, here α in the LHS is regarded as a map $\alpha : Q \to T^*Q$. We call λ the *Liouville* 1-form. If (U, q^1, \ldots, q^n) is a local chart on Q, the 1-forms dq^1, \ldots, dq^n form a basis of the vector space $T^*_xQ, x \in U$, and define the chart $(\pi_Q^{-1}(U), q^1, \ldots, q^n, p_1, \ldots, p_n)$. In these

coordinates $\lambda = p_i dq^i$. Indeed, $\alpha : (q^1, \ldots, q^n) \mapsto (q^1, \ldots, q^n, \alpha_1(q), \ldots, \alpha_n(q))$, where $\alpha = \alpha_i(q) dq^i$. Thus $\alpha^* \lambda = \alpha_i(q) dq^i = \alpha$.

The canonical symplectic form ω on M is given by $\omega := d\lambda$, or, locally, $\omega = dp_i \wedge dq^i$.

Hamiltonian differential equation on a symplectic manifold (M, ω) : The ODE related to a hamiltonian vector field $\eta(f), f \in \mathcal{E}(M)$, here $\eta = \omega^{-1}$. In the context of the example above (in the canonical coordinates (q, p)): $\eta = -\frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial q^i}, \eta(H) = \frac{\partial H}{\partial q^i} \frac{\partial}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial}{\partial q^i}$, the corresponding equations read:

$$\dot{q}^{i} = \frac{\partial H(q, p)}{\partial q^{i}}, \dot{p}_{i} = -\frac{\partial H(q, p)}{\partial p_{i}}$$

2 Poisson structures, their characteristic distributions, symplectic leaves and Casimir functions

A Poisson structure on M: A bivector $\eta : T^*M \to TM$ (not necessarily nondegenerate) such that the corresponding bracket $\{,\}$ on $\mathcal{E}(M)$ satisfies the Jacobi identity (JI for short).

Digression on Lie algebras: A *Lie algebra* is a vector space \mathfrak{g} endowed with a bilinear skew-symmetric operation $[,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying the JI:

- 1. $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \ \forall x, y, z \in V$, or, equivalently,
- 2. $\operatorname{ad}_x[y, z] = [\operatorname{ad}_x y, z] + [y, \operatorname{ad}_x z] \ \forall x, y, z \in V$, where $\operatorname{ad}_x y := [x, y]$, or, equivalently,
- 3. $\operatorname{ad}_{[x,y]} = [\operatorname{ad}_x, \operatorname{ad}_y] \quad \forall x, y \in V$, where the bracket in the RHS denotes the commutator of the operators.

The second condition means that ad_x is a differentiation of the bracket [,]. The third one has the following interpretation. A pair (V, [,]), where V is a vector space and $[,]: V \times V \to V$ is a bilinear operation, is called an *algebra*. Given algebras $(V_1, [,]_1)$ and $(V_2, [,]_2)$, we say that a linear map $L: V_1 \to V_2$ is a homomorphism of algebras, if $L[x, y]_1 = [Lx, Ly]_2 \ \forall x, y \in V_1$.

So the third condition means that the map $x \mapsto \operatorname{ad}_x : V \to \operatorname{End}(V)$ a homomorphism of algebras (V, [,]) and $(\operatorname{End}(V), [,])$. Note that the last algebra is in fact a Lie algebra. A homomorphism of Lie algebras $(\mathfrak{g}, [,]) \to (\operatorname{End}(V), [,])$ is called a *representation* of the Lie algebra $(\mathfrak{g}, [,])$ in the vector space V (so $x \mapsto \operatorname{ad}_x$ is a representation of \mathfrak{g} in \mathfrak{g}).

Consider the Lie algebra $(\mathcal{E}(M), \{,\})$ on a Poisson manifold. The corresponding ad_f -operator, $f \in \mathcal{E}(M)$, coincides with $\eta(f) : \mathcal{E}(M) \to \mathcal{E}(M)$.

The characteristic (generalized) distribution of a Poisson structure $\eta : T^*M \to TM$: $\mathcal{D}_{\eta} := \operatorname{im} \eta$ (locally generated by the hamiltonian vector fields $\eta(x^1), \ldots, \eta(x^n)$, where (x^1, \ldots, x^n) are some local coordinates).

By the third condition above the map $f \mapsto \eta(f), (\mathcal{E}(M), \{,\}) \to (\Gamma(TM), [,])$ is a homomorphism of Lie algebras, here [,] is the commutator of vector fields. This implies involutivity of \mathcal{D}_{η} : $[\eta(x^i), \eta(x^j)] = \eta(\{x^i, x^j\}) = \eta(\eta^{ij}(x))$, where $\eta = \eta^{ij}(x)\frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}$. On the other hand, $\eta(f) = \eta^{ij}(x)\frac{\partial f}{\partial x^i}\frac{\partial}{\partial x^j} = \frac{\partial f}{\partial x^k}\eta(x^k)$ for any f. In particular, $[\eta(x^i), \eta(x^j)]$ is a linear combination (with smooth coefficients) of $\eta(x^1), \ldots, \eta(x^n)$.

Theorem: The characteristic distribution \mathcal{D}_{η} is integrable (we call the corresponding foliation *characteristic* or *symplectic*).

Proof In analytic category this follows from the involutivity of \mathcal{D} by the generalized Frobenius theorem. In the smooth case this is also true, but the proof is more complicated, so we skip it. \Box

Digression on linear algebra of bivectors: Let V be a vector space and e a bivector on V. Then e can be treated as: 1) an element $e \in \bigwedge^2 V$; 2) a linear skew-symmetric map $e^{\sharp} : V^* \to V$; 3) a bilinear form \tilde{e} on V^* .

FACT. Let $W := \operatorname{im} e^{\sharp} \subset V$. Then there exists a correctly defined bivector $e|_{W} \in \bigwedge^{2} W$, called the *restriction* of e to W. Moreover, the restriction $e|_{W}$ is nondegenerate, i.e. $e|_{W}^{\sharp} : W^{*} \to W$ is an isomorphism.

Proof I. A theorem from linear algebra says that there exists a basis v_1, \ldots, v_n of V such that $e = v_1 \wedge v_2 + \cdots + v_{2k-1} \wedge v_{2k}$ (the number 2k is equal to dim W and is called the *rank* of e). It is easy to see that v_1, \ldots, v_{2k} span W. \Box

Proof II. e is skew-symmetric, i.e. $(e^{\sharp})^* = -e^{\sharp}$. This implies ker $e^{\sharp} = (\operatorname{im} e^{\sharp})^{\perp}$, where $(\cdot)^{\perp}$ stands for the annihilator of (\cdot) . So the natural isomorphism $\hat{e} : V^* / \ker e^{\sharp} \to \operatorname{im} e^{\sharp} = W$ induced by e^{\sharp} can regarded as a map from $W^* \cong V^* / (W^{\perp})$ to $W \subset V$. The map \hat{e} being skew-symmetric induces the element of $\bigwedge^2 W$, which we denote by $e|_W$. \Box

Proof III. Let ω be a skew-symmetric bilinear form on a vector space L. Put ker $\omega := \{x \in L \mid \omega(x, y) = 0 \ \forall y \in L\}$. The form is called *nondegenerate* if ker $\omega = \{0\}$.

Any ω induces a nondegenerate skew-symmetric bilinear form on the vector space $L/\ker\omega$.

Treating e as a skew-symmetric bilinear form \tilde{e} on V^* we have ker $\tilde{e} = \ker e^{\sharp}$. The restriction $e|_W$ treated as a skew-symmetric bilinear form on $W^* \cong V^* / \ker \tilde{e}$ is the above mentioned nondegenerate form induced from \tilde{e} . \Box

Symplectic leaves of a Poisson structure η on M: The leaves of the characteristic foliation \mathcal{D}_{η} . Since $D_{\eta,x} = \operatorname{im} \eta_x^{\sharp}$ for any $x \in M$, the bivector η admits a restriction $\eta|_S$ to any symplectic leaf $S \subset M$, which is a nondegenerate bivector on S. Moreover, since any hamiltonian vector field $\eta(f)$ is tangent to S at points of S, the value $\{f, g\}(x) = (\eta(f)g)(x), x \in S$, depends only of $g|_S$ and by the skew-symmetry the same is true with respect to f. In other words, $\{f|_S, g|_S\}_{\eta|_S} = (\{f, g\}_{\eta})|_S$ for any $f, g \in \mathcal{E}(M)$ and the operation $\{,\}_{\eta|_S}$ satisfies the JI, hence $\eta|_S$ is a nondegenerate Poisson structure on S. This explains the term "symplectic leaf" $((\eta|_S)^{-1})$ is a symplectic form).

Example 1: Let $M := \mathbb{R}^2$, $\eta = x^1 \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2}$. On the open set $U := \{x^1 \neq 0\}$ the form $(\eta|_U)^{-1} = -(1/x^1)dx^1 \wedge dx^2$ is symplectic. Thus the JI holds for $\{,\}_\eta$ on U and by continuity it holds also on the whole M. The symplectic leaves are U and all the points on the line $\{x^1 = 0\}$.

Example 2: Let $M := \mathbb{R}^3$, $\eta = \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2}$. On each plane $P_c := \{x^3 = c\}$ the form $(\eta|_{P_c})^{-1} = -dx^1 \wedge dx^2$ is symplectic. The JI holds for $\{,\}_{\eta}$ on P_c for any $c \in \mathbb{R}$. Since P_c sweep the whole space M as c runs through \mathbb{R} , the JI holds for $\{,\}_{\eta}$ globally. The symplectic leaves are the planes P_c .

Example 3: Let $M := \mathbb{R}^3$, $\eta = x^1 \frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^3} + x^2 \frac{\partial}{\partial x^3} \wedge \frac{\partial}{\partial x^1} + x^3 \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2}$ (we will prove that this is a Poisson bivector later). The symplectic leaves are ...

Example 4: Let $M = \mathbb{T}^2 \times \mathbb{R}$, let y be a coordinate on the second component. Put $\eta = \tilde{v}_{a,b} \wedge \frac{\partial}{\partial y}$, where $\tilde{v}_{a,b}$ is the generator of winding line. η is Poisson because locally it looks like the bivector from Example 2. If b/a is irrational, the symplectic leaves (which are two-dimensional) are dense in M.

Casimir functions of a Poisson structure η on M: Let $U \subset M$ be an open set. We say that $f \in \mathcal{E}(U)$ is a *Casimir function* if $\eta(f) \equiv 0$ on U. In particular, since $\{f, g\} = \eta(f)g$ on U

the Casimir functions constitute the centre of the Lie algebra $(\mathcal{E}(U), \{,\}|_U)$. The space of Casimir functions over U will be denoted by $\mathcal{C}(U)$.

FACT. The Casimir functions are constant on the leaves of the symplectic foliation.

Proof We have $\eta(f)g = -\eta(g)f = 0$ for any $f \in \mathcal{C}(U)$, $g \in \mathcal{E}(U)$. So, since $\eta(g)$ span the characteristic distribution, f is constant along its leaves. \Box

Example 1': $C(M) = \mathbb{R}$, the space of constant functions.

Example 2': $\mathcal{C}(M) = \mathcal{F}un(x^3)$, the space of functions functionally generated by x^3 .

Example 3': $C(M) = \mathcal{F}un((x^1)^2 + (x^2)^2 + (x^3)^2)$. Hence the symplectic leaves are the concentric spheres and the point $\{(0,0,0)\}$.

Example 4': If b/a is irrational $\mathcal{C}(M) = \mathbb{R}$. However, for sufficiently small U the space $\mathcal{C}(U)$ will be functionally generated by one nonconstant function. So "local Casimirs" are not obtained as the restriction of the "global Casimirs".