
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 4

1 Symplectic and nondegenerate Poisson manifolds

A symplectic form on M : A differential 2-form (2-form for short) ω on M such that

1. ω is nondegenerate, i.e. ω[ is an isomorphism of bundles, or, equivalently, ωij(x) is a nonde-
generate matrix for any x in some (consequently in any) local coordinate system;

2. dω = 0.

A nondegenerate Poisson structure on M : A bivector field (bivector for short) η such that
η] : T ∗M → TM is inverse to ω[ : TM → T ∗M for some symplectic form ω.

The Poisson bracket on E(M): Given a bivector field η : T ∗M → TM (not necessarily Poisson),
put {f, g} := η(df)g, f, g ∈ E(M). (From now on we will often skip ] and [ indices.) Then {, } is a
bilinear skew-symmetric operation on E(M). We say that η(f) := η(df) is a hamiltonian vector field
corresponding to the function f .

Fact. Let η be a nondegenerate bivector. Then it is Poisson if and only if {, } satisfies the Jacobi
identity,

∑
c.p. f,g,h{{f, g}, h} = 0. ¤

Proof Put ω := η−1, i.e. ω(η(α), v) = α(v) for any vector field v and 1-form α. Then
η(f)ω(η(g), η(h)) = η(f)(dg(η(h))) = η(f)(η(h)g) = η(f){h, g} = {f, {h, g}} = −{f, {g, h}} and
ω([η(f), η(g)], η(h)) = −ω(η(h), [η(f), η(g)]) = −dh([η(f), η(g)]) = −[η(f), η(g)]h = −η(f)η(g)h +
η(g)η(f)h = −η(f){g, h} + η(g){f, h} = −{f, {g, h}} + {g, {f, h}}. Thus dω(η(f), η(g), η(h)) =∑

c.p. f,g,h η(f)ω(η(g), η(h)) − ω([η(f), η(g)], η(h)) = −∑
c.p. f,g,h{g, {f, h}}. So, if dω = 0, then {, }

satisfies the Jacobi identity.
Conversely, if the JI holds, dω vanishes on all hamiltonian vector fields. To finish the proof it

remains to note that the hamiltonian vector fields span TxM at any x ∈ M . Indeed, it is enough to
take η(xi), where (xi) are local coordinates.

Example: the canonical symplectic structure on the cotangent bundle T ∗Q: Let πQ :
T ∗Q → Q be a cotangent bundle to a manifold Q. There is a canonical differential 1-form λ ∈
Γ (T ∗M),M := T ∗Q determined uniquely by the following condition: for any α ∈ Γ (T ∗Q), the
following equality holds α∗λ = α, here α in the LHS is regarded as a map α : Q → T ∗Q. We
call λ the Liouville 1-form. If (U, q1, . . . , qn) is a local chart on Q, the 1-forms dq1, . . . , dqn form a
basis of the vector space T ∗

xQ, x ∈ U , and define the chart (π−1
Q (U), q1, . . . , qn, p1, . . . , pn). In these
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coordinates λ = pidqi. Indeed, α : (q1, . . . , qn) 7→ (q1, . . . , qn, α1(q), . . . , αn(q)), where α = αi(q)dqi.
Thus α∗λ = αi(q)dqi = α.

The canonical symplectic form ω on M is given by ω := dλ, or, locally, ω = dpi ∧ dqi.

Hamiltonian differential equation on a symplectic manifold (M,ω): The ODE related to a
hamiltonian vector field η(f), f ∈ E(M), here η = ω−1. In the context of the example above (in the
canonical coordinates (q, p)): η = − ∂

∂pi
∧ ∂

∂qi , η(H) = ∂H
∂qi

∂
∂pi
− ∂H

∂pi

∂
∂qi , the corresponding equations

read:

q̇i =
∂H(q, p)

∂qi
, ṗi = −∂H(q, p)

∂pi

.

2 Poisson structures, their characteristic distributions, sym-

plectic leaves and Casimir functions

A Poisson structure on M : A bivector η : T ∗M → TM (not necessarily nondegenerate) such
that the corresponding bracket {, } on E(M) satisfies the Jacobi identity (JI for short).

Digression on Lie algebras: A Lie algebra is a vector space g endowed with a bilinear skew-
symmetric operation [, ] : g× g → g satisfying the JI:

1. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ V , or, equivalently,

2. adx[y, z] = [adxy, z] + [y, adxz] ∀x, y, z ∈ V , where adxy := [x, y], or, equivalently,

3. ad[x,y] = [adx, ady] ∀x, y ∈ V , where the bracket in the RHS denotes the commutator of the
operators.

The second condition means that adx is a differentiation of the bracket [, ]. The third one has the
following interpretation. A pair (V, [, ]), where V is a vector space and [, ] : V × V → V is a bilinear
operation, is called an algebra. Given algebras (V1, [, ]1) and (V2, [, ]2), we say that a linear map
L : V1 → V2 is a homomorphism of algebras, if L[x, y]1 = [Lx,Ly]2 ∀x, y ∈ V1.

So the third condition means that the map x 7→ adx : V → End(V ) a homomorphism of algebras
(V, [, ]) and (End(V ), [, ]). Note that the last algebra is in fact a Lie algebra. A homomorphism of
Lie algebras (g, [, ]) → (End(V ), [, ]) is called a representation of the Lie algebra (g, [, ]) in the vector
space V (so x 7→ adx is a representation of g in g).

Consider the Lie algebra (E(M), {, }) on a Poisson manifold. The corresponding adf -operator,
f ∈ E(M), coincides with η(f) : E(M) → E(M).

The characteristic (generalized) distribution of a Poisson structure η : T ∗M → TM :
Dη := im η (locally generated by the hamiltonian vector fields η(x1), . . . , η(xn), where (x1, . . . , xn)
are some local coordinates).

By the third condition above the map f 7→ η(f), (E(M), {, }) → (Γ (TM), [, ]) is a homo-
morphism of Lie algebras, here [, ] is the commutator of vector fields. This implies involutivity
of Dη: [η(xi), η(xj)] = η({xi, xj}) = η(ηij(x)), where η = ηij(x) ∂

∂xi ∧ ∂
∂xj . On the other hand,

η(f) = ηij(x) ∂f
∂xi

∂
∂xj = ∂f

∂xk η(xk) for any f . In particular, [η(xi), η(xj)] is a linear combination (with
smooth coefficients) of η(x1), . . . , η(xn).

Theorem: The characteristic distribution Dη is integrable (we call the corresponding foliation char-
acteristic or symplectic).
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Proof In analytic category this follows from the involutivity of D by the generalized Frobenius
theorem. In the smooth case this is also true, but the proof is more complicated, so we skip it. ¤
Digression on linear algebra of bivectors: Let V be a vector space and e a bivector on V . Then
e can be treated as: 1) an element e ∈ ∧2 V ; 2) a linear skew-symmetric map e] : V ∗ → V ; 3) a
bilinear form ẽ on V ∗.

Fact. Let W := im e] ⊂ V . Then there exists a correctly defined bivector e|W ∈ ∧2 W , called
the restriction of e to W . Moreover, the restriction e|W is nondegenerate, i.e. e|]W : W ∗ → W is an
isomorphism.

Proof I. A theorem from linear algebra says that there exists a basis v1, . . . , vn of V such that
e = v1 ∧ v2 + · · · + v2k−1 ∧ v2k (the number 2k is equal to dim W and is called the rank of e). It is
easy to see that v1, . . . , v2k span W . ¤
Proof II. e is skew-symmetric, i.e. (e])∗ = −e]. This implies ker e] = (im e])⊥, where (·)⊥ stands for
the annihilator of (·). So the natural isomorphism ê : V ∗/ ker e] → im e] = W induced by e] can
regarded as a map from W ∗ ∼= V ∗/(W⊥) to W ⊂ V . The map ê being skew-symmetric induces the
element of

∧2 W , which we denote by e|W . ¤
Proof III. Let ω be a skew-symmetric bilinear form on a vector space L. Put ker ω := {x ∈ L |
ω(x, y) = 0 ∀y ∈ L}. The form is called nondegenerate if ker ω = {0}.

Any ω induces a nondegenerate skew-symmetric bilinear form on the vector space L/ ker ω.
Treating e as a skew-symmetric bilinear form ẽ on V ∗ we have ker ẽ = ker e]. The restriction e|W

treated as a skew-symmetric bilinear form on W ∗ ∼= V ∗/ ker ẽ is the above mentioned nondegenerate
form induced from ẽ. ¤
Symplectic leaves of a Poisson structure η on M : The leaves of the characteristic foliation
Dη. Since Dη,x = im η]

x for any x ∈ M , the bivector η admits a restriction η|S to any symplectic leaf
S ⊂ M , which is a nondegenerate bivector on S. Moreover, since any hamiltonian vector field η(f)
is tangent to S at points of S, the value {f, g}(x) = (η(f)g)(x), x ∈ S, depends only of g|S and by
the skew-symmetry the same is true with respect to f . In other words, {f |S, g|S}η|S = ({f, g}η)|S
for any f, g ∈ E(M) and the operation {, }η|S satisfies the JI, hence η|S is a nondegenerate Poisson
structure on S. This explains the term ”symplectic leaf” ((η|S)−1 is a symplectic form).

Example 1: Let M := R2, η = x1 ∂
∂x1 ∧ ∂

∂x2 . On the open set U := {x1 6= 0} the form (η|U)−1 =
−(1/x1)dx1 ∧ dx2 is symplectic. Thus the JI holds for {, }η on U and by continuity it holds also on
the whole M . The symplectic leaves are U and all the points on the line {x1 = 0}.
Example 2: Let M := R3, η = ∂

∂x1 ∧ ∂
∂x2 . On each plane Pc := {x3 = c} the form (η|Pc)

−1 =
−dx1 ∧ dx2 is symplectic. The JI holds for {, }η on Pc for any c ∈ R. Since Pc sweep the whole space
M as c runs through R, the JI holds for {, }η globally. The symplectic leaves are the planes Pc.

Example 3: Let M := R3, η = x1 ∂
∂x2 ∧ ∂

∂x3 + x2 ∂
∂x3 ∧ ∂

∂x1 + x3 ∂
∂x1 ∧ ∂

∂x2 (we will prove that this is a
Poisson bivector later). The symplectic leaves are . . .

Example 4: Let M = T2 × R, let y be a coordinate on the second component. Put η = ṽa,b ∧ ∂
∂y

,
where ṽa,b is the generator of winding line. η is Poisson because locally it looks like the bivector from
Example 2. If b/a is irrational, the symplectic leaves (which are two-dimensional) are dense in M .

Casimir functions of a Poisson structure η on M : Let U ⊂ M be an open set. We say
that f ∈ E(U) is a Casimir function if η(f) ≡ 0 on U . In particular, since {f, g} = η(f)g on U
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the Casimir functions constitute the centre of the Lie algebra (E(U), {, }|U). The space of Casimir
functions over U will be denoted by C(U).

Fact. The Casimir functions are constant on the leaves of the symplectic foliation.

Proof We have η(f)g = −η(g)f = 0 for any f ∈ C(U), g ∈ E(U). So, since η(g) span the characteristic
distribution, f is constant along its leaves. ¤
Example 1’: C(M) = R, the space of constant functions.

Example 2’: C(M) = Fun(x3), the space of functions functionally generated by x3.

Example 3’: C(M) = Fun((x1)2 + (x2)2 + (x3)2). Hence the symplectic leaves are the concentric
spheres and the point {(0, 0, 0)}.
Example 4’: If b/a is irrational C(M) = R. However, for sufficiently small U the space C(U) will
be functionally generated by one nonconstant function. So ”local Casimirs” are not obtained as the
restriction of the ”global Casimirs”.
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