Algebraic and geometric aspects of modern theory of integrable systems

Lecture 3

1 Ordinary differential equations on manifolds

Ordinary differential equation:

$$\frac{dc}{dt}(x) = v(x), (\text{or } \dot{x} = v(x) \text{ for short})$$

here $v \in \Gamma(TM)$ is given, c is unknown. A solution of this equation (or a trajectory of v) with an initial condition $x_0 \in M$ is a curve $c : \mathbb{R} \to M$ such that $c(0) = x_0$ and the vector v(x) is tangent to c at any $x \in c(\mathbb{R})$.

A solution always exists *locally* and is unique: in local coordinates (ψ^1, \ldots, ψ^n) we have $v = v^i(x) \frac{\partial}{\partial \psi^i}$ and the initial equation is equivalent to the system of ODE

$$\frac{dc^{i}(t)}{dt} = \psi^{i}(c^{1}(t), \dots, c^{n}(t)), i = 1, \dots, n$$

with the initial condition $c^{i}(0) = x_{0}^{i}$, i = 1, ..., n, and we can use the corresponding existenceuniqueness theorem.

Globally, if supp $v := \overline{\{x \in M \mid v(x) \neq 0\}}$ is compact (eg. *M* is compact itself) one can extend any local solution to a global (in time and space) solution.¹

Example 1: "nonextendability in time": $M :=]0, 1[, \dot{x} = 1.$

Example 2: "nonextendability in space": $M := \mathbb{R}, \dot{x} = x^2$.

Example 3: "Winding line on a torus": $M := \mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$, the vector field $v_{a,b} := a\frac{\partial}{\partial x^1} + b\frac{\partial}{\partial x^2}$, where $a, b \in]0, \infty[$ are fixed, can be projected onto the vector field $\tilde{v}_{a,b}$ on \mathbb{T}^2 . Its trajectories are the projections $t \to P(x^1 + at, x^2 + bt)$ of the lines $t \to (x^1 + at, x^2 + bt)$.

Rational case: b/a is a rational number, $b = m\lambda$, $a = n\lambda$ for some $\lambda \in \mathbb{R}$. Then for $t := 1/\lambda$ we have $(x^1 + at, x^2 + bt) = (x^1 + m, x^2 + n)$ and $P(x^1 + at, x^2 + bt) = P(x^1, x^2)$ (the trajectory is closed, i.e. periodic).

Irrational case: b/a is an irrational number (any trajectory is dense in M).

¹see V. I. Arnold, Rownania rożniczkowe zwyczajne, PWN, 1975, Theorem 1,§35.

2 Submanifolds, foliations and distributions

A submanifold S of M of codimension r: A subset $N \subset M$ such that there exists an atlas $\mathcal{A} := \{(U_{\alpha}, \psi_{\alpha})\}_{\alpha \in A}$ on M with $N \cap U_{\alpha} = \{x \in U_{\alpha} \mid \psi^{1}(x) = 0, \dots, \psi^{r}(x) = 0\}$ for those $\alpha \in A$ for which $N \cap U_{\alpha} \neq \emptyset$.

Smooth maps and submanifolds: A smooth map $F : M_1 \to M_2$ is called an *immersion* if $T_mF: T_mM_1 \to T_{F(m)}M_2$ is injective for any $m \in M_1$. The image of an injective immersion is called an *immersed submanifold*. An injective immersion F is an *embedding* if F is a homeomorphism onto $F(M_1)$, where $F(M_1)$ is endowed with the topology induced from M_2 .

Remarks: 1. The image $N := F(M_1)$ of an embedding is a submanifold in M_2 and, vice versa, given a submanifold $N \subset M$, the inclusion $N \hookrightarrow M$ is an embedding. 2. If $N \subset M$ is an immersed submanifold, then for any $x \in N$ there exists an open neighbourhood U of x in M such that the connected component of $N \cap U$ containing x is a submanifold in U. Vice versa, ...

Example of an immersed submanifold, which is not a submanifold: "The irrational torus winding" $\mathbb{R} \to \mathbb{T}^2$.

A foliation \mathcal{F} of codimension r on M: A collection $\mathcal{F} = \{F_{\beta}\}_{\beta \in B}$ of path-connected sets on M such that there exists an atlas $\mathcal{A} := \{(U_{\alpha}, \psi_{\alpha})\}_{\alpha \in A}$ on M with the following properties:

- 1. $M = \bigcup_{\beta \in B} F_{\beta};$
- 2. $F_{\beta} \cap F_{\gamma} = \emptyset$ for any $\beta, \gamma, \beta \neq \gamma$;
- 3. for any $\alpha \in A$ and any $(c_1, \ldots, c_r) \in \psi_{\alpha}(U_{\alpha})$ the set $\{x \in U_{\alpha} \mid \psi^1(x) = c_1, \ldots, \psi^r(x) = c_r\}$ coincides with one of the path-connected components of the set $U_{\alpha} \cap \mathcal{F}_{\beta}$ if it is nonempty.

By the remark above the sets F_{β} are immersed submanifolds.

A distribution \mathcal{D} on M of codimension r: A subbundle of the tangent bundle TM with the r-codimensional fiber, or in other words a collection of subspaces $D_x \subset T_x M$ smoothly (analytically) depending on $x \in M$. Such a distribution is locally spanned by n - r linearly independent (at each point) vector fields.

Example: the distribution tangent to a foliation: $\mathcal{D} = T\mathcal{F} := \{v \in TM \mid v \text{ is tangent to } \mathcal{F}\}.$

Integrable distribution: A distribution which is tangent to some foliation.

Involutive distribution: A distribution \mathcal{D} such that for any two vector fields $X, Y \in \Gamma(TM)$ which are tangent to \mathcal{D} (i.e. $X(x), Y(x) \in D_x$ for any $x \in M$) their commutator [X, Y] is also tangent to \mathcal{D} (equivalently, locally there exist $v_1, \ldots, v_m, v_i \in \Gamma(TM)$, and functions f_{ij}^k such that $\operatorname{Span}\{v_1, \ldots, v_m\} = \mathcal{D}$ and $[v_i, v_j] = f_{ij}^k v_k$; Exercise: prove the equivalence).

The Frobenius theorem: A distribution \mathcal{D} is integrable if and only if it is involutive.

Example of nonintegrable distribution: $X = \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}, Y = \frac{\partial}{\partial y}.$

A generalized distribution \mathcal{D} on M of codimension r: A collection of subspaces $D_x \subset T_x M$ locally spanned by n - r vector fields linearly independent at least at one point (but not necessarily linearly independent at other points).

A generalized foliation \mathcal{F} on M: ...

Example of a generalized foliation which is not a foliation: The trajectories of a vector field $x^1 \frac{\partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^2}$.

The generalized Frobenius theorem (Nagano 1966): An analytic generalized distribution \mathcal{D} is integrable if and only if it is *involutive*, i.e. for any two vector fields $X, Y \in \Gamma(TM)$ which are tangent to \mathcal{D} (i.e. $X(x), Y(x) \in D_x$ for any $x \in M$) their commutator [X, Y] is also tangent to \mathcal{D} .

An example of smooth involutive nonintegrable distribution: Let $\varphi(x^1)$ be a smooth function on \mathbb{R} such that $\varphi(x^1) \equiv 0$ for $x^1 \leq 0$ and $\varphi(x^1) > 0$ for $x^1 > 0$. Take $X = \frac{\partial}{\partial x^1}, Y = \varphi \frac{\partial}{\partial x^2}$ on \mathbb{R}^2 . Then $[X, Y] := \frac{\partial \varphi}{\partial x^1} \frac{\partial}{\partial x^2}$ can be expressed as a linear combination of X, Y. But it is nonintegrable: look at its "leaves".