Algebraic and geometric aspects of modern theory of integrable systems

Lecture 2

2. Preliminaries on manifolds

A chart on a topological space M : A pair (U, ψ), here $U \subset M$ is an open set, $\psi: U \rightarrow \mathbb{R}^{n}$ is a homeomorphism onto its image. Two charts $\left(U_{1}, \psi_{1}\right),\left(U_{2}, \psi_{2}\right)$ are compatible if $\left.\psi_{1} \circ \psi_{2}^{-1}\right|_{\mathrm{im}\left(U_{1} \cap U_{2}\right)}$: $\operatorname{im}\left(U_{1} \cap U_{2}\right) \rightarrow \mathbb{R}^{n}$ is smooth (analytical) mapping. The components of the vector $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ are called local coordinates on M.
An atlas on a topological space M : A collection of pairwise compatible charts $\mathcal{A}:=\left\{\left(U_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in A}$ such that $M=\bigcup_{\alpha \in A} U_{\alpha}$. Two atlases are equivalent or compatible if ...
A manifold: A topological space endowed with a class of equivalent atlases.
Example: The sphere S^{2} with two stereographic projections (from the north and south poles).
A vector bundle $E \rightarrow M$ over a manifold M : A surjective map $\pi: E \rightarrow M$, here E is a topological space, such that here is a structure of a vector space on each fiber $E_{x}:=\pi^{-1}(x), x \in M$, and there is an atlas $\mathcal{A}:=\left\{\left(U_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in A}$ on M and homeomorphisms $\Psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{m}$ with the properties:

1. the following diagram is commutative

$$
\begin{array}{ccc}
\pi^{-1}\left(U_{\alpha}\right) & \xrightarrow{\Psi_{\alpha}} & U_{\alpha} \times \mathbb{R}^{m} \\
\downarrow \pi & & \downarrow \pi_{1} \\
U_{\alpha} & = & U_{\alpha}
\end{array}
$$

2. the map $\widetilde{\Psi}_{\alpha, x}:=\left.\Psi_{\alpha}\right|_{E_{x}}$ is a linear isomorphism of the vector spaces E_{x} and \mathbb{R}^{m};
3. the collection $\left\{\left(\pi^{-1}\left(U_{\alpha}\right), \Psi_{\alpha}\right)\right\}_{\alpha \in A}$ is an atlas on E, in particular $\Psi_{\alpha} \circ \Psi_{\beta}^{-1}(x, y)=\left(x, \widetilde{\Psi}_{\alpha, x} \circ\right.$ $\left.\widetilde{\Psi}_{\beta, x}^{-1}(y)\right), x \in U_{\alpha} \cap U_{\beta}, y \in \mathbb{R}^{m}$, and the functions $\widetilde{\Psi}_{\alpha \beta, x}:=\widetilde{\Psi}_{\alpha, x} \circ \widetilde{\Psi}_{\beta, x}^{-1}$ are linear isomorphisms of \mathbb{R}^{m} which smoothly depend on $x \in M$.

The functions $\widetilde{\Psi}_{\alpha \beta, x}$ are called transition functions of the vector bundle. Given the base M and the collection of transition functions, one can reconstruct the initial vector bundle (up to an isomorphism).
A section of a vector bundle $E \rightarrow M$: A mapping $s: M \rightarrow E$ such that $\pi(s(x))=x$ for any $x \in M$. The space of sections will be denoted by $\Gamma(E)$.

Example 1, the tangent bundle $T M \xrightarrow{\tau_{M}} M$: Let M be a manifold with an atlas $\mathcal{A}:=$ $\left\{\left(U_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in A}$. Put $\widetilde{\Psi}_{\alpha \beta, x}:=\frac{\partial \psi_{\alpha \beta}\left(\varphi_{\beta}(x)\right)}{\partial \varphi_{\beta}}$, here $\psi_{\alpha \beta}:=\psi_{\alpha} \circ \psi_{\beta}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Below we give an explicit description of $T M$.
A tangent vector at x to M : A curve in M is a mapping $c: \mathbb{R} \rightarrow M$. Two curves c_{1}, c_{2} such that $c_{1}(0)=c_{2}(0)=x$ are equivalent at x if the derivatives of the functions $f\left(c_{1}(t)\right)$ and $f\left(c_{2}(t)\right)$ coincide at 0 for any $f \in \mathcal{E}(M)\left(\mathcal{E}(M)\right.$ is $C^{\infty}(M)$ or the space of analytic functions on M depending on the category). Note that c_{1}, c_{2} are equivalent at x if and only if $\left.\frac{d}{d t}\right|_{t=0}\left(\psi^{i} \circ c_{1}\right)(t)=\left.\frac{d}{d t}\right|_{t=0}\left(\psi^{i} \circ c_{2}\right)(t), i=$ $1, \ldots, n$, for some (consequently for any) chart (U, ψ) with $x \in U$.

A class $v=[c]_{x}$ of equivalence of curves at x is called a tangent vector at x. We say that v is tangent to c (and to any other representative of the class) at x. A tangent vector in local coordinates $\left(\psi^{1}, \ldots, \psi^{n}\right)$ is represented by the n-tuple $\left(\left.\frac{d}{d t}\right|_{t=0}\left(\psi^{1} \circ c\right)(t), \ldots,\left.\frac{d}{d t}\right|_{t=0}\left(\psi^{n} \circ c\right)(t)\right)$, here c is any representative of the class. Since we can add such n-tuples and multiply them by scalars, the set of tangent vectors inherits a structure of vector space (which is independent of the choice of local coordinates). Given two local coordinate systems $\psi_{\alpha}, \psi_{\beta}$ the corresponding n-tuples are related by

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\psi_{\alpha}^{i} \circ c\right)(t)=\left.\frac{\partial \psi_{\alpha \beta}^{i}\left(\varphi_{\beta}(x)\right)}{\partial \varphi_{\beta}^{j}} \frac{d}{d t}\right|_{t=0}\left(\psi_{\beta}^{j} \circ c\right)(t)
$$

Tangent vectors as differentiations: A differentiation of the ring $\mathcal{E}(M)$ at x is a linear mapping $l: \mathcal{E}(M) \rightarrow \mathbb{R}$ such that $l(f g)=l(f) g(x)+f(x) l(g), f, g \in \mathcal{E}(M)$. Given a tangent vector v at x which is represented by a curve c, we construct a differentiation \tilde{v} by $\tilde{v}(f):=\left.\frac{d}{d t}\right|_{t=0}(f \circ c)(t)$. It does not depend on the choice of representative.

Let $\psi=\left(\psi^{1}, \ldots, \psi^{n}\right): U \rightarrow \mathbb{R}^{n}$ be local coordinates on M such that $\psi(x)=0$. Then $c:=\psi^{-1}\left(L^{i}\right)$, where L^{i} is the i-th coordinate line in \mathbb{R}^{n}, gives (a local) curve with $c(0)=x$. The corresponding vector is denoted $\frac{\partial}{\partial \psi^{2}}$. The vectors (differentiations) $\frac{\partial}{\partial \psi^{2}}, i=1, \ldots, n$, form a basis of the vector space $T_{x} M$.
A vector field on M : A section of the tangent bundle $T M$, i.e. a tangent vector $v(x) \in T_{x} M$ (smoothly, analytically) depending on $x \in M$. In a local chart (U, ψ) can be expressed as $v(x)=$ $v^{i}(x) \frac{\partial}{\partial \psi^{i}}$, here $v^{i}(x)$ are functions.

Any vector field v is a differentiation of the ring $\mathcal{E}(M)$, i.e. a linear endomorphism of $\mathcal{E}(M)$ such that $v(f g)=v(f) g+f v(g), f, g \in \mathcal{E}(M)$. In local coordinates $(v f)(x)=v^{i}(x) \frac{\partial f}{\partial \psi^{i}}(x)$.

The space $\Gamma(T M)$ of vector fields is a vector field over \mathbb{R} and a module over the ring $\mathcal{E}(M)$.
The commutator of vector fields on M : Given two differentiations v_{1}, v_{2} of the ring $\mathcal{E}(M)$, the commutator $\left[v_{1}, v_{2}\right]:=v_{1} v_{2}-v_{2} v_{1}$ is again a differentiation: $v_{1} v_{2}(f g)=v_{1}\left(\left(v_{2} f\right) g+f\left(v_{2}\right) g\right)=$ $\left(v_{1} v_{2} f\right) g+\left(v_{2} f\right)\left(v_{1} g\right)+\left(v_{1} f\right)\left(v_{2} g\right)+f\left(v_{1} v_{2} g\right)$, so $\left[v_{1}, v_{2}\right](f g)=\left(\left[v_{1}, v_{2}\right] f\right) g-f\left(\left[v_{1}, v_{2}\right] g\right)$. In local coordinates $\left[v_{1}, v_{2}\right]^{i}(x)=v_{1}^{j}(x) \frac{\partial v_{2}^{i}(x)}{\partial \psi^{j}}-v_{2}^{j}(x) \frac{\partial v_{1}^{i}(x)}{\partial \psi^{j}}$.
A bivector field on M : A section η of the second exterior power of the tangent bundle $\wedge^{2} T M$. Locally $\eta=\eta^{i j}(x) \frac{\partial}{\partial \psi^{i}} \wedge \frac{\partial}{\partial \psi^{j}}$.
Example 2, the cotangent bundle $T^{*} M \xrightarrow{\pi_{M}} M$: The bundle dual to $T M$. The transition functions: $\widetilde{\Psi}_{\alpha \beta, x}^{-1}$. We denote by $d \psi^{1}, \ldots, d \psi^{n}$ the basis of $T_{x}^{*} M$ dual to the basis $\frac{\partial}{\partial \psi^{1}}, \ldots, \frac{\partial}{\partial \psi^{n}}$.
A covector field on M (differential 1-form): A section γ of the bundle $T^{*} M$. Locally $\gamma=$ $\gamma_{i}(x) d \psi^{i}$.

A differential 2-form on M : A section ω of the second exterior power of the cotangent bundle $\bigwedge^{2} T^{*} M$. Locally $\omega=\omega_{i j}(x) d \psi^{i} \wedge d \psi^{j}$.
A morphism of vector bundles $E_{1} \xrightarrow{\pi_{1}} M, E_{2} \xrightarrow{\pi_{2}} M$ over $M:$ A map $\mu: E_{1} \rightarrow E_{2}$ such that the following diagram is commutative

and the induced mappings $\mu_{x}: E_{1, x} \rightarrow E_{2, x}$ are linear for any $x \in M$.
Differential k-forms as morphisms $\bigotimes^{k} T M \rightarrow M \times \mathbb{R}$: any differential k-form σ can be interpreted as such a morphism which is skew-symmetric. In other words, σ is a map form $\Gamma(T M) \times$ $\cdots \times \Gamma(T M) \rightarrow \mathcal{E}(M)$ which is multilinear over the $\operatorname{ring} \mathcal{E}(M)$ and skew-symmetric.
The exterior derivative $d: \Gamma\left(\bigwedge^{k} T^{*} M\right) \rightarrow \Gamma\left(\bigwedge^{k+1} T^{*} M\right)$: The Cartan formula gives $(d \gamma)(X, Y)=$ $X \gamma(Y)-Y \gamma(X)-\gamma([X, Y]), X, Y \in \Gamma(T M)$ for $\gamma \in \Gamma(T M)$ and $(d \omega)(X, Y, Z)=\sum_{c . p . X, Y, Z} X \omega(Y, Z)-$ $\omega([X, Y], Z)$.
Bivector fields and 2-forms as morphisms: Let $\eta \in \Gamma\left(\bigwedge^{2} T M\right)$ and $\gamma \in \Gamma\left(T^{*} M\right)$. The contraction $\gamma\lrcorner \eta=: \eta(\gamma)$ (in the first index) is a vector field defined by $v=v^{j}(x) \frac{\partial}{\partial \psi^{j}}, v^{j}(x):=$ $\gamma_{i}(x) \eta^{i j}(x)$. Since this operation is pointwise it defines a morphism of bundles $\eta^{\sharp}: T^{*} M \rightarrow T M$. Note that it is skew-symmetric, i.e. $\left(\eta^{\sharp}\right)^{*}=-\eta^{\sharp}$. Conversely, given such a morphism, we can construct a bivector field.

Analogously, a differential 2-form ω defines a skew-symmetric morphism $\omega^{b}: T M \rightarrow T^{*} M$.

