Algebraic and geometric aspects of modern theory of integrable systems

Lecture 15

1 Introduction to the KdV equation and infinite-dimensional argument translation method

The Gelfand-Fuchs cocycle: Let $\mathfrak{g}:=\Gamma\left(T S^{1}\right)$ be the Lie algebra of vector fields on a circle. Elements of \mathfrak{g} can be viewed as $v(x) \partial_{x}$, where v is a function on S^{1} and x is a coordinate. The bracket will be expressed as $\left[v(x) \partial_{x}, w(x) \partial_{x}\right]=\left(-v w_{x}+w v_{x}\right)(x) \partial_{x}$.

Proposition. The expression $c\left(v \partial_{x}, w \partial_{x}\right):=\int_{S^{1}} v w_{x x x} d x$ is a cocycle on \mathfrak{g}.
Proof $c\left(\left[v \partial_{x}, w \partial_{x}\right], u \partial_{x}\right)=\int_{S^{1}}\left(-v w_{x}+w v_{x}\right) u_{x x x} d x=\int_{S^{1}}\left(-v w_{x}+w v_{x}\right) d u_{x x}=[$ integration by parts $]=$ $-\int_{S^{1}} u_{x x}\left(-v w_{x}+w v_{x}\right)_{x} d x=-\int_{S^{1}} u_{x x}\left(-v_{x} w_{x}+w_{x} v_{x}-v_{x x} w+w_{x x} v\right) d x=\int_{S^{1}} u_{x x}\left(v_{x x} w-w_{x x} v\right) d x$. Summing the last expression over cyclic permutations of v, w, u gives zero. Exercise: Prove the skew-symmetry.

The Virasoro Lie algebra: The central extension $\mathfrak{g}^{\prime}:=\mathfrak{g} \oplus \mathbb{R}$ of \mathfrak{g} with respect to the Gelfand-Fuchs cocycle: $\left[\left(v(x) \partial_{x}, a\right),\left(w(x) \partial_{x}, b\right)\right]^{\prime}:=\left(\left(-v w_{x}+w v_{x}\right)(x) \partial_{x}, c\left(v \partial_{x}, w \partial_{x}\right)\right)$.

The " $H_{\alpha \beta}^{1}$-energy" on \mathfrak{g} ': The quadratic form

$$
\left\langle\left(v(x) \partial_{x}, a\right),\left(w(x) \partial_{x}, b\right)\right\rangle:=\int_{S^{1}}\left(\alpha v w+\beta v_{x} w_{x}\right) d x+a b
$$

If $\alpha=1, \beta=0$ we get the L^{2} scalar product, if $\alpha=1, \beta=1$, this is the Sobolev one.
The Virasoro group: This is a central extension $G^{\prime}:=G \times \mathbb{R}$ of the group $G:=\operatorname{Diff}\left(S^{1}\right)$ of diffeomorphisms of a circle by means of the Bott cocycle

$$
B(\psi, \varphi):=\int_{S^{1}} \log \left((\psi \circ \varphi)_{x}\right) d \log \left(\varphi_{x}\right)
$$

The group operation on G^{\prime} is given by

$$
(\psi(x), a) \circ(\varphi(x), b):=((\psi \circ \varphi)(x), a+b+B(\psi, \varphi)) .
$$

Remark: If $\alpha \neq 0$ the $H_{\alpha \beta}^{1}$-energy can be extended to a right-invariant metric on G.

The dual space \mathfrak{g}^{*} : It can be naturally identified with the space of quadratic differentials $\left\{u(x)(d x)^{2}\right\}$ on the circle. The pairing is given by the formula:

$$
\left\langle u(x)(d x)^{2}, v(x) \partial_{x}\right\rangle:=\int_{S^{1}} u(x) v(x) d x .
$$

The coadjoint orbits coincide with the orbits of the action of diffeomorphisms on quadratic differentials:

$$
\operatorname{Ad}_{\varphi}^{*}: u(d x)^{2} \mapsto u(\varphi) \cdot \varphi_{x}^{2}(d x)^{2}=u(\varphi)(d \varphi)^{2}
$$

Remark: If $u(x)>0$ for any $x \in S^{1}$, the square root $\sqrt{u(x)(d x)^{2}}$ transforms as a 1 -form. In particular, $\Phi\left(u(x)(d x)^{2}\right):=\int_{S^{1}} \sqrt{u(x)} d x$ is a Casimir function: the value of Φ is stable under the diffeomorphism action. The corresponding orbit has codimension one: a diffeomorphism action sends the quadratic differential $u(x)(d x)^{2}$ to the constant quadratic differential $C(d x)^{2}$, where $C:=(1 / 2 \pi) \int_{S^{1}} \sqrt{u(x)} d x$.

If u changes sign, the integral $\int_{a}^{b} \sqrt{u(x)} d x$ between two consecutive zeroes a, b of u is invariant. Thus the codimension of the orbit is greater than 1 in this case.

The dual space $\left(\mathfrak{g}^{\prime}\right)^{*}$: It can be naturally identified with the space of pairs $\left\{\left(u(x)(d x)^{2}, a\right)\right\}$ with the natural pairing

$$
\left\langle\left(u(x)(d x)^{2}, a\right),\left(v(x) \partial_{x}, b\right)\right\rangle:=\int_{S^{1}} u(x) v(x) d x+a b .
$$

Generic coadjoint orbits are of codimension 2 (they are contained in the hyperplanes $a=$ const).
Digression on the Euler equations: Recall: Let \mathfrak{g} be a Lie algebra with a positively defined scalar product b. Extend b to the right invariant contravariant metric $b_{r}: T^{*} G \times{ }_{G} T^{*} G \rightarrow \mathbb{R}$, denote by $B: T^{G} \rightarrow \mathbb{R}$ the corresponding quadratic form. The hamiltonian equation on $T^{*} G$ with the hamiltonian $H:=B$ is right invariant, hence can be reduced to a hamiltonian equation on \mathfrak{g}^{*}.

The last is called the Euler equation and is given by a vector field $\eta_{\mathfrak{g}}(b(v, v))$. Let $A: g \rightarrow \mathfrak{g}^{*}$ be defined by $\langle v, A(w)\rangle=b(v, w)$. Call A the inertia operator. It turns out (Exercise: prove this) that this equation is of the form

$$
\frac{d x}{d t}=-\operatorname{ad}_{A^{-1} x}^{*} x, x \in \mathfrak{g}^{*}
$$

The Euler equation related to the " $H_{\alpha \beta}^{1}$-energy":

Theorem. (Khesin-Misiotek) The Euler equation on $x:=\left(v(x)(d x)^{2}\right.$, a) corresponding to the " $H_{\alpha \beta}^{1}$ "-scalar product with $\alpha \neq 0$ has the form

$$
\alpha\left(v_{t}+3 v v_{x}\right)-\beta\left(v_{x x t}+2 v_{x} v_{x x}+v v_{x x x}\right)-b v_{x x x}=0, a_{t}=0 .
$$

Remark: By choosing $\alpha=1, \beta=0$ one obtains the Korteweg-de Vries equation. For $\alpha=\beta=1$ one recovers the Camassa-Holm equation.

Proof Let us calculate the ad* operator. We have

$$
\begin{array}{r}
\left\langle\operatorname{ad}_{\left(v \partial_{x}, b\right)}^{*}\left(u(d x)^{2}, a\right),\left(w \partial_{x}, c\right)\right\rangle=\left\langle\left(u(d x)^{2}, a\right),\left[\left(v \partial_{x}, b\right),\left(w \partial_{x}, c\right)\right]^{\prime}\right\rangle= \\
\int_{S^{1}} u\left(-v w_{x}+w v_{x}\right) d x+a \int_{S^{1}} v w_{x x x} d x=\int_{S^{1}} u w v_{x} d x-\int_{S^{1}} u v d w-a \int_{S^{1}} w v_{x x x} d x= \\
\int_{S^{1}} u w v_{x} d x+\int_{S^{1}} w\left(u_{x} v+u v_{x}\right) d x-a \int_{S^{1}} w v_{x x x} d x=\int_{S^{1}} w\left(2 u v_{x}+u_{x} v-a v_{x x x}\right) d x
\end{array}
$$

Hence $\operatorname{ad}_{\left(v \partial_{x}, b\right)}^{*}\left(u(d x)^{2}, a\right)=\left(\left(2 u v_{x}+u_{x} v-a v_{x x x}\right)(d x)^{2}, 0\right)$.
Now let us look at the inertia operator $A: \mathfrak{g}^{\prime} \rightarrow\left(\mathfrak{g}^{\prime}\right)^{*}$ given by $\left\langle\left(v \partial_{x}, b\right), A\left(\left(w \partial_{x}, a\right)\right)\right\rangle=\int_{S^{1}}(\alpha v w+$ $\left.\beta v_{x} w_{x}\right) d x+b a=\int_{S^{1}} v \Lambda w d x+b a$, where $\Lambda: \alpha-\beta \partial_{x}^{2}$ is a second order differential operator. We have $A\left(\left(w \partial_{x}, a\right)\right)=\left((\Lambda w)(d x)^{2}, a\right)$. This operator is nondegenerate for $\alpha \neq 0$.

The corresponding Euler equation is

$$
\frac{d}{d t}\left(u(d x)^{2}, a\right)=-\operatorname{ad}_{A^{-1}\left(u(d x)^{2}, a\right)}^{*}\left(u(d x)^{2}, a\right)=-\operatorname{ad}_{\left(\left(\Lambda^{-1} u\right)(d x)^{2}, a\right)}^{*}\left(u(d x)^{2}, a\right)
$$

or, using the formula for ad^{*}

$$
\frac{d}{d t}\left(u(d x)^{2}, a\right)=-\left(\left(2 u \Lambda^{-1} u_{x}+u_{x} \Lambda^{-1} u-a \Lambda^{-1} u_{x x x}\right)(d x)^{2}, 0\right)
$$

Putting $v:=\Lambda^{-1} u$ we get

$$
\frac{d}{d t}(\Lambda v)=-2(\Lambda v) v_{x}-\left(\Lambda v_{x}\right) v+a v_{x x x}, a_{t}=0
$$

Substituting $\Lambda=\alpha-\beta \partial_{x}^{2}$ we get the proof.

Bihamiltonian property of the KdV and $\mathrm{C}-\mathrm{H}$ equations:

Theorem. (Khesin-Misiotek) The Euler equation corresponding to the " $H_{\alpha \beta}^{1}$ "-scalar product with $\alpha \neq 0$ is bihamiltonian: it is hamiltonian with respect to the Lie-Poisson structure $\eta_{\mathfrak{g}^{\prime}}$ on $\left(\mathfrak{g}^{\prime}\right)^{*}$ (this is standard fact) and it is also hamiltonian with respect to the constant Poisson structure obtained by "freezing" of $\eta_{\mathfrak{g}^{\prime}}$ at the point $\left((\alpha / 2)(d x)^{2}, \beta\right)$.

Remark: We leave this theorem without proof. The last but not least remark: one can apply the general Magri-Lenard scheme to obtain an infinite sequence of "first integrals" of the (α, β)-Euler equation (in fact Magri invented his scheme having in mind the KdV equation).

