Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 14

1 Lie pencils and completely integrable systems

Digression on semidirect products of Lie algebras: Let p: g — End(V) be a representation
of a Lie algebra g on a vector space V.

Ezercise: Prove that the formula [(x, v), (y, w)] = ([x, y], p(x)w — p(y)v) defines a Lie algebra struc-
ture on g’ ;=g x V.

We put g x, V := (g x V,[,]') and say that g x, V' is a semidirect product of g and V.

Note that the subspaces go := g x {0} C ¢, g1 := {0} x V C ¢ satisfy the following commutation
relations: [go, go]" C 90, [0, 81]" C g1, [g1, 91] = {0} (in particular g is an abelian ideal of g’). And it
is easy to see that, given any Lie algebra g’ = go & g1 with the commutation relations as above, we
can put p(x) := adl |y, € go (here ad)v := [z, v]'), and get a representation of a Lie algebra gy on
the vector space g; and an isomorphism of g’ with gy x, g1 (Ezercise: prove this).

Given a Lie algebra g, we call the codimension of a regular coadjoint orbit the index of g. In
particular, ind g = corank 74|, := dim g — rank 7|, for generic = € g*.

THEOREM. (Rais, 1978)
ind(g x, V) =ind g, + codim O,,.

Here v € V* is a generic element, O, is the orbit of this element with respect to the dual (anti)
representation p* : g — End(V*), p*(z) := (p(x))*, and g, :={x € g | p*(x)v = 0} is the stabilizer of
the element v with respect to p*.

Ezxample: Let g := so(n,R) and p : g — End(R™) be the standard representation (the skew-symmetric
matrices act on vector-columns). Then e(n,R) := so(n,R) x, R™ is called the euclidean Lie algebra.

The standard euclidean scalar product (|) on R" is invariant with respect to p, i.e. (p(x)v|w) =
—(v|p(z)w) = 0. In particular, we can identify the orbits of p and p*. Thus the orbit of p* through
an element v € (R")* = R" is the sphere Sﬁ‘_l of radius |v|. The stabilizer g, is the Lie algebra of
rotations "around” v (i.e. preserving v) and is isomorphic to the Lie algebra so(n—1,R) (of rotations
7around” (1,0,...,0)). Finally, inde(n,R) = indso(n — 1,R) + 1.



Recall that the ring of Casimir functions of 7, is generated by Tr(z?), Tr(z?*)..., Tr(z%*) for
n = 2k + 1 and by Tr(z?), Tr(z*) ..., Tr(2%*72), Pf(x) for n = 2k. Hence indso(n,R) = [n/2]. In
particular, inde(n — 1,R) = [(n — 2)/2] + 1 = [n/2] = ind so(n, R).

Digression on contractions of Lie algebras: Assume (g,[,]) is a Lie algebra and that there
exists a family of Lie brackets [,]* on g continuously depending on the parameter A € U \ {\o}, here
U C R¥ is an open set, \g € U is a fixed element. Assume that [,] = [,]* for some A € U \ {\¢} and
that for any x,y € g there exists limy_ [z, y]* =: [z,y]o. Then by the continuity the bracket [,]o
will be a Lie bracket on g. We will say that (g, [,]o) is a contraction of a Lie algebra (g, [,]).

Ezample: Let (g, [,]) be any Lie algebra and let [,]* := A\[,], A € R\ {0}. Then lim, o[z, y]* =: [z, y]o
exists and gives an abelian Lie bracket on g.

Lie pencils and complete families of functions in involution: Let g = so(n,R),g" :=
(g,[,]"), where [,]* := [,]ir4004, A = diag(as,...,a,) is a fixed diagonal matrix with a simple
spectrum. The linear map given by L' : X — /t11 +t,AX /11 + t,A is an isomorphism of the
Lie algebras g? and g’ for ¢ nonproportional to (aj, —1),...,(an, —1). Indeed, [L'X,L'Y] =
Vil + 0 AX (0] + . A)Y T+ t0A — i1 T + 0 AY (411 + o A) X T + 60 A = LHX, Y] 11404

We claim that the Lie algebra (g, [,]*) for t # (0, 0) proportional to one of the vectors (a;, —1),...,
(an, —1) is isomorphic to e(n — 1,R) (hence e(n — 1,R) is a contraction of so(n,R)). For instance,
take t = (ay, —1). The map L' : X — VA’ XA’ where A’ := diag(1,1/v/a; — ag,...,1/\/a1 — an),

gives the isomorphism of [,](*~V with [,]5, B := (0,1,...,1).

Let us prove, that (g, [,]s) is isomorphic to e(n — 1,R). Put

0 0 0 - 0 0
0 0 Y12 o Yin-1 W é/l o (?)Jn
go={|0 -y 0 o v | |y €ERE<j} g i={ | yi € R}
w0 - 0
0 —vin-1 —Yon—1 -+ 0 Y

Then g = go @ g1 and it is easy to see that [go, go] C o, [80,81] C @1, [g1,81] C go- In particular,
go is a Lie subalgebra (isomorphic to so(n — 1,R)). On the other hand we obviously have: 1)
(80, 90]5 = [80, 80); 2) [80, 81]5 = [0, 91]; 3) [81,81]5 = {0}. So to finish the proof it remains to notice
that the representation p : go — End(g1), p(x) := ad,|y, is isomorphic to the standard representation
of so(n — 1,R) on R” (Ezercise: check this).

Now we are ready to prove the kroneckerity of the Poisson pencil @ := {t1m + tan2} ¢, 15)er> 0D
g* associated to the Lie pencil {(g, [,]'}ter2. Here ny := 1y is the canonical Lie—Poisson structure on
s0(n, R) and 7, is the Lie-Poisson structure corresponding to the modified commutator [,]4. We need
to prove that for a generic point = € g* we have rank (£171|, + tan|.) = const for (t1,t2) € C*\ {0}.

Let eq,...,e, be a basis of g and let the corresponding structure constants are defined by
lei, e;] = cfjek, lei, e;] = C’fjek. The condition above can be rewritten as rank (tlcfjxk + tszja:k) =
const, (t1,t3) € C?\ {0}. To prove it let us pass to the complexification gc = so(n,C) (skew-
symmetric matrices with complex entries). The same considerations as above show that the map
L gt — g% X — VT + t,AX VT + £, A, where (t1,t,) € C? is nonproportional to (aj, —1),...,
(an,—1), is an isomorphism of the corresponding Lie algebras. In other words, ti¢;zy + 205z =

2



Lty Lt (L) wch o ve, here the matrix L, is defined as L'e; = L, ey and similarly (L")}, Thus we con-
clude that the rank of ¢;¢};zx +t2Cfxy, is constant as far as t belongs to T := C?\ (Spang{(a, —1)} U
-+~ U Spanc{(an, —1)}) and x belongs to V := gc \ (U,er(L") ' Sc). Recall that S := Sing g is the

set {x € g | rank (¢};z)) < max, rank (c};z;)} and Sg is its complexification.

Finally we use the fact that inde(n — 1,C) = ind so(n, C) (which can be proved in the same way
as in real case) to conclude that @ is Kronecker at any point x € U :=gNV \ (VU---UV,). Here
V; := Singng,, g; == (g, [,]® V)i =1,...,n. The set U is dense because gNV = g\ (U, (L)1),
where 77 := R? \ (Spang{(ai, —1)} U --- U Spang{(a,, —1)}), and codim({J,.(L")™'S) > 2 due to
the condition codimg S > 3.

The corresponding complete family C(g*) of functions in involution is generated by the functions
F((LY)'z),t € R? where f is a Casimir function of 7.

One can show that the hamiltonian Tr((L™'z)z), Lx = Dz + xD, of the Euler-Manakov top is
contained in the family C®(g*) (with A := D?), but this is a little bit technical question and we will
skip it.



