
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 14

1 Lie pencils and completely integrable systems

Digression on semidirect products of Lie algebras: Let ρ : g → End(V ) be a representation
of a Lie algebra g on a vector space V .

Exercise: Prove that the formula [(x, v), (y, w)]′ = ([x, y], ρ(x)w− ρ(y)v) defines a Lie algebra struc-
ture on g′ := g× V .

We put g×ρ V := (g× V, [, ]′) and say that g×ρ V is a semidirect product of g and V .

Note that the subspaces g0 := g×{0} ⊂ g′, g1 := {0}×V ⊂ g′ satisfy the following commutation
relations: [g0, g0]

′ ⊂ g0, [g0, g1]
′ ⊂ g1, [g1, g1]

′ = {0} (in particular g0 is an abelian ideal of g′). And it
is easy to see that, given any Lie algebra g′ = g0 ⊕ g1 with the commutation relations as above, we
can put ρ(x) := ad′x|g1 , x ∈ g0 (here ad′xv := [x, v]′), and get a representation of a Lie algebra g0 on
the vector space g1 and an isomorphism of g′ with g0 ×ρ g1 (Exercise: prove this).

Given a Lie algebra g, we call the codimension of a regular coadjoint orbit the index of g. In
particular, ind g = corank ηg|x := dim g− rank ηg|x for generic x ∈ g∗.

Theorem. (Räıs, 1978)
ind(g×ρ V ) = ind gv + codim Oν .

Here ν ∈ V ∗ is a generic element, Oν is the orbit of this element with respect to the dual (anti)
representation ρ∗ : g → End(V ∗), ρ∗(x) := (ρ(x))∗, and gν := {x ∈ g | ρ∗(x)ν = 0} is the stabilizer of
the element ν with respect to ρ∗.

Example: Let g := so(n,R) and ρ : g → End(Rn) be the standard representation (the skew-symmetric
matrices act on vector-columns). Then e(n,R) := so(n,R)×ρ Rn is called the euclidean Lie algebra.

The standard euclidean scalar product (|) on Rn is invariant with respect to ρ, i.e. (ρ(x)v|w) =
−(v|ρ(x)w) = 0. In particular, we can identify the orbits of ρ and ρ∗. Thus the orbit of ρ∗ through
an element ν ∈ (Rn)∗ ∼= Rn is the sphere Sn−1

|ν| of radius |ν|. The stabilizer gν is the Lie algebra of

rotations ”around” ν (i.e. preserving ν) and is isomorphic to the Lie algebra so(n−1,R) (of rotations
”around” (1, 0, . . . , 0)). Finally, ind e(n,R) = ind so(n− 1,R) + 1.
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Recall that the ring of Casimir functions of ηg is generated by Tr(x2), Tr(x4) . . . , Tr(x2k) for
n = 2k + 1 and by Tr(x2), Tr(x4) . . . , Tr(x2k−2), Pf(x) for n = 2k. Hence ind so(n,R) = [n/2]. In
particular, ind e(n− 1,R) = [(n− 2)/2] + 1 = [n/2] = ind so(n,R).

Digression on contractions of Lie algebras: Assume (g, [, ]) is a Lie algebra and that there
exists a family of Lie brackets [, ]λ on g continuously depending on the parameter λ ∈ U \ {λ0}, here
U ⊂ Rk is an open set, λ0 ∈ U is a fixed element. Assume that [, ] = [, ]λ for some λ ∈ U \ {λ0} and
that for any x, y ∈ g there exists limλ→λ0 [x, y]λ =: [x, y]0. Then by the continuity the bracket [, ]0
will be a Lie bracket on g. We will say that (g, [, ]0) is a contraction of a Lie algebra (g, [, ]).

Example: Let (g, [, ]) be any Lie algebra and let [, ]λ := λ[, ], λ ∈ R\{0}. Then limλ→0[x, y]λ =: [x, y]0
exists and gives an abelian Lie bracket on g.

Lie pencils and complete families of functions in involution: Let g = so(n,R), gt :=
(g, [, ]t), where [, ]t := [, ]t1I+t2A, A = diag(a1, . . . , an) is a fixed diagonal matrix with a simple
spectrum. The linear map given by Lt : X 7→ √

t1I + t2AX
√

t1I + t2A is an isomorphism of the
Lie algebras g(1,0) and gt for t nonproportional to (a1,−1), . . . , (an,−1). Indeed, [LtX, LtY ] =√

t1I + t2AX(t1I + t2A)Y
√

t1I + t2A−
√

t1I + t2AY (t1I + t2A)X
√

t1I + t2A = Lt[X,Y ]t1I+t2A.

We claim that the Lie algebra (g, [, ]t) for t 6= (0, 0) proportional to one of the vectors (a1,−1), . . . ,
(an,−1) is isomorphic to e(n − 1,R) (hence e(n − 1,R) is a contraction of so(n,R)). For instance,
take t = (a1,−1). The map L′ : X 7→ √

A′X
√

A′, where A′ := diag(1, 1/
√

a1 − a2, . . . , 1/
√

a1 − an),
gives the isomorphism of [, ](a1,−1) with [, ]B, B := (0, 1, . . . , 1).

Let us prove, that (g, [, ]B) is isomorphic to e(n− 1,R). Put

g0 := {




0 0 0 · · · 0
0 0 y12 · · · y1,n−1

0 −y12 0 · · · y2,n−1

· · ·
0 −y1,n−1 −y2,n−1 · · · 0



| yij ∈ R, i < j}, g1 := {




0 −y1 · · · −yn

y1 0 · · · 0
· · ·

yn 0 · · · 0


 | yi ∈ R}.

Then g = g0 ⊕ g1 and it is easy to see that [g0, g0] ⊂ g0, [g0, g1] ⊂ g1, [g1, g1] ⊂ g0. In particular,
g0 is a Lie subalgebra (isomorphic to so(n − 1,R)). On the other hand we obviously have: 1)
[g0, g0]B = [g0, g0]; 2) [g0, g1]B = [g0, g1]; 3) [g1, g1]B = {0}. So to finish the proof it remains to notice
that the representation ρ : g0 → End(g1), ρ(x) := adx|g1 is isomorphic to the standard representation
of so(n− 1,R) on Rn (Exercise: check this).

Now we are ready to prove the kroneckerity of the Poisson pencil Θ := {t1η1 + t2η2}(t1,t2)∈R2 on
g∗ associated to the Lie pencil {(g, [, ]t}t∈R2 . Here η1 := ηg is the canonical Lie–Poisson structure on
so(n,R) and η2 is the Lie–Poisson structure corresponding to the modified commutator [, ]A. We need
to prove that for a generic point x ∈ g∗ we have rank (t1η1|x + t2η2|x) = const for (t1, t2) ∈ C2 \ {0}.

Let e1, . . . , en be a basis of g and let the corresponding structure constants are defined by
[ei, ej] = ck

ijek, [ei, ej] = Ck
ijek. The condition above can be rewritten as rank (t1c

k
ijxk + t2C

k
ijxk) =

const, (t1, t2) ∈ C2 \ {0}. To prove it let us pass to the complexification gC = so(n,C) (skew-
symmetric matrices with complex entries). The same considerations as above show that the map
Lt : gC → gC, X 7→ √

t1I + t2AX
√

t1I + t2A, where (t1, t2) ∈ C2 is nonproportional to (a1,−1), . . . ,
(an,−1), is an isomorphism of the corresponding Lie algebras. In other words, t1c

k
ijxk + t2C

k
ijxk =

2



Lt
ii′L

t
jj′(L

t)−1
kk′c

k
i′j′xk, here the matrix Lt

ii′ is defined as Ltei = Lt
ii′ei′ and similarly (Lt)−1

kk′ . Thus we con-

clude that the rank of t1c
k
ijxk + t2C

k
ijxk is constant as far as t belongs to T := C2 \ (SpanC{(a1,−1)}∪

· · · ∪ SpanC{(an,−1)}) and x belongs to V := gC \ (
⋃

t∈T (Lt)−1SC). Recall that S := Sing ηg is the
set {x ∈ g | rank (ck

ijxk) < maxx rank (ck
ijxk)} and SC is its complexification.

Finally we use the fact that ind e(n− 1,C) = ind so(n,C) (which can be proved in the same way
as in real case) to conclude that Θ is Kronecker at any point x ∈ U := g ∩ V \ (V1 ∪ · · · ∪ Vn). Here
Vi := Sing ηgi

, gi := (g, [, ](ai,−1)), i = 1, . . . , n. The set U is dense because g∩V = g\ (
⋃

t∈T ′(L
t)−1S),

where T ′ := R2 \ (SpanR{(a1,−1)} ∪ · · · ∪ SpanR{(an,−1)}), and codim(
⋃

t∈T ′(L
t)−1S) > 2 due to

the condition codimR S > 3.

The corresponding complete family CΘ(g∗) of functions in involution is generated by the functions
f((Lt)−1x), t ∈ R2, where f is a Casimir function of ηg.

One can show that the hamiltonian Tr((L−1x)x), Lx = Dx + xD, of the Euler–Manakov top is
contained in the family CΘ(g∗) (with A := D2), but this is a little bit technical question and we will
skip it.
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