Algebraic and geometric aspects of modern theory of integrable systems

Lecture 14

1 Lie pencils and completely integrable systems

Digression on semidirect products of Lie algebras: Let $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ be a representation of a Lie algebra \mathfrak{g} on a vector space V.

Exercise: Prove that the formula $[(x, v),(y, w)]^{\prime}=([x, y], \rho(x) w-\rho(y) v)$ defines a Lie algebra structure on $\mathfrak{g}^{\prime}:=\mathfrak{g} \times V$.

We put $\mathfrak{g} \times{ }_{\rho} V:=\left(\mathfrak{g} \times V,[,]^{\prime}\right)$ and say that $\mathfrak{g} \times{ }_{\rho} V$ is a semidirect product of \mathfrak{g} and V.
Note that the subspaces $\mathfrak{g}_{0}:=\mathfrak{g} \times\{0\} \subset \mathfrak{g}^{\prime}, \mathfrak{g}_{1}:=\{0\} \times V \subset \mathfrak{g}^{\prime}$ satisfy the following commutation relations: $\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right]^{\prime} \subset \mathfrak{g}_{0},\left[\mathfrak{g}_{0}, \mathfrak{g}_{1}\right]^{\prime} \subset \mathfrak{g}_{1},\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]^{\prime}=\{0\}$ (in particular \mathfrak{g}_{0} is an abelian ideal of \mathfrak{g}^{\prime}). And it is easy to see that, given any Lie algebra $\mathfrak{g}^{\prime}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with the commutation relations as above, we can put $\rho(x):=\left.\operatorname{ad}_{x}^{\prime}\right|_{\mathfrak{g}_{1}}, x \in \mathfrak{g}_{0}\left(\right.$ here $\left.\operatorname{ad}_{x}^{\prime} v:=[x, v]^{\prime}\right)$, and get a representation of a Lie algebra \mathfrak{g}_{0} on the vector space \mathfrak{g}_{1} and an isomorphism of \mathfrak{g}^{\prime} with $\mathfrak{g}_{0} \times{ }_{\rho} \mathfrak{g}_{1}$ (Exercise: prove this).

Given a Lie algebra \mathfrak{g}, we call the codimension of a regular coadjoint orbit the index of \mathfrak{g}. In particular, ind $\mathfrak{g}=\left.\operatorname{corank} \eta_{\mathfrak{g}}\right|_{x}:=\operatorname{dim} \mathfrak{g}-\left.\operatorname{rank} \eta_{\mathfrak{g}}\right|_{x}$ for generic $x \in \mathfrak{g}^{*}$.

Theorem. (Raïs, 1978)

$$
\operatorname{ind}\left(\mathfrak{g} \times{ }_{\rho} V\right)=\operatorname{ind} \mathfrak{g}_{v}+\operatorname{codim} O_{\nu}
$$

Here $\nu \in V^{*}$ is a generic element, O_{ν} is the orbit of this element with respect to the dual (anti) representation $\rho^{*}: \mathfrak{g} \rightarrow \operatorname{End}\left(V^{*}\right), \rho^{*}(x):=(\rho(x))^{*}$, and $\mathfrak{g}_{\nu}:=\left\{x \in \mathfrak{g} \mid \rho^{*}(x) \nu=0\right\}$ is the stabilizer of the element ν with respect to ρ^{*}.

Example: Let $\mathfrak{g}:=\mathfrak{s o}(n, \mathbb{R})$ and $\rho: \mathfrak{g} \rightarrow \operatorname{End}\left(\mathbb{R}^{n}\right)$ be the standard representation (the skew-symmetric matrices act on vector-columns). Then $\mathfrak{e}(n, \mathbb{R}):=\mathfrak{s o}(n, \mathbb{R}) \times{ }_{\rho} \mathbb{R}^{n}$ is called the euclidean Lie algebra.

The standard euclidean scalar product (\mid) on \mathbb{R}^{n} is invariant with respect to ρ, i.e. $(\rho(x) v \mid w)=$ $-(v \mid \rho(x) w)=0$. In particular, we can identify the orbits of ρ and ρ^{*}. Thus the orbit of ρ^{*} through an element $\nu \in\left(\mathbb{R}^{n}\right)^{*} \cong \mathbb{R}^{n}$ is the sphere $S_{|\nu|}^{n-1}$ of radius $|\nu|$. The stabilizer \mathfrak{g}_{ν} is the Lie algebra of rotations " around" ν (i.e. preserving ν) and is isomorphic to the Lie algebra $\mathfrak{s o}(n-1, \mathbb{R})$ (of rotations $"$ around" $(1,0, \ldots, 0))$. Finally, ind $\mathfrak{e}(n, \mathbb{R})=\operatorname{ind} \mathfrak{s o}(n-1, \mathbb{R})+1$.

Recall that the ring of Casimir functions of $\eta_{\mathfrak{g}}$ is generated by $\operatorname{Tr}\left(x^{2}\right), \operatorname{Tr}\left(x^{4}\right) \ldots, \operatorname{Tr}\left(x^{2 k}\right)$ for $n=2 k+1$ and by $\operatorname{Tr}\left(x^{2}\right), \operatorname{Tr}\left(x^{4}\right) \ldots, \operatorname{Tr}\left(x^{2 k-2}\right), \operatorname{Pf}(x)$ for $n=2 k$. Hence ind $\mathfrak{s o}(n, \mathbb{R})=[n / 2]$. In particular, ind $\mathfrak{e}(n-1, \mathbb{R})=[(n-2) / 2]+1=[n / 2]=$ ind $\mathfrak{s o}(n, \mathbb{R})$.

Digression on contractions of Lie algebras: Assume ($\mathfrak{g},[$,$]) is a Lie algebra and that there$ exists a family of Lie brackets [, $]^{\lambda}$ on \mathfrak{g} continuously depending on the parameter $\lambda \in U \backslash\left\{\lambda_{0}\right\}$, here $U \subset \mathbb{R}^{k}$ is an open set, $\lambda_{0} \in U$ is a fixed element. Assume that $[]=,[,]^{\lambda}$ for some $\lambda \in U \backslash\left\{\lambda_{0}\right\}$ and that for any $x, y \in \mathfrak{g}$ there exists $\lim _{\lambda \rightarrow \lambda_{0}}[x, y]^{\lambda}=:[x, y]_{0}$. Then by the continuity the bracket $[,]_{0}$ will be a Lie bracket on \mathfrak{g}. We will say that $\left(\mathfrak{g},[,]_{0}\right)$ is a contraction of a Lie algebra ($\left.\mathfrak{g},[],\right)$.

Example: Let $(\mathfrak{g},[]$,$) be any Lie algebra and let [,]^{\lambda}:=\lambda[],, \lambda \in \mathbb{R} \backslash\{0\}$. Then $\lim _{\lambda \rightarrow 0}[x, y]^{\lambda}=:[x, y]_{0}$ exists and gives an abelian Lie bracket on \mathfrak{g}.

Lie pencils and complete families of functions in involution: Let $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{R}), \mathfrak{g}^{t}:=$ $\left(\mathfrak{g},[,]^{t}\right)$, where $[,]^{t}:=[,]_{t_{1} I+t_{2} A}, A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is a fixed diagonal matrix with a simple spectrum. The linear map given by $L^{t}: X \mapsto \sqrt{t_{1} I+t_{2} A} X \sqrt{t_{1} I+t_{2} A}$ is an isomorphism of the Lie algebras $\mathfrak{g}^{(1,0)}$ and \mathfrak{g}^{t} for t nonproportional to $\left(a_{1},-1\right), \ldots,\left(a_{n},-1\right)$. Indeed, $\left[L^{t} X, L^{t} Y\right]=$ $\sqrt{t_{1} I+t_{2} A} X\left(t_{1} I+t_{2} A\right) Y \sqrt{t_{1} I+t_{2} A}-\sqrt{t_{1} I+t_{2} A} Y\left(t_{1} I+t_{2} A\right) X \sqrt{t_{1} I+t_{2} A}=L^{t}[X, Y]_{t_{1} I+t_{2} A}$.

We claim that the Lie algebra $\left(\mathfrak{g},[,]^{t}\right)$ for $t \neq(0,0)$ proportional to one of the vectors $\left(a_{1},-1\right), \ldots$, $\left(a_{n},-1\right)$ is isomorphic to $\mathfrak{e}(n-1, \mathbb{R})$ (hence $\mathfrak{e}(n-1, \mathbb{R})$ is a contraction of $\left.\mathfrak{s o}(n, \mathbb{R})\right)$. For instance, take $t=\left(a_{1},-1\right)$. The map $L^{\prime}: X \mapsto \sqrt{A^{\prime}} X \sqrt{A^{\prime}}$, where $A^{\prime}:=\operatorname{diag}\left(1,1 / \sqrt{a_{1}-a_{2}}, \ldots, 1 / \sqrt{a_{1}-a_{n}}\right)$, gives the isomorphism of $[,]^{\left(a_{1},-1\right)}$ with $[,]_{B}, B:=(0,1, \ldots, 1)$.

Let us prove, that $\left(\mathfrak{g},[,]_{B}\right)$ is isomorphic to $\mathfrak{e}(n-1, \mathbb{R})$. Put
$\mathfrak{g}_{0}:=\left\{\left.\left[\begin{array}{ccccc}0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & y_{12} & \cdots & y_{1, n-1} \\ 0 & -y_{12} & 0 & \cdots & y_{2, n-1} \\ 0 & -y_{1, n-1} & -y_{2, n-1} & \cdots & 0\end{array}\right] \right\rvert\, y_{i j} \in \mathbb{R}, i<j\right\}, \mathfrak{g}_{1}:=\left\{\left.\left[\begin{array}{cccc}0 & -y_{1} & \cdots & -y_{n} \\ y_{1} & 0 & \cdots & 0 \\ & & \cdots & \\ y_{n} & 0 & \cdots & 0\end{array}\right] \right\rvert\, y_{i} \in \mathbb{R}\right\}$.
Then $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ and it is easy to see that $\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \subset \mathfrak{g}_{0},\left[\mathfrak{g}_{0}, \mathfrak{g}_{1}\right] \subset \mathfrak{g}_{1},\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right] \subset \mathfrak{g}_{0}$. In particular, \mathfrak{g}_{0} is a Lie subalgebra (isomorphic to $\mathfrak{s o}(n-1, \mathbb{R})$). On the other hand we obviously have: 1) $\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right]_{B}=\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right]$; 2) $\left.\left[\mathfrak{g}_{0}, \mathfrak{g}_{1}\right]_{B}=\left[\mathfrak{g}_{0}, \mathfrak{g}_{1}\right] ; 3\right)\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]_{B}=\{0\}$. So to finish the proof it remains to notice that the representation $\rho: \mathfrak{g}_{0} \rightarrow \operatorname{End}\left(\mathfrak{g}_{1}\right), \rho(x):=\left.\mathrm{ad}_{x}\right|_{\mathfrak{g}_{1}}$ is isomorphic to the standard representation of $\mathfrak{s o}(n-1, \mathbb{R})$ on \mathbb{R}^{n} (Exercise: check this).

Now we are ready to prove the kroneckerity of the Poisson pencil $\Theta:=\left\{t_{1} \eta_{1}+t_{2} \eta_{2}\right\}_{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}}$ on \mathfrak{g}^{*} associated to the Lie pencil $\left\{\left(\mathfrak{g},[,]^{t}\right\}_{t \in \mathbb{R}^{2}}\right.$. Here $\eta_{1}:=\eta_{\mathfrak{g}}$ is the canonical Lie-Poisson structure on $\mathfrak{s o}(n, \mathbb{R})$ and η_{2} is the Lie-Poisson structure corresponding to the modified commutator $[,]_{A}$. We need to prove that for a generic point $x \in \mathfrak{g}^{*}$ we have $\operatorname{rank}\left(\left.t_{1} \eta_{1}\right|_{x}+\left.t_{2} \eta_{2}\right|_{x}\right)=$ const for $\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}$.

Let e_{1}, \ldots, e_{n} be a basis of \mathfrak{g} and let the corresponding structure constants are defined by $\left[e_{i}, e_{j}\right]=c_{i j}^{k} e_{k},\left[e_{i}, e_{j}\right]=C_{i j}^{k} e_{k}$. The condition above can be rewritten as rank $\left(t_{1} c_{i j}^{k} x_{k}+t_{2} C_{i j}^{k} x_{k}\right)=$ const, $\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}$. To prove it let us pass to the complexification $\mathfrak{g}_{\mathbb{C}}=\mathfrak{s o}(n, \mathbb{C})$ (skewsymmetric matrices with complex entries). The same considerations as above show that the map $L^{t}: \mathfrak{g}^{\mathbb{C}} \rightarrow \mathfrak{g}^{\mathbb{C}}, X \mapsto \sqrt{t_{1} I+t_{2} A} X \sqrt{t_{1} I+t_{2} A}$, where $\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2}$ is nonproportional to $\left(a_{1},-1\right), \ldots$, $\left(a_{n},-1\right)$, is an isomorphism of the corresponding Lie algebras. In other words, $t_{1} c_{i j}^{k} x_{k}+t_{2} C_{i j}^{k} x_{k}=$
$L_{i i^{\prime}}^{t} L_{j j^{\prime}}^{t}\left(L^{t}\right)_{k k^{\prime}}^{-1} c_{i^{\prime} j^{\prime}}^{k} x_{k}$, here the matrix $L_{i i^{\prime}}^{t}$ is defined as $L^{t} e_{i}=L_{i i^{\prime}}^{t} e_{i^{\prime}}$ and similarly $\left(L^{t}\right)_{k k^{\prime}}^{-1}$. Thus we conclude that the rank of $t_{1} c_{i j}^{k} x_{k}+t_{2} C_{i j}^{k} x_{k}$ is constant as far as t belongs to $T:=\mathbb{C}^{2} \backslash\left(\operatorname{Span}_{\mathbb{C}}\left\{\left(a_{1},-1\right)\right\} \cup\right.$ $\left.\cdots \cup \operatorname{Span}_{\mathbb{C}}\left\{\left(a_{n},-1\right)\right\}\right)$ and x belongs to $V:=\mathfrak{g}_{\mathbb{C}} \backslash\left(\bigcup_{t \in T}\left(L^{t}\right)^{-1} S_{\mathbb{C}}\right)$. Recall that $S:=\operatorname{Sing} \eta_{\mathfrak{g}}$ is the set $\left\{x \in \mathfrak{g} \mid \operatorname{rank}\left(c_{i j}^{k} x_{k}\right)<\max _{x} \operatorname{rank}\left(c_{i j}^{k} x_{k}\right)\right\}$ and $S_{\mathbb{C}}$ is its complexification.

Finally we use the fact that ind $\mathfrak{e}(n-1, \mathbb{C})=\operatorname{ind} \mathfrak{s o}(n, \mathbb{C})$ (which can be proved in the same way as in real case) to conclude that Θ is Kronecker at any point $x \in U:=\mathfrak{g} \cap V \backslash\left(V_{1} \cup \cdots \cup V_{n}\right)$. Here $V_{i}:=\operatorname{Sing} \eta_{\mathfrak{g}_{i}}, \mathfrak{g}_{i}:=\left(\mathfrak{g},[,]^{\left(a_{i},-1\right)}\right), i=1, \ldots, n$. The set U is dense because $\mathfrak{g} \cap V=\mathfrak{g} \backslash\left(\bigcup_{t \in T^{\prime}}\left(L^{t}\right)^{-1} S\right)$, where $T^{\prime}:=\mathbb{R}^{2} \backslash\left(\operatorname{Span}_{\mathbb{R}}\left\{\left(a_{1},-1\right)\right\} \cup \cdots \cup \operatorname{Span}_{\mathbb{R}}\left\{\left(a_{n},-1\right)\right\}\right)$, and $\operatorname{codim}\left(\bigcup_{t \in T^{\prime}}\left(L^{t}\right)^{-1} S\right) \geqslant 2$ due to the condition $\operatorname{codim}_{\mathbb{R}} S \geqslant 3$.

The corresponding complete family $\mathcal{C}^{\Theta}\left(\mathfrak{g}^{*}\right)$ of functions in involution is generated by the functions $f\left(\left(L^{t}\right)^{-1} x\right), t \in \mathbb{R}^{2}$, where f is a Casimir function of $\eta_{\mathfrak{g}}$.

One can show that the hamiltonian $\operatorname{Tr}\left(\left(L^{-1} x\right) x\right), L x=D x+x D$, of the Euler-Manakov top is contained in the family $\mathcal{C}^{\Theta}\left(\mathfrak{g}^{*}\right)$ (with $\left.A:=D^{2}\right)$, but this is a little bit technical question and we will skip it.

