Algebraic and geometric aspects of modern theory of integrable systems

Lecture 13

1 Linear algebra of pairs of bivectors and completeness of families of functions in involution

The Jordan-Kronecker decomposition of a pair of bivectors: A bivector b on a vector space V is an element of $\bigwedge^{2} V$. We will view a bivector b sometimes as a skew-symmetric map $V^{*} \rightarrow V$ (then its value at $x \in V^{*}$ will be denoted by $b(x)$) and sometimes as a skew-symmetric bilinear form on V^{*} (then its value at $x, y \in V^{*}$ will be denoted by $b(x, y)$). In particular, $b(x, y)=\langle b(x), y\rangle$.

Theorem. (Gelfand-Zakharevich, 1989) Given a finite-dimensional vector space V over \mathbb{C} and a pair of bivectors $\left(b^{(1)}, b^{(2)}\right), b^{(i)}: \bigwedge^{2} V^{*} \rightarrow \mathbb{C}$, there exists a direct decomposition $V^{*}=\oplus_{m=1}^{k} V_{m}^{*}$ such that $b^{(i)}\left(V_{l}^{*}, V_{m}^{*}\right)=0$ for $i=1,2, l \neq m$, and the triples $\left(V_{m}^{*}, b_{m}^{(1)}, b_{m}^{(2)}\right)$, where $b_{m}^{(i)}:=\left.b^{(i)}\right|_{V_{m}^{*}}$, are from the following list:

1. [the Jordan block $\mathbf{j}_{2 j_{m}}(\lambda)$: $\operatorname{dim} V_{m}^{*}=2 j_{m}$ and in an appropriate basis of V_{m}^{*} the matrices of $b_{m}^{(1)}, b_{m}^{(2)}$ are equal to

$$
\left[\begin{array}{cc}
\mathbf{0} & I_{j_{m}} \\
-I_{j_{m}} & \mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{0} & J_{j_{m}}(\lambda) \\
-J_{j_{m}}(\lambda)^{T} & \mathbf{0}
\end{array}\right]
$$

where $I_{j_{m}}$ is the unity $j_{m} \times j_{m}$-matrix and

$$
J_{j_{m}}(\lambda):=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
& & & \cdots & \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right]
$$

is the Jordan $j_{m} \times j_{m}$-block with the eigenvalue λ;
2. [the Jordan block $\mathbf{j}_{2 j_{m}}(\infty)$: $\operatorname{dim} V_{m}^{*}=2 j_{m}$ and in an appropriate basis of V_{m}^{*} the matrices of $b_{m}^{(1)}, b_{m}^{(2)}$ are equal to

$$
\left[\begin{array}{cc}
\mathbf{0} & J_{j_{m}}(0) \\
-J_{j_{m}}(0)^{T} & \mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{0} & I_{j_{m}} \\
-I_{j_{m}}^{T} & \mathbf{0}
\end{array}\right]
$$

3. [the Kronecker block $\mathbf{k}_{2 k_{m}+1}$]: $\operatorname{dim} V_{m}^{*}=2 k_{m}+1$ and in an appropriate basis of V_{m}^{*} the matrices of $b_{m}^{(1)}, b_{m}^{(2)}$ are equal to

$$
K_{1, k_{m}}:=\left[\begin{array}{cc}
\mathbf{0} & B_{1, k_{m}} \\
-B_{1, k_{m}}^{T} & \mathbf{0}
\end{array}\right], K_{2, k_{m}}:=\left[\begin{array}{cc}
\mathbf{0} & B_{2, k_{m}} \\
-B_{2, k_{m}}^{T} & \mathbf{0}
\end{array}\right]
$$

where

$$
B_{1, k_{m}}:=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
& & & \ldots & & \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right), B_{2, k_{m}}:=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
& & & \ldots & & \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

($k_{m} \times\left(k_{m}+1\right)$-matrices $)$.

Kronecker Poisson pencils: Let $\left\{\eta^{t}\right\}_{t \in \mathbb{R}^{2}}, \eta^{t}:=t_{1} \eta_{1}+t_{2} \eta_{2}$, be a Poisson pencil on M. We say that it is Kronecker at a point $x \in M$, if the Jordan-Kronecker decomposition of the pair of bivectors $\left.\eta_{1}\right|_{x},\left.\eta_{2}\right|_{x}$ (regarded as elements of $\bigwedge^{2} T_{x}^{\mathbb{C}} M$, here $T_{x}^{\mathbb{C}} M$ is the complexified tangent space) does not contain Jordan blocks.

Proposition. $\left\{\eta^{t}\right\}_{t \in \mathbb{R}^{2}}$ is Kronecker at x if and only if

$$
\operatorname{rank}\left(\left.t_{1} \eta_{1}\right|_{x}+\left.t_{2} \eta_{2}\right|_{x}\right)=\text { const, }\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}
$$

Proof It is easy to see that any nontrivial linear combination of matrices $K_{1, k_{m}}, K_{2, k_{m}}$ has constant rank equal to $2 k_{m}$. So the rank can "jump" at some $t \neq 0$ if and only if there are Jordan blocks in the decomposition.

We say that a Poisson pencil Θ on M is Kronecker if there exists an open dense set $U \subset M$ such that Θ is Kronecker at any $x \in U$.

Involutivity of Casimir functions for Kronecker Poisson pencils: We have already proven that, if $t^{\prime}, t^{\prime \prime} \in \mathbb{R}^{2}$ are linearly independent, then $\{f, g\}_{\eta^{t}}=0$ for any $f \in \mathcal{C}^{t^{\prime}}(M), g \in \mathcal{C}^{t^{\prime \prime}}(M), t \in \mathbb{R}^{2}$. In the same way one can prove that $\left.\eta^{t}\right|_{x}(\alpha, \beta)=0$ for any $\left.\alpha \in \operatorname{ker} \eta^{t^{t}}\right|_{x},\left.\beta \in \operatorname{ker} \eta^{t^{\prime \prime}}\right|_{x}, t \in \mathbb{R}^{2}$.

Proposition. Let $\left\{\eta^{t}\right\}_{t \in \mathbb{R}^{2}}$ be Kronecker and let $t^{\prime} \in \mathbb{R}^{2}, t^{\prime} \neq 0$. Then $\{f, g\}_{\eta^{t}}=0$ for any $f, g \in \mathcal{C}^{t^{\prime}}(M), t \in \mathbb{R}^{2}$.

Proof Fix $x \in U$. Let $t_{(n)} \in \mathbb{R}^{2}$ be such that $t_{(n)}$ is linearly independent with t^{\prime} and $t_{(n)} \xrightarrow{n \rightarrow \infty} t^{\prime}$. The kernel of the map $\left.\eta^{t}\right|_{x}: T_{x}^{*} M \rightarrow T_{x} M$ continuously depend on $t \in \mathbb{R}^{2} \backslash\{0\}$ and is of constant dimension. Consequently we can find a sequence of covectors $\left.\alpha_{n} \in \operatorname{ker} \eta^{t_{(n)}}\right|_{x}$ such that $\alpha_{n} \xrightarrow{n \rightarrow \infty} d_{x} g$. We get $\eta^{t}{ }_{x}\left(d_{x} f, \alpha_{n}\right)=0$ and by continuity we conclude that $\left.\eta^{t}\right|_{x}\left(d_{x} f, d_{x} g\right)=0$. In other words, $\{f, g\}_{\eta^{t}}(x)=0$ for any $x \in U$. Since U is dense, using again the continuity argument we get the proof.

Summarizing, we get the following result.

Proposition. Let $\Theta=\left\{\eta^{t}\right\}_{t \in \mathbb{R}^{2}}$ be a Kronecker Poisson pencil and let

$$
\mathcal{C}^{\Theta}(M):=\operatorname{Span}\left\{\bigcup_{t \in \mathbb{R}^{2} \backslash\{0\}} \mathcal{C}^{t}(M)\right\}
$$

Then $\mathcal{C}^{\theta}(M)$ is a family of functions in involution with respect to any Poisson bivector η^{t}.

Completeness of Casimir functions for Kronecker Poisson pencils: Let (M, η) be a Poisson structure. We say that an open set $W \subset M$ is correct for η if the set $W^{\prime}:=W \backslash(W \cap \operatorname{Sing} \eta)$ is nonempty and the common level sets of the functions from $\mathcal{C}^{\eta}\left(W^{\prime}\right)$ coincide with the symplectic foliation of η on the set W^{\prime}. In other words, the set W is correct if the Poisson structure does not have regular symplectic leaves dense in W. Equivalent definition: W is correct if $\left\{d_{x} f \mid f \in\right.$ $\left.\mathcal{C}^{\eta}(W)\right\}=\operatorname{ker} \eta_{x}$ for any $x \in W^{\prime}$. Note that in analytic category any sufficiently small open set is correct.

Proposition. Let $\Theta=\left\{\eta^{t}\right\}_{t \in \mathbb{R}^{2}}$ be a Kronecker Poisson pencil. Assume $W \subset M$ is an open set that is correct for η^{t} for a countable set $\left\{t_{(1)}, t_{(2)}, \ldots\right\}$ of pairwise linearly independent values of the parameter t and the set $W^{\prime}:=W \backslash \bigcup_{i=1}^{\infty} \operatorname{Sing} \eta^{t_{(i)}}$ is nonempty. Then the set of functions in involution $\mathcal{C}^{\Theta}\left(W^{\prime}\right)$ is complete with respect to any $\eta^{t}, t \neq 0$.

Proof Fix $x \in U \cap W^{\prime}$. Let us first prove that the set $C_{x}:=\left\{d_{x} f \mid f \in \mathcal{C}^{\Theta}\left(W^{\prime}\right)\right\} \subset T_{x}^{*} M$ coincides with the set $L_{x}:=\operatorname{Span}\left\{\bigcup_{t \in \mathbb{R}^{2} \backslash\{0\}} \operatorname{ker} \eta_{x}^{t}\right\}$. Indeed, the vector space L_{x} is finite-dimensional, hence is generated by a finite number of kernels ker $\eta_{x}^{t}=\left\{d_{x} f \mid f \in \mathcal{C}^{t}(W)\right\}$. Hence $L_{x} \subset C_{x}$. The same considerations show that $C_{x} \subset L_{x}$.

It is easy to see that the set L_{x} is of dimension $(1 / 2) \operatorname{rank} \eta_{x}^{t}+\operatorname{dim} M-\operatorname{rank} \eta_{x}^{t}$. Assume for a moment that the Jordan-Kronecker decomposition of the pair $\left.\eta_{1}\right|_{x},\left.\eta_{2}\right|_{x}$ consists of one Kronecker block $\mathbf{k}_{2 k_{m}+1}$. The kernel of the matrix $\lambda K_{1, k_{m}}+K_{2, k_{m}}$ is 1 -dimensional and is spanned by the vector $\left[0, \ldots, 0,1,-\lambda, \ldots,(-\lambda)^{k_{m}}\right]$. Taking $k_{m}+1$ different values of λ we get $k_{m}+1=(1 / 2)$ rank $\eta_{x}^{t}+$ $\operatorname{dim} M-\operatorname{rank} \eta_{x}^{t}$ linearly independent vectors (recall the Vandermonde determinant) spanning the set L_{x}. In the case of several Kronecker blocks you repeat these considerations for each block.

Remark: In fact it is sufficient to require that W is correct for a finite number of η^{t}. However, this number depends on the number and dimension of the Kronecker blocks, so we make a bit stronger assumption (which in practice is always satisfied).

Example (method of the argument translation): Let $M:=\mathfrak{g}^{*}, \eta_{1}:=\eta_{\mathfrak{g}}, \eta_{2}:=\eta_{\mathfrak{g}}(a)$, where $a \in \mathfrak{g}^{*} \backslash \operatorname{Sing} \eta_{\mathfrak{g}}$. Assume that codim Sing $\eta_{\mathfrak{g}} \geqslant 2$ (if \mathfrak{g} is semisimple it is known that codim Sing $\eta_{\mathfrak{g}} \geqslant$ 3). Note that $\operatorname{Sing} \eta_{\mathfrak{g}}$ is an algebraic set, i.e. it is defined by a finite number of algebraic equations $f_{1}(x)=0, \ldots, f_{m}(x)=0$ on \mathfrak{g}^{*}. Any algebraic set in a neighbourhood of its generic point is diffeomorphic to a manifold, hence its dimension is correctly defined.

If e_{1}, \ldots, e_{n} is a basis of \mathfrak{g} and the corresponding structure constants are defined by $\left[e_{i}, e_{j}\right]=$ $c_{i j}^{k} e_{k}$, the polynomials f_{1}, \ldots, f_{m} are the $r \times r$-minors of the matrix $c_{i j}(x)=c_{i j}^{k} x_{k}$, where $r=$ $\max _{x} \operatorname{rank}\left[c_{i j}(x)\right]$. Here $x_{1}=e_{1}, \ldots, x_{n}=e_{n}$ are the corresponding coordinates on \mathfrak{g}^{*}.

In order to check the condition of Kroneckerity we need to consider the complexification $\mathfrak{g}^{\mathbb{C}}$ of the initial Lie algebra. It can be regarded as a vector space $\operatorname{Span}_{\mathbb{C}}\left\{e_{1}, \ldots, e_{n}\right\} \cong \mathbb{C}^{n}$ with the Lie bracket
defined by the same structure constants. The set $S:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(\mathfrak{g}^{\mathbb{C}}\right)^{*} \cong \mathbb{C}^{n} \mid \operatorname{rank} c_{i j}^{k} z_{k}<\right.$ $\left.\max _{z \in \mathbb{C}^{n}} \operatorname{rank} c_{i j}^{k} z_{k}\right\}$ is a complex algebraic set defined by the equations $f_{1}(z)=0, \ldots, f_{m}(z)=$ 0 , where f_{1}, \ldots, f_{m} are the same polynomials as above. In particular, the set S is of complex codimension at least 2 .

We know that $\left.t_{1} \eta_{1}\right|_{x}+\left.t_{2} \eta_{2}\right|_{x}=c_{i j}^{k}\left(t_{1} x_{k}+t_{2} a_{k}\right), t_{1}, t_{2} \in \mathbb{C}$. Thus rank $\left(\left.t_{1} \eta_{1}\right|_{x}+\left.t_{2} \eta_{2}\right|_{x}\right)$ is maximal (over t) and independent of $t \in \mathbb{C}^{2} \backslash\{0\}$ if and only if $t_{1} x+t_{2} a \in\left(\mathfrak{g}^{\mathbb{C}}\right)^{*} \backslash S$ if and only if $x \notin \overline{a, S}$, where $\overline{a, S}:=\left\{z \in\left(\mathfrak{g}^{\mathbb{C}}\right)^{*} \mid \exists\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}: t_{1} z+t_{2} a \in S\right\}$.

Note that the set S is homogeneous (stable under rescaling). Passing to the projectivization the set $\overline{a, S}$ becomes a cone in $\mathbb{C P}^{n-1}$ over the projectivization of S. This shows that the set $\overline{a, S}$ is also algebraic (by the standard arguments from algebraic geometry) and, moreover, $\operatorname{dim}_{\mathbb{C}} \overline{a, S}=$ $\operatorname{dim}_{\mathbb{C}} S+1$. In particular $\operatorname{codim}_{\mathbb{C}} \overline{a, S} \geqslant 1$ and we can put $U:=\mathfrak{g}^{*} \backslash\left(\mathfrak{g}^{*} \cap \overline{a, S}\right)=\mathfrak{g}^{*} \backslash\left(\overline{a, \text { Sing } \eta_{\mathfrak{g}}}\right)$. Here $\overline{a, \operatorname{Sing} \eta_{\mathfrak{g}}}:=\left\{x \in \mathfrak{g}^{*} \mid \exists\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2} \backslash\{0\}: t_{1} x+t_{2} a \in \operatorname{Sing} \eta_{\mathfrak{g}}\right\}$ and $\operatorname{codim}_{\mathbb{R}} \overline{a, \operatorname{Sing} \eta_{\mathfrak{g}}} \geqslant 1$. The set U is an open dense set in \mathfrak{g}^{*} such that $\left\{\eta^{t}\right\}$ is Kronecker at any $x \in U$.

Finally assume that \mathfrak{g} is semisimple. Then $\eta_{\mathfrak{g}}$ has enough global Casimir functions and the whole space \mathfrak{g}^{*} is a corrrect set for $\eta_{\mathfrak{g}}$. In particular, the assumptions of the proposition above are satisfied and we get a complete set $\mathcal{C}^{\Theta}\left(\mathfrak{g}^{*}\right)$ of functions in involution (with respect to any η^{t}). This set is generated by the "translations" $f(x+\lambda a), \lambda \in \mathbb{R}$, of the Casimir functions f of $\eta_{\mathfrak{g}}$.

