
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 12

1 Poisson pencils and families of functions in involution

A Poisson pencil on M : Let a pair (η1, η2) of linearly independent bivectors on a manifold M be
given. Assume ηt := t1η1 + t2η2 is a Poisson structure for any t = (t1, t2) ∈ R2. We say that the
Poisson structures η1, η2 are compatible (or form a bihamiltonian structure or a Poisson pair) and
that the whole family Θ := {ηt}t∈R2 is a Poisson pencil.

Exercise: Show that the following conditions are equivalent:

1. ηt is Poisson, i.e. [ηt, ηt]S = 0, for any t ∈ R2 (here [, ]S is the Schouten bracket);

2. [ηt, ηt]S = 0 for any three pairwise nonproportional values of t ∈ R2;

3. [η1, η1]S = 0, [η1, η2]S = 0, [η2, η2]S = 0.

Example 1: Let η1, η2 be bivectors on Rn with constant coefficients. Then they form a Poisson pair
(recall that, given a bivector η = ηij(x) ∂

∂xi
∧ ∂

∂xj
, we have [η, η]ijkS :=

∑
c.p. i,j,k ηir(x) ∂

∂xr η
jk(x)).

Example 2: Let g be a Lie algebra and ηg the Lie–Poisson structure on g∗. Let c : g × g → R be
a 2-cocycle on g, i.e. c is skew-symmetric and

∑
c.p. v,w,u c([v, w], u) = 0 for any v, w, u ∈ g. Then

c ∈ (g ∧ g)∗ ∼= g∗ ∧ g∗ can be regarded as a bivector on g∗ with constant coefficients. It turns out
that (η1, η2), where η1 := ηg, η2 := c, is a Poisson pair.

Indeed, it is easy to see that the bracket [(v, α), (w, β)]′ := ([v, w], c(v, w)) defines a Lie algebra
structure on g′ := g × R (Exercise: check this). The R-component lies in the centre of g′, we say
that g′ is a central extension of g. The affine subspaces g∗x0

:= g∗ × x0 ⊂ (g′)∗ = g∗ × R are Poisson
submanifolds of the Poisson manifold ((g′)∗, ηg′). The restriction ηg′|g∗x0

coincides with η1 + x0η2, i.e.

the last bivector is Poisson at least for three different values of x0. We conclude that (η1, η2) is a
Poisson pair.

In coordinates this looks as follows. Let e1, . . . , en be a basis of g and [ei, ej] = ck
ijek, c(ei, ej) =

cij, i, j, k = 1, . . . , n, for some constants ck
ij, cij ∈ R. Put η′0 := (0, 1), η′i := (ηi, 0) ∈ g′, i = 1, . . . , n,

and let x′0, . . . , x
′
n denote the same elements regarded as coordinates on (g′)∗. Then ηg′ = (ck

ijx
′
k +

x′0cij)
∂
∂x′i
∧ ∂

∂x′j
and ηt = (t1c

k
ijxk + t2cij)

∂
∂xi
∧ ∂

∂xj
. Here x1, . . . , xn are coordinates on g∗ corresponding

to e1, . . . , en.
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Example 3: In a particular case when the cocycle c is trivial, i.e. c(v, w) = a([v, w]) for some a ∈ g∗

we get a Poisson pencil {ηt}, ηt := (t1c
k
ijxk + t2c

k
ijak)

∂
∂xi

∧ ∂
∂xj

, here a1, . . . , an are coordinates of a

in the dual basis e1, . . . , en of g∗. In the corresponding Poisson pair (η1, η2) the first bivector is the
Lie-Poisson one, ηg, and the second one is ηg(a), the Lie-Poisson bivector ”frozen” at a.

Example 4: Let g : gl(n,R) and A ∈ g. Put [x, y]A := xAy − yAx. It is easy to see that [, ]A is
a Lie bracket on g for any A (Exercise: check this). In particular, for a fixed A ∈ g the bracket
[, ]t := t1[, ] + t2[, ]A = [, ]t1I+t2A is a Lie bracket for any t ∈ R2 (any family of Lie brackets linearly
spanned by two fixed brackets will be called a Lie pencil). Denote gt := (g, [, ]t). The Lie–Poisson
structures ηgt form a Poisson pencil on g∗.

We get a generalization of this example taking g := so(n,R) and A a symmetric n× n-matrix.

I mechanism of constructing functions in involution (the Magri–Lenard scheme): Let
(η1, η2) be a pair of Poisson structures (not necessarily compatible). Assume we can found a sequence
of functions H0, H1, . . . ∈ E(M) satisfying

η1(H0) = η2(H1)

η1(H1) = η2(H2)
... . (1)

Proposition. For any indices i, j the following equality holds:

{Hi, Hj}η1 = {Hi+1, Hj−1}η1 .

Proof η1(Hi)Hj = η2(Hi+1)Hj = −η2(Hj)Hi+1 = −η1(Hj−1)Hi+1 = η1(Hi+1)Hj−1 ¤
Now assume i < j. If j − i = 2k, we can apply the proposition k times and get {Hi, Hj}η1 =

{Hi+k, Hj−k}η1 = {Hi+k, Hi+k}η1 = 0. If j − i = 2k + 1, we get {Hi, Hj}η1 = {Hi+k, Hj−k}η1 =
{Hi+k, Hi+k+1}η1 = η1(Hi+k)Hi+k+1 = η2(Hi+k+1)Hi+k+1 = 0. Hence the sequence H0, H1, . . . is a
family of first integrals in involution for any of vector fields vi := η1(Hi), i = 0, 1, . . . Note that all
these vector fields are ”bihamiltonian”, i.e. hamiltonian with respect to both the Poisson structures
η1, η2.

In general it is hard to find the sequences of functions H0, H1, . . . with the required proper-
ties. However, if we assume additionally that (η1, η2) is a Poisson pair, there are some cases, when
such sequences naturally appear. For instance, assume that all the bivectors ηt := t1η1 + t2η2 of
the corresponding Poisson pencil are degenerate. Let ηλ := λη1 + η2, λ := t1/t2, and let fλ be a
Casimir function of ηλ. It turns out that fλ depends smoothly, let fλ = f0 + λf1 + λ2f2 + · · ·
be the corresponding Tailor expansion. Then we deduce from the equality ηλ(fλ) = 0 that 0 =
η2(f0), η1(f0) + η2(f1), η1(f1) + η2(f2), . . . (coefficients of different powers of λ). Thus we can put
H0 := f0, H1 := −f1, H2 := f2, . . . Note that such a Magri–Lenard chain starts from a Casimir
function of η2. If gλ = g0 + λg1 + · · · is another Casimir function of ηλ, we get another sequence of
functions in involution. A question arises, is it true that {fi, gj}ηk

= 0? Another important question
concerns the completeness of the obtained family of functions.

II mechanism of constructing functions in involution (based on the Casimir functions of
a Poisson pencil): Let {ηt}t∈R2 be a Poisson pencil on M . Denote by Ct(M) the space of Casimir
functions of ηt.
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Proposition. Let t′, t′′ ∈ R2 be linearly independent and let f ∈ Ct′(M), g ∈ Ct′′(M). Then

{f, g}ηt = 0

for any t ∈ R2.

Proof Indeed for any t ∈ R2 there exist c′, c′′ ∈ R such that t = c′t′ + c′′t′′. Then {f, g}ηt = ηt(f)g =
(c′ηt′ + c′′ηt′′)(f)g = c′′ηt′′(f)g = −c′′ηt′′(g)f = 0. ¤

It is not clear from this fact whether {f, g}ηt = 0 if f, g are Casimir functions of the same bivector
ηt′ . We will discuss this question in the next lecture.
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