Algebraic and geometric aspects of modern theory of integrable systems

Lecture 12

1 Poisson pencils and families of functions in involution

A Poisson pencil on M : Let a pair $\left(\eta_{1}, \eta_{2}\right)$ of linearly independent bivectors on a manifold M be given. Assume $\eta^{t}:=t_{1} \eta_{1}+t_{2} \eta_{2}$ is a Poisson structure for any $t=\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$. We say that the Poisson structures η_{1}, η_{2} are compatible (or form a bihamiltonian structure or a Poisson pair) and that the whole family $\Theta:=\left\{\eta^{t}\right\}_{t \in \mathbb{R}^{2}}$ is a Poisson pencil.

Exercise: Show that the following conditions are equivalent:

1. η^{t} is Poisson, i.e. $\left[\eta^{t}, \eta^{t}\right]_{S}=0$, for any $t \in \mathbb{R}^{2}$ (here [, $]_{S}$ is the Schouten bracket);
2. $\left[\eta^{t}, \eta^{t}\right]_{S}=0$ for any three pairwise nonproportional values of $t \in \mathbb{R}^{2}$;
3. $\left[\eta_{1}, \eta_{1}\right]_{S}=0,\left[\eta_{1}, \eta_{2}\right]_{S}=0,\left[\eta_{2}, \eta_{2}\right]_{S}=0$.

Example 1: Let η_{1}, η_{2} be bivectors on \mathbb{R}^{n} with constant coefficients. Then they form a Poisson pair (recall that, given a bivector $\eta=\eta^{i j}(x) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}}$, we have $[\eta, \eta]_{S}^{i j k}:=\sum_{c . p . i, j, k} \eta^{i r}(x) \frac{\partial}{\partial x^{r}} \eta^{j k}(x)$).

Example 2: Let \mathfrak{g} be a Lie algebra and $\eta_{\mathfrak{g}}$ the Lie-Poisson structure on \mathfrak{g}^{*}. Let $c: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ be a 2-cocycle on \mathfrak{g}, i.e. c is skew-symmetric and $\sum_{c . p . v, w, u} c([v, w], u)=0$ for any $v, w, u \in \mathfrak{g}$. Then $c \in(\mathfrak{g} \wedge \mathfrak{g})^{*} \cong \mathfrak{g}^{*} \wedge \mathfrak{g}^{*}$ can be regarded as a bivector on \mathfrak{g}^{*} with constant coefficients. It turns out that $\left(\eta_{1}, \eta_{2}\right)$, where $\eta_{1}:=\eta_{\mathfrak{g}}, \eta_{2}:=c$, is a Poisson pair.

Indeed, it is easy to see that the bracket $[(v, \alpha),(w, \beta)]^{\prime}:=([v, w], c(v, w))$ defines a Lie algebra structure on $\mathfrak{g}^{\prime}:=\mathfrak{g} \times \mathbb{R}$ (Exercise: check this). The \mathbb{R}-component lies in the centre of \mathfrak{g}^{\prime}, we say that \mathfrak{g}^{\prime} is a central extension of \mathfrak{g}. The affine subspaces $\mathfrak{g}_{x_{0}}^{*}:=\mathfrak{g}^{*} \times x_{0} \subset\left(\mathfrak{g}^{\prime}\right)^{*}=\mathfrak{g}^{*} \times \mathbb{R}$ are Poisson submanifolds of the Poisson manifold $\left(\left(\mathfrak{g}^{\prime}\right)^{*}, \eta_{\mathfrak{g}^{\prime}}\right)$. The restriction $\left.\eta_{\mathfrak{g}^{\prime}}\right|_{\mathfrak{g}_{x_{0}}^{*}}$ coincides with $\eta_{1}+x_{0} \eta_{2}$, i.e. the last bivector is Poisson at least for three different values of x_{0}. We conclude that $\left(\eta_{1}, \eta_{2}\right)$ is a Poisson pair.

In coordinates this looks as follows. Let e_{1}, \ldots, e_{n} be a basis of \mathfrak{g} and $\left[e_{i}, e_{j}\right]=c_{i j}^{k} e_{k}, c\left(e_{i}, e_{j}\right)=$ $c_{i j}, i, j, k=1, \ldots, n$, for some constants $c_{i j}^{k}, c_{i j} \in \mathbb{R}$. Put $\eta_{0}^{\prime}:=(0,1), \eta_{i}^{\prime}:=\left(\eta_{i}, 0\right) \in \mathfrak{g}^{\prime}, i=1, \ldots, n$, and let $x_{0}^{\prime}, \ldots, x_{n}^{\prime}$ denote the same elements regarded as coordinates on $\left(\mathfrak{g}^{\prime}\right)^{*}$. Then $\eta_{\mathfrak{g}^{\prime}}=\left(c_{i j}^{k} x_{k}^{\prime}+\right.$ $\left.x_{0}^{\prime} c_{i j}\right) \frac{\partial}{\partial x_{i}^{\prime}} \wedge \frac{\partial}{\partial x_{j}^{\prime}}$ and $\eta^{t}=\left(t_{1} c_{i j}^{k} x_{k}+t_{2} c_{i j}\right) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}}$. Here x_{1}, \ldots, x_{n} are coordinates on \mathfrak{g}^{*} corresponding to e_{1}, \ldots, e_{n}.

Example 3: In a particular case when the cocycle c is trivial, i.e. $c(v, w)=a([v, w])$ for some $a \in \mathfrak{g}^{*}$ we get a Poisson pencil $\left\{\eta^{t}\right\}, \eta^{t}:=\left(t_{1} c_{i j}^{k} x_{k}+t_{2} c_{i j}^{k} a_{k}\right) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}}$, here a_{1}, \ldots, a_{n} are coordinates of a in the dual basis e^{1}, \ldots, e^{n} of \mathfrak{g}^{*}. In the corresponding Poisson pair $\left(\eta_{1}, \eta_{2}\right)$ the first bivector is the Lie-Poisson one, $\eta_{\mathfrak{g}}$, and the second one is $\eta_{\mathfrak{g}}(a)$, the Lie-Poisson bivector "frozen" at a.
Example 4: Let $\mathfrak{g}: \mathfrak{g l}(n, \mathbb{R})$ and $A \in \mathfrak{g}$. Put $[x, y]_{A}:=x A y-y A x$. It is easy to see that $[,]_{A}$ is a Lie bracket on \mathfrak{g} for any A (Exercise: check this). In particular, for a fixed $A \in \mathfrak{g}$ the bracket $[,]^{t}:=t_{1}[]+,t_{2}[,]_{A}=[,]_{t_{1} I+t_{2} A}$ is a Lie bracket for any $t \in \mathbb{R}^{2}$ (any family of Lie brackets linearly spanned by two fixed brackets will be called a Lie pencil). Denote $\mathfrak{g}^{t}:=\left(\mathfrak{g},[,]^{t}\right)$. The Lie-Poisson structures $\eta_{\mathfrak{g}^{t}}$ form a Poisson pencil on \mathfrak{g}^{*}.

We get a generalization of this example taking $\mathfrak{g}:=\mathfrak{s o}(n, \mathbb{R})$ and A a symmetric $n \times n$-matrix.
I mechanism of constructing functions in involution (the Magri-Lenard scheme): Let $\left(\eta_{1}, \eta_{2}\right)$ be a pair of Poisson structures (not necessarily compatible). Assume we can found a sequence of functions $H_{0}, H_{1}, \ldots \in \mathcal{E}(M)$ satisfying

$$
\begin{align*}
\eta_{1}\left(H_{0}\right) & =\eta_{2}\left(H_{1}\right) \\
\eta_{1}\left(H_{1}\right) & =\eta_{2}\left(H_{2}\right) \\
& \vdots \tag{1}
\end{align*}
$$

Proposition. For any indices i, j the following equality holds:

$$
\left\{H_{i}, H_{j}\right\}_{\eta_{1}}=\left\{H_{i+1}, H_{j-1}\right\}_{\eta_{1}}
$$

$\operatorname{Proof} \eta_{1}\left(H_{i}\right) H_{j}=\eta_{2}\left(H_{i+1}\right) H_{j}=-\eta_{2}\left(H_{j}\right) H_{i+1}=-\eta_{1}\left(H_{j-1}\right) H_{i+1}=\eta_{1}\left(H_{i+1}\right) H_{j-1} \square$
Now assume $i<j$. If $j-i=2 k$, we can apply the proposition k times and get $\left\{H_{i}, H_{j}\right\}_{\eta_{1}}=$ $\left\{H_{i+k}, H_{j-k}\right\}_{\eta_{1}}=\left\{H_{i+k}, H_{i+k}\right\}_{\eta_{1}}=0$. If $j-i=2 k+1$, we get $\left\{H_{i}, H_{j}\right\}_{\eta_{1}}=\left\{H_{i+k}, H_{j-k}\right\}_{\eta_{1}}=$ $\left\{H_{i+k}, H_{i+k+1}\right\}_{\eta_{1}}=\eta_{1}\left(H_{i+k}\right) H_{i+k+1}=\eta_{2}\left(H_{i+k+1}\right) H_{i+k+1}=0$. Hence the sequence H_{0}, H_{1}, \ldots is a family of first integrals in involution for any of vector fields $v_{i}:=\eta_{1}\left(H_{i}\right), i=0,1, \ldots$ Note that all these vector fields are "bihamiltonian", i.e. hamiltonian with respect to both the Poisson structures η_{1}, η_{2}.

In general it is hard to find the sequences of functions H_{0}, H_{1}, \ldots with the required properties. However, if we assume additionally that $\left(\eta_{1}, \eta_{2}\right)$ is a Poisson pair, there are some cases, when such sequences naturally appear. For instance, assume that all the bivectors $\eta^{t}:=t_{1} \eta_{1}+t_{2} \eta_{2}$ of the corresponding Poisson pencil are degenerate. Let $\eta^{\lambda}:=\lambda \eta_{1}+\eta_{2}, \lambda:=t_{1} / t_{2}$, and let f^{λ} be a Casimir function of η^{λ}. It turns out that f^{λ} depends smoothly, let $f^{\lambda}=f_{0}+\lambda f_{1}+\lambda^{2} f_{2}+\cdots$ be the corresponding Tailor expansion. Then we deduce from the equality $\eta^{\lambda}\left(f^{\lambda}\right)=0$ that $0=$ $\eta_{2}\left(f_{0}\right), \eta_{1}\left(f_{0}\right)+\eta_{2}\left(f_{1}\right), \eta_{1}\left(f_{1}\right)+\eta_{2}\left(f_{2}\right), \ldots$ (coefficients of different powers of λ). Thus we can put $H_{0}:=f_{0}, H_{1}:=-f_{1}, H_{2}:=f_{2}, \ldots$ Note that such a Magri-Lenard chain starts from a Casimir function of η_{2}. If $g^{\lambda}=g_{0}+\lambda g_{1}+\cdots$ is another Casimir function of η^{λ}, we get another sequence of functions in involution. A question arises, is it true that $\left\{f_{i}, g_{j}\right\}_{\eta_{k}}=0$? Another important question concerns the completeness of the obtained family of functions.

II mechanism of constructing functions in involution (based on the Casimir functions of a Poisson pencil): Let $\left\{\eta^{t}\right\}_{t \in \mathbb{R}^{2}}$ be a Poisson pencil on M. Denote by $\mathcal{C}^{t}(M)$ the space of Casimir functions of η^{t}.

Proposition. Let $t^{\prime}, t^{\prime \prime} \in \mathbb{R}^{2}$ be linearly independent and let $f \in \mathcal{C}^{t^{\prime}}(M), g \in \mathcal{C}^{t^{\prime \prime}}(M)$. Then

$$
\{f, g\}_{\eta^{t}}=0
$$

for any $t \in \mathbb{R}^{2}$.
Proof Indeed for any $t \in \mathbb{R}^{2}$ there exist $c^{\prime}, c^{\prime \prime} \in \mathbb{R}$ such that $t=c^{\prime} t^{\prime}+c^{\prime \prime} t^{\prime \prime}$. Then $\{f, g\}_{\eta^{t}}=\eta^{t}(f) g=$ $\left(c^{\prime} \eta^{t^{\prime}}+c^{\prime \prime} \eta^{t^{\prime \prime}}\right)(f) g=c^{\prime \prime} \eta^{t^{\prime \prime}}(f) g=-c^{\prime \prime} \eta^{t^{\prime \prime}}(g) f=0$.

It is not clear from this fact whether $\{f, g\}_{\eta^{t}}=0$ if f, g are Casimir functions of the same bivector $\eta^{t^{\prime}}$. We will discuss this question in the next lecture.

