Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 12

1 Poisson pencils and families of functions in involution

A Poisson pencil on M: Let a pair (1, 7,) of linearly independent bivectors on a manifold M be
given. Assume 7' := t17; + tano is a Poisson structure for any ¢ = (t1,t3) € R2. We say that the
Poisson structures 7,1, are compatible (or form a bihamiltonian structure or a Poisson pair) and
that the whole family © := {n'},cgr2 is a Poisson pencil.

Exercise: Show that the following conditions are equivalent:

1. n' is Poisson, i.e. [n',n']s = 0, for any ¢ € R? (here [,]s is the Schouten bracket);

2. [n*,n']s = 0 for any three pairwise nonproportional values of t € R?;

3. [, mls =0, [m,me)s = 0, [n2,m2]s = 0.

Example 1: Let 7,7, be bivectors on R™ with constant coefficients. Then they form a Poisson pair
(recall that, given a bivector n = 7 (z) £ A %ﬂ_, we have [n, 77" .= > epijn 1 (@) 2 * ().

Example 2: Let g be a Lie algebra and 7y the Lie-Poisson structure on g*. Let c: g x g — R be
a 2-cocycle on g, i.e. c is skew-symmetric and >, . c([v,w],u) = 0 for any v,w,u € g. Then
c € (gNg)" = g"Ag" can be regarded as a bivector on g* with constant coefficients. It turns out

that (n1,72), where ny := ng, n2 := ¢, is a Poisson pair.

Indeed, it is easy to see that the bracket [(v,a), (w,B)] := ([v,w], c(v,w)) defines a Lie algebra
structure on g’ := g X R (Ezercise: check this). The R-component lies in the centre of g’, we say
that g’ is a central extension of g. The affine subspaces g} = g* x zo C (g')* = g* x R are Poisson
submanifolds of the Poisson manifold ((g')*,7g ). The restriction 7y g;, coincides with n; + zonp, ie.
the last bivector is Poisson at least for three different values of xy. We conclude that (n;,72) is a
Poisson pair.

In coordinates this looks as follows. Let ey, ..., e, be a basis of g and [e;, e;] = cfjek, clei,ej) =
¢ij, 1,7,k = 1,...,n, for some constants cfj,cij € R. Put np := (0,1),n, := (m;,0) € g',i = 1,...,n,
and let zf, ...,z denote the same elements regarded as coordinates on (g')*. Then ny = (¢}, +
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focij)a—m; A BT and n* = (tlcijask +t2cij)8_l’i A B Here z4, ..., x, are coordinates on g* corresponding
0€l,...,6n.



Example 3: In a particular case when the cocycle ¢ is trivial, i.e. ¢(v,w) = a([v,w]) for some a € g*

we get a Poisson pencil {n'},n" := (tlcfja:k + tQijak)% A %, here aq,...,a, are coordinates of a
i J
in the dual basis e!,...,e" of g*. In the corresponding Poisson pair (1;,72) the first bivector is the

Lie-Poisson one, 7y, and the second one is 1g(a), the Lie-Poisson bivector ”frozen” at a.

Example 4: Let g : gl(n,R) and A € g. Put [x,y]a := 2Ay — yAz. It is easy to see that [,]4 is
a Lie bracket on g for any A (FErercise: check this). In particular, for a fixed A € g the bracket
L] = t1[,] + t2[,]a = [, Jy14.4 is a Lie bracket for any ¢ € R? (any family of Lie brackets linearly
spanned by two fixed brackets will be called a Lie pencil). Denote g' := (g, [,]"). The Lie-Poisson
structures 7g: form a Poisson pencil on g*.

We get a generalization of this example taking g := so(n,R) and A a symmetric n X n-matrix.

I mechanism of constructing functions in involution (the Magri—Lenard scheme): Let
(n1,m2) be a pair of Poisson structures (not necessarily compatible). Assume we can found a sequence
of functions Hy, Hy, ... € E(M) satisfying

m(Ho) = m(Hy)
m(Hy) = na(Hy)

PROPOSITION. For any indices i, j the following equality holds:
{Hi, Hj}y, = {His1, Hj—1}n,-

Proof mi(H;)Hj = no(Hiy1)Hj = —n2(Hj)Hipr = —mi(Hj_1)Hipy = mi(Hip1)Hjoy O

Now assume i < j. If j —i = 2k, we can apply the proposition k times and get {H;, H;},, =
{Hivk, Hi—r}n = {Hivw, Hivpbny = 0. I j—i = 2k + 1, we get {H;, H;}y, = {Hipw, Hj—p}y =
{Hivi, Hivis1 b = m(Hizr)Hizgrr = m2(Hiykt1)Hiywn = 0. Hence the sequence Hy, Hy,... is a
family of first integrals in involution for any of vector fields v; := n;(H;),7 = 0,1,... Note that all
these vector fields are ”bihamiltonian”, i.e. hamiltonian with respect to both the Poisson structures

i, M2-

In general it is hard to find the sequences of functions Hy, Hy,... with the required proper-
ties. However, if we assume additionally that (n;,72) is a Poisson pair, there are some cases, when
such sequences naturally appear. For instance, assume that all the bivectors n' := tn; + ton, of
the corresponding Poisson pencil are degenerate. Let n* := Any + 1o, A := t1/ts, and let f* be a
Casimir function of 7. It turns out that f* depends smoothly, let f* = fo + Afi + \2fo + ---
be the corresponding Tailor expansion. Then we deduce from the equality n*(f*) = 0 that 0 =
na(fo),m(fo) + m2(f1), m(f1) + n2(f2), ... (coefficients of different powers of \). Thus we can put
Hy := fo,H, = —f1,Hs := f5,... Note that such a Magri-Lenard chain starts from a Casimir
function of n,. If ¢* = go + Agy + - - - is another Casimir function of *, we get another sequence of
functions in involution. A question arises, is it true that {f;, g;},, = 0?7 Another important question
concerns the completeness of the obtained family of functions.

IT mechanism of constructing functions in involution (based on the Casimir functions of
a Poisson pencil): Let {n'};crz be a Poisson pencil on M. Denote by C*(M) the space of Casimir
functions of n".



PROPOSITION. Let t',t" € R? be linearly independent and let f € C*'(M),g € C*'(M). Then

{f’g}nt =0
for any t € R2.

Proof Indeed for any ¢ € R? there exist ¢, ¢’ € R such that t = ¢'t' +¢"t". Then {f, g}, =n'(f)g =
(" + ") (g = "0 (flg = =" (9)f = 0. O

It is not clear from this fact whether {f, g}, = 0if f, g are Casimir functions of the same bivector
n". We will discuss this question in the next lecture.



