
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 11

1 Right and left actions on T ∗G. Hamiltonian actions and

completely integrable systems

The cotangent lift of a vector field: Put M := T ∗Q. Let ζ ∈ Γ (TQ) be a vector field. Then it can
be interpreted as a function Hχ : T ∗Q → R, Hζ(α) := 〈α, ζ|x〉, α ∈ T ∗

xQ. Put ζt := η(−Hζ), η := ω−1,
where ω is the canonical symplectic form on T ∗Q. We say that ζt is the cotangent lift of ζ.

In the (q, p)-local coordinates on T ∗Q we have Hζ(q, p) = piζ
i(q) for ζ = ζ i(q) ∂

∂qi (because

Hζ(α) = αiζ
i(q) for α = αidqi) and ζt =

∂Hζ

∂pi

∂
∂qi − ∂Hζ

∂qi
∂
∂pi

= ζ i(q) ∂
∂qi −pj

∂ζj

∂qi
∂
∂pi

. Note that Hζ = λ(ζ),
where λ = pdq is the canonical Liouville 1-form on M .

Fact. The map ζ 7→ ζt : Γ (TQ) → Γ (TM) is a homomorphism of Lie algebras.

Proof We will prove that the map ζ 7→ −Hζ : (Γ (TQ), [, ]) → (E(M), {, }η) is a homomorphism of

Lie algebras. Indeed, {−Hζ ,−Hξ}η = −∂Hζ

∂pi

∂Hξ

∂qi +
∂Hξ

∂pi

∂Hζ

∂qi = −ζ i(q)pj
∂ξj

∂qi + ξi(q)pj
∂ζj

∂qi = −H[ζ,ξ]. ¤
Thus we get a (hamiltonian) right action ζ 7→ ζt of the Lie algebra Γ (TQ) on M .

The cotangent lift of a right action ρ : g → Γ (TQ): this is a hamiltonian action ρt : g → Γ (TM)
given by ρt(v) := (ρ(v))t. The corresponding map J : g → E(M) is given by v 7→ −Hρ(v) and
the corresponding moment map J : M → g∗ is given by 〈v, J(x)〉 = J (v)(x) = −Hρ(v)(x) =
−λ(ρ(v))(x), v ∈ g, x ∈ M .

Left and right invariant vector fields on a Lie group G: Let G be a Lie group, g = TeG its
Lie algebra. Given g ∈ G put Lg : G → G,Lgg

′ := gg′, Rg : G → G, Rgg
′ := g′g. Given v ∈ g put

vl(g) := (Lg)∗v, vr(g) := (Rg)∗v.

The vector field vl is left invariant, i.e. for any g′ ∈ G we have (Lg′)∗vl(g) = vl(g
′g). Indeed,

(Lg′)∗vl(g) = (Lg′)∗(Lg)∗v = (Lg′g)∗v = vl(g
′g). Analogously vr is right invariant.

Fact. 1. The maps v 7→ vl : g → Γ (TG), v 7→ vr : g → Γ (TG) are a homomorphism and an
antihomomorphism of Lie algebras, respectively.

2. [vl, wr] = 0 for any v, w ∈ g.
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Remark: Item 2 is an infinitesimal emanation of the fact that Lg and Rg′ commute for any g, g′ ∈ G.

Example: Let G := GL(n,R) (nondegenerate n × n-matrices with real entries) g = gl(n,R) =
TIG (all n × n-matrices with real entries). Since G is an open set in a vector space, we have
TG = G × g and any vector field is of the form X 7→ (X, V (X)) i.e. is represented by a ma-

trix valued function V (X) =




V11(X) . . . V1n(X)
. . .

Vn1(X) . . . Vnn(X)


. It is easy to see that if V ∈ g, then

Vl(X) = XV, Vr = V X. In other words, Vl = XijVjk∂ik, Vr = VijXjk∂ik. Thus we have [Vl,Wl] =
(XijVjk∂ikXi′j′Wj′k′)∂i′k′−. . . = (XijVjkδii′δkj′Wj′k′)∂i′k′−. . . = (XijVjkWkk′)∂ik′−(XijWjkVkk′)∂ik′ =
Xij[V,W ]jk′∂ik′ = [V, W ]l and [Vl,Wr] = (XijVjk∂ikWi′j′Xj′k′)∂i′k′ − (WijXjk∂ikXi′j′Vj′k′)∂i′k′ =
(XijVjkWi′j′δij′δkk′)∂i′k′ − (WijXjkδii′δkj′Vj′k′)∂i′k′ = (XijVjkWi′i)∂i′k − (WijXjkVkk′)∂ik′ = 0.

Let us define a right action ρl : v 7→ vtl : g → Γ (TT ∗G) of g on T ∗G and a left action ρr : v 7→ vtr :
g → Γ (TT ∗G) of g on T ∗G. These actions are hamiltonian, the corresponding J -maps are given
by Jl : v 7→ −Hvl

and Jr : V 7→ −Hvr and the corresponding moment maps Jl, Jr : T ∗G → g∗ are
〈Jl(x), v〉 = −Hvl

(x), 〈Jr(x), v〉 = −Hvr(x), x ∈ T ∗G, v ∈ g.

Fact. The orbits of the action ρl coincide with the fibers of the moment map Jr and vice versa.

Proof We know that the fibers of the moment map Jr are skew-orthogonal with respect to ω to the
orbits of the action ρr. Let us prove that the orbits of ρl are also skew-orthogonal to that of ρr.

Indeed, ω(η(Hvl
), η(Hvr)) = dHvl

(η(Hvr)) = η(Hvr)Hvl
= {Hvr , Hvl

}η = −H[vr,vl] = 0. ¤
Summarizing, we get the following dual pair of Poisson maps:

(T ∗G, η)
Jl

&&MMMMMMMMMM
−Jr

xxrrrrrrrrrr

(g∗, ηg) (g∗, ηg).

Complete families of functions in involution: Let (M, η) be a Poisson structure. Let Sing η
denote the union of all symplectic leaves of η of nonmaximal dimension.

We say that a set I ⊂ E(M) is a family of functions in involution if {f, g}η = 0 for any f, g ∈ I.
We say that a family I of functions in involution is complete if there exists an open dense set U ⊂ M
such that dim Span{dxf | f ∈ I} = rank ηx +(1/2) dim(M − rank ηx) for any x ∈ U \ (U ∩Sing η) (in
other words, the common level sets of functions from I form a lagrangian foliation in any symplectic
leaf of η on U \ (U ∩ Sing η)).

Example 1. Let η be nondegenerate. Then I is complete if and only if the common level sets form a
lagrangian foliation on an open dense subset in M .

Example 2. Let M be 3-dimensional and rank ηx = 2 on an open dense subset U ⊂ M . Assume f
is a Casimir function for η on U and g is any function whose differential is linearly independent of
that of f on U . Then f, g functionally generate a complete set of functions in involution.

For instance, let M = g = so(3,R) = R3, η = ηg. Then f = x2
1 + x2

2 + x2
3 and we can take any

independent g, say g = x1. The corresponding lagrangian foliation consists of the circles obtained by
the intersections of concentric spheres and parallel planes {x1 = const}. We can take U = R3 \{x2 =
0, x3 = 0}.
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Let (M, η) be a nondegenerate Poisson structure and let p′ : M → M ′, p′′ : M → M ′′ be a dual
pair of surjective Poisson maps. Put η′ := p′∗η, η′′ := p′′∗η.

(M, η)
p′′

&&LLLLLLLLLL
p′

yyssssssssss

(M ′, η′) (M ′′, η′′).

Fact. Assume I ′ ⊂ E(M ′), I ′′ ⊂ E(M ′′) are complete families of functions in involution for η′, η′′

respectively. Put ((p′)∗I ′) = {((p′)∗f) | f ∈ I ′} and ((p′′)∗I ′′) = {((p′′)∗g) | g ∈ I ′′}. Then the set
I := ((p′)∗I ′) + ((p′′)∗I ′′) ⊂ E(M) is a complete family of functions in involution for η.

Proof Let us first prove that the functions from I are in involution. Indeed, the functions form (p′)∗I ′ are in
involution because so are the functions from I ′ and the map (p′)∗ is a homomorphism of Poisson brackets.
The same argument works for (p′′)∗I ′′. Finally, any function f ′ from (p′)∗I ′ commutes with any function f ′′

from (p′′)∗I ′′ due to the skew-orthogonality of the fibers of p′ and p′′ (recall that η(f ′), η(f ′′) are tangent to
the fibers of p′′, p′, respectively): {f, g}η = η(f)g = −ω(η(f), η(g)) = 0.

Now let us prove the completeness. Let F ′,F ′′ denote the foliations of fibers of p′, p′′ respectively. Notice
that D := TF ′ + TF ′′ is an integrable generalized distribution. Indeed, let (x, y) be local coordinates on M
such that the foliation F ′ is given by {x1 = c1, . . . , x

k = ck}. Then D = 〈 ∂
∂y1 , . . . , ∂

∂yn−k , η(x1), . . . , η(xk)〉,
here n := dimM . Since η is projectable along F ′, the vector fields η(x1), . . . , η(xk) form an involutive
generalized distribution (see the Liebermann–Weinstein criterion of projectability). Since the coefficients of
these vector fields depend only on x they commute with ∂

∂y1 , . . . , ∂
∂yn−k . Obviously the generalized foliation

F tangent to D is the pull-back (with respect to p′′) of the symplectic foliation of η′′ (whose characteristic
distribution is spanned by η(x1), . . . , η(xk)). Due to the symmetry of the objects with prime and double
prime we deduce that F is also the pull-back with respect to p′ of the symplectic foliation of η′. We conclude
that corank η′p′(z) = corank η′′p′′(z) for any z ∈ M (here by definition the corank of a bivector η on a manifold
M at a point z ∈ M is the difference dimM − rank ηz).

Let U ′, U ′′ stand for the corresponding open dense sets in M ′,M ′′ appearing in the definition of the
completeness of I ′, I ′′. Put V := (p′)−1(U ′ \ (U ′ ∩ Sing η′))∩ (p′′)−1(U ′′ \ (U ′′ ∩ Sing η′′)), V ′ := p′(V ), V ′′ :=
p′′(V ). The above considerations show that and that (p′)∗Cη′(V ′) = (p′′)∗Cη′′(V ′′) =: Z (recall that Cη(U)
denotes the space of the Casimir functions of a bivector η over an open set U).

Let us choose a functional basis {f1, . . . , fs′} of I ′ such that f1|V ′ , . . . , fr′ |V ′ is a functional basis of Cη′(V ′)
and any functional basis {g1, . . . , gs′′} of I ′′. Then the functions (p′)∗fr′+1, . . . , (p′)∗fs′ , (p′′)∗g1, . . . , (p′′)∗gs′′

are functionally independent on V since

{(p′)∗f |V | f ∈ E(V ′)} ∩ {(p′)∗g|V | g ∈ E(V ′′)} = Z.

Now, we have

s′ − r′ =
1
2
rank η′p′(z) =

1
2
(dimTzF ′′ − dimTzF ′′ ∩ TzF ′),

s′′ =
1
2
rank η′′p′′(z) + corank η′′p′′(z) =

1
2
(dimTzF ′ − dimTzF ′′ ∩ TzF ′) + dimTzF ′′ ∩ TzF ′,

and, finally

s′ − r′ + s′′ =
1
2
(dimTzF ′′ + dim TzF ′) =

1
2

dimM.

Here z is any point of V . ¤
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Example: the Euler–Manakov top (n-dimensional free rigid body): Let G = SO(n,R),M =
T ∗G. Let b(v, w) be a positively defined scalar product on so(n,R)∗ ∼= so(n,R) =: g. Then there
exists an operator A : so(n,R) → so(n,R), which is symmetric with respect to the standard scalar
product (v, w) := −Tr(vw), i.e. (Av, w) = (v,Aw), such that b(v, w) = (Av,w), v, w ∈ g. Let
bl : T ∗Q× T ∗Q → R denote the left invariant extension of the scalar product b to a (contravariant)
metric on Q and let B : T ∗Q → R denote the corresponding quadratic form.

The Euler–Manakov top is the hamiltonian system with the hamiltonian function H := B : M →
R in case when the operator A is given by A := L−1, Lv := Dv + vD, where D := diag(λ1, . . . , λn),
a diagonal matrix with the eigenvalues λ1, . . . , λn. The eigenvalues λi coincide with the ”moments
of inertia”

∫
V

x2
i σ(x)dx, where V is the region in Rn occupied by the body and σ(x) is the density

function.
Consider the classical Euler case, n = 3. The hamiltonian function is left invariant. This means

that it belongs to the family (p′)∗I ′ in the notations of the fact above, where p′ = −Jr. Consider
the set I ′′ functionally generated by the Casimir function f on so∗(3,R) and any other independent
function g. The functions H, (p′′)∗f, (p′′)∗g, where p′′ := Jl are independent first integrals in involu-
tion. Thus we have proven the complete integrability of the Euler top (because the dimension of the
phase space M is 6).

In the general case (n > 3) we need more functions in involution for integrating the system.
In the next sections we will construct complete families of functions in involution on g∗ for any
semisimple g (these families will play a role of I ′′). We will also construct complete families of
functions in involution on so(n,R)∗ playing the role of I ′ and containing the reduced hamiltonian
b(v, v) = −Tr((Av)v) =

∑
i<j(λi + λj)

−1v2
ij.
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