Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 11

1 Right and left actions on 7*G. Hamiltonian actions and
completely integrable systems

The cotangent lift of a vector field: Put M :=T*Q. Let ( € I'(T'Q) be a vector field. Then it can
be interpreted as a function H, : T*Q — R, H¢(a) := (o, (|,),a € Q. Put (% :=n(—H¢),n == w1,
where w is the canonical symplectic form on T*Q. We say that (" is the cotangent lift of .

In the (g,p)-local coordinates on T*Q we have Hc(q,p) = pi('(q) for ¢ = ('(q) ng' (because
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H<<a) = Oéic (q) for o = Oéqu ) and CI—’ = Bpfg_q’_wfaa_pl = C (q>ng _pﬂg_;g_m Note that HC = /\(C),

where A = pdq is the canonical Liouville 1-form on M.

Fact. The map ( — (- : ['(TQ) — ['(TM) is a homomorphism of Lie algebras.

Proof We will prove that the map ¢ — —H, : (I'(TQ), [,]) — (£(M),{, },,) is a homomorphism of
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Lie algebras. Indeed, {—H¢, —H¢}, = _W@f aqf + Wf 8qf = —C"(q)p; gﬁi +¢£ (Q)pjg—ii = —Hig. O

Thus we get a (hamiltonian) right action ¢ — (" of the Lie algebra I'(TQ) on M.

The cotangent lift of a right action p : g — I'(T'Q): this is a hamiltonian action p“ : g — I'(T' M)
given by p”(v) := (p(v))”. The corresponding map J : g — E(M) is given by v — —H,) and
the corresponding moment map J : M — g* is given by (v,J(z)) = J(v)(z) = —Hpw(x) =
—Ap(v))(z),v € g,x € M.

Left and right invariant vector fields on a Lie group G: Let G be a Lie group, g = T.G its
Lie algebra. Given g € G put Ly : G — G, Lyg' := g9, R, : G — G, Ryg’' := ¢'g. Given v € g put

u(g) = (Ly).v, () == (Ry).v.

The vector field v; is left invariant, i.e. for any ¢’ € G we have (Ly).v(g9) = v(g'g). Indeed,
(Lg)svi(g) = (Ly)«(Lg)sv = (Lgg)sv = v1(¢’g). Analogously v, is right invariant.

FACT. 1. The maps v — v : g — I'(TG),v — v, : g — ['(TG) are a homomorphism and an
antthomomorphism of Lie algebras, respectively.

2. lu,w,] =0 for any v,w € g.



Remark: Item 2 is an infinitesimal emanation of the fact that L, and R, commute for any g,¢ € G.

Example: Let G := GL(n,R) (nondegenerate n x n-matrices with real entries) g = gl(n,R) =
T;G (all n x n-matrices with real entries). Since G is an open set in a vector space, we have
TG = G x g and any vector field is of the form X — (X, V(X)) i.e. is represented by a ma-

trix valued function V(X) = . It is easy to see that if V' € g, then
Vi (X) o0 V(X))

Vi(X) = XV,V, = VX. In other words, V; = X;;Vix0u,, V; = V;;X;10. Thus we have [V}, W] =

(Xij‘/jkaikXi/j’M/}/k’)ai’k’_- = (Xijv}'k(sii/ékj’m/k’>ai’k’_- - = (XijijWkk/)aik'—(Xijokak/)aik/ =

XV, WOy = [V.W] and [Vi, W,] = (XyVj0uWijy Xjuw ) O — (Wig X0 Xirjp Virre ) Oy =
(X3 VieWir 0045 0ier ) Oirir — (Wi X0 Ok Vi ) Oy = (X VieWiri) Oire — (Wi Xk Views ) Oir = 0.

Let us define a right action p; : v— v : g — ['(TT*G) of g on T*G and a left action p, : v +— v, :
g — ['(TT*G) of g on T*G. These actions are hamiltonian, the corresponding [J-maps are given
by J :v+— —H, and J, : V — —H,, and the corresponding moment maps J;, J, : T*G — g* are
(Ji(x),v) = —H,, (z),(J(x),v) = —H, (z),z € T*G,v € g.

FAacT. The orbits of the action p; coincide with the fibers of the moment map J, and vice versa.

Proof We know that the fibers of the moment map J,. are skew-orthogonal with respect to w to the

orbits of the action p,. Let us prove that the orbits of p; are also skew-orthogonal to that of p,.
Indeed, w(n(H,,),n(H,)) = dH,, (n(Hy,)) = n(Hy,)Hy, = {H,,, Hy }y = —Hjp, 5 = 0. O
Summarizing, we get the following dual pair of Poisson maps:

(TG, n)
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(8", 1) (g%, mg)-

Complete families of functions in involution: Let (M,n) be a Poisson structure. Let Singn
denote the union of all symplectic leaves of 1 of nonmaximal dimension.

We say that a set [ C £(M) is a family of functions in involution if {f, g}, = 0 for any f,g € I.
We say that a family I of functions in involution is complete if there exists an open dense set U C M
such that dim Span{d. f | f € I} = rankn, + (1/2) dim(M —rankn,) for any = € U\ (UNSingn) (in
other words, the common level sets of functions from [ form a lagrangian foliation in any symplectic
leaf of n on U \ (U N Singn)).

Example 1. Let n be nondegenerate. Then [ is complete if and only if the common level sets form a
lagrangian foliation on an open dense subset in M.

Example 2. Let M be 3-dimensional and rankn, = 2 on an open dense subset U C M. Assume f
is a Casimir function for 7 on U and ¢ is any function whose differential is linearly independent of
that of f on U. Then f, g functionally generate a complete set of functions in involution.

For instance, let M = g = s0(3,R) = R* 5 = n,. Then f = 2% + 23 + 23 and we can take any
independent g, say g = x1. The corresponding lagrangian foliation consists of the circles obtained by
the intersections of concentric spheres and parallel planes {x; = const}. We can take U = R3\ {zy =
0, T3 = O}



Let (M,n) be a nondegenerate Poisson structure and let p' : M — M’ p” : M — M" be a dual
pair of surjective Poisson maps. Put o' := p,n,n" := p/n.

(M, m)

% 4

(M/’n/) (M/I’n//)‘

Fact. Assume I' C E(M'), 1" C E(M") are complete families of functions in involution for n',n"

respectively. Put (p)*I") = {((p")*f) | f € I'} and ((p")*I") = {((p")*g) | g € I"}. Then the set
I:=((p)I)+ ((p)1") C E(M) is a complete family of functions in involution for n.

Proof Let us first prove that the functions from I are in involution. Indeed, the functions form (p’)*I’ are in
involution because so are the functions from I’ and the map (p')* is a homomorphism of Poisson brackets.
The same argument works for (p”)*I”. Finally, any function f’ from (p’)*I’ commutes with any function f”
from (p”)*I"” due to the skew-orthogonality of the fibers of p’ and p” (recall that n(f’),n(f") are tangent to
the fibers of p”, p/, respectively): {f, g}y = n(f)g = —w(n(f),n(g)) =0.

Now let us prove the completeness. Let ', F” denote the foliations of fibers of p/, p” respectively. Notice
that D := TF' +TF" is an integrable generalized distribution. Indeed, let (z,y) be local coordinates on M
such that the foliation F' is given by {z' = ¢1,...,2"¥ = ¢;}. Then D = (8871, e ﬁ,n(xl), Coon(@h)),
here n := dim M. Since 7 is projectable along F’, the vector fields n(z'),...,n(z*) form an involutive
generalized distribution (see the Liebermann—Weinstein criterion of projectability). Since the coefficients of
these vector fields depend only on z they commute with ;—yu ceey ﬁ. Obviously the generalized foliation
F tangent to D is the pull-back (with respect to p”) of the symplectic foliation of " (whose characteristic
distribution is spanned by n(z!),...,n(2*)). Due to the symmetry of the objects with prime and double
prime we deduce that F is also the pull-back with respect to p’ of the symplectic foliation of . We conclude
that corank 7]; '(2) = corank 77]’3’,,(2) for any z € M (here by definition the corank of a bivector 7 on a manifold
M at a point z € M is the difference dim M — rankn,).

Let U’,U" stand for the corresponding open dense sets in M’, M" appearing in the definition of the
completeness of I’ I”. Put V := (p/) (U’ \ (U' N Singn’)) N (p”)~1(U"\ (U" N Singn")), V' := p/(V), V" :=
p"(V). The above considerations show that and that (p')*C,/ (V') = (p")*C,(V") =: Z (recall that C,(U)
denotes the space of the Casimir functions of a bivector 1 over an open set U).

Let us choose a functional basis { f1, ..., f¢} of I' such that fi|y,..., fi|y is a functional basis of C,/ (V")
and any functional basis {g1,...,gs } of I”. Then the functions (p/)* frri1,..., () for, @) g1, .., (D) gs»
are functionally independent on V since

{@) flv|fe&V)In{@)glv]gecV")} =2

Now, we have

1 1, .. .
s—r = irankn;,(z) = §(d1mTZ}'” —dim T, F"'NT,F),
1 1, .. . .
s = §rank 771,9/”(2) + corank 77;/,,(2) = i(dlm T.F —dimT,F' NT,F) +dimT,F" NT,F,

and, finally
1 1
s—r'+s = 5(ohm T.F" +dimT,F') = 3 dim M.

Here z is any point of V. [J



Example: the Euler-Manakov top (n-dimensional free rigid body): Let G = SO(n,R), M =
T*G. Let b(v,w) be a positively defined scalar product on so(n,R)* = so(n,R) =: g. Then there
exists an operator A : s0(n,R) — so(n,R), which is symmetric with respect to the standard scalar
product (v,w) := —Tr(vw), i.e. (Av,w) = (v, Aw), such that b(v,w) = (Av,w),v,w € g. Let
by : T*Q x T*@Q — R denote the left invariant extension of the scalar product b to a (contravariant)
metric on ) and let B : T*(Q) — R denote the corresponding quadratic form.

The Euler-Manakov top is the hamiltonian system with the hamiltonian function H := B : M —
R in case when the operator A is given by A := L™! Lv := Dv +vD, where D := diag(\y, ..., \,),
a diagonal matrix with the eigenvalues A, ..., \,. The eigenvalues \; coincide with the "moments
of inertia” [, 270 (x)dx, where V is the region in R™ occupied by the body and o(z) is the density
function.

Consider the classical Euler case, n = 3. The hamiltonian function is left invariant. This means
that it belongs to the family (p’)*I’ in the notations of the fact above, where p’ = —J,. Consider
the set I” functionally generated by the Casimir function f on s0*(3,R) and any other independent
function g. The functions H, (p”)* f, (p")*g, where p” := J; are independent first integrals in involu-
tion. Thus we have proven the complete integrability of the Euler top (because the dimension of the
phase space M is 6).

In the general case (n > 3) we need more functions in involution for integrating the system.
In the next sections we will construct complete families of functions in involution on g* for any
semisimple g (these families will play a role of I”). We will also construct complete families of
functions in involution on so(n,R)* playing the role of I’ and containing the reduced hamiltonian

b(v,v) = = Tr((Av)v) = 37, (A + Aj) 1),



