Algebraic and geometric aspects of modern theory of integrable systems

Lecture 11

1 Right and left actions on $T^{*} G$. Hamiltonian actions and completely integrable systems

The cotangent lift of a vector field: Put $M:=T^{*} Q$. Let $\zeta \in \Gamma(T Q)$ be a vector field. Then it can be interpreted as a function $H_{\chi}: T^{*} Q \rightarrow \mathbb{R}, H_{\zeta}(\alpha):=\left\langle\alpha,\left.\zeta\right|_{x}\right\rangle, \alpha \in T_{x}^{*} Q$. Put $\zeta^{\sqcup}:=\eta\left(-H_{\zeta}\right), \eta:=\omega^{-1}$, where ω is the canonical symplectic form on $T^{*} Q$. We say that ζ^{\amalg} is the cotangent lift of ζ.

In the (q, p)-local coordinates on $T^{*} Q$ we have $H_{\zeta}(q, p)=p_{i} \zeta^{i}(q)$ for $\zeta=\zeta^{i}(q) \frac{\partial}{\partial q^{i}}$ (because $H_{\zeta}(\alpha)=\alpha_{i} \zeta^{i}(q)$ for $\left.\alpha=\alpha_{i} d q^{i}\right)$ and $\zeta^{\sqcup}=\frac{\partial H_{\zeta}}{\partial p_{i}} \frac{\partial}{\partial q^{i}}-\frac{\partial H_{\zeta}}{\partial q^{i}} \frac{\partial}{\partial p_{i}}=\zeta^{i}(q) \frac{\partial}{\partial q^{i}}-p_{j} \frac{\partial \zeta^{j}}{\partial q^{i}} \frac{\partial}{\partial p_{i}}$. Note that $H_{\zeta}=\lambda(\zeta)$, where $\lambda=p d q$ is the canonical Liouville 1 -form on M.

FACT. The map $\zeta \mapsto \zeta^{\sqcup}: \Gamma(T Q) \rightarrow \Gamma(T M)$ is a homomorphism of Lie algebras.
Proof We will prove that the map $\zeta \mapsto-H_{\zeta}:(\Gamma(T Q),[],) \rightarrow\left(\mathcal{E}(M),\{,\}_{\eta}\right)$ is a homomorphism of Lie algebras. Indeed, $\left\{-H_{\zeta},-H_{\xi}\right\}_{\eta}=-\frac{\partial H_{\zeta}}{\partial p_{i}} \frac{\partial H_{\xi}}{\partial q^{i}}+\frac{\partial H_{\xi}}{\partial p_{i}} \frac{\partial H_{\zeta}}{\partial q^{i}}=-\zeta^{i}(q) p_{j} \frac{\partial \xi^{j}}{\partial q^{i}}+\xi^{i}(q) p_{j} \frac{\partial \zeta^{j}}{\partial q^{i}}=-H_{[\zeta, \xi]}$.

Thus we get a (hamiltonian) right action $\zeta \mapsto \zeta$ of the Lie algebra $\Gamma(T Q)$ on M.
The cotangent lift of a right action $\rho: \mathfrak{g} \rightarrow \Gamma(T Q)$: this is a hamiltonian action $\rho^{\sqcup}: \mathfrak{g} \rightarrow \Gamma(T M)$ given by $\rho^{\sqcup}(v):=(\rho(v))^{\sqcup}$. The corresponding map $\mathcal{J}: \mathfrak{g} \rightarrow \mathcal{E}(M)$ is given by $v \mapsto-H_{\rho(v)}$ and the corresponding moment map $J: M \rightarrow \mathfrak{g}^{*}$ is given by $\langle v, J(x)\rangle=\mathcal{J}(v)(x)=-H_{\rho(v)}(x)=$ $-\lambda(\rho(v))(x), v \in \mathfrak{g}, x \in M$.
Left and right invariant vector fields on a Lie group G : Let G be a Lie group, $\mathfrak{g}=T_{e} G$ its Lie algebra. Given $g \in G$ put $L_{g}: G \rightarrow G, L_{g} g^{\prime}:=g g^{\prime}, R_{g}: G \rightarrow G, R_{g} g^{\prime}:=g^{\prime} g$. Given $v \in \mathfrak{g}$ put

$$
v_{l}(g):=\left(L_{g}\right)_{*} v, v_{r}(g):=\left(R_{g}\right)_{*} v .
$$

The vector field v_{l} is left invariant, i.e. for any $g^{\prime} \in G$ we have $\left(L_{g^{\prime}}\right)_{*} v_{l}(g)=v_{l}\left(g^{\prime} g\right)$. Indeed, $\left(L_{g^{\prime}}\right)_{*} v_{l}(g)=\left(L_{g^{\prime}}\right)_{*}\left(L_{g}\right)_{*} v=\left(L_{g^{\prime} g}\right)_{*} v=v_{l}\left(g^{\prime} g\right)$. Analogously v_{r} is right invariant.

FACT. 1. The maps $v \mapsto v_{l}: \mathfrak{g} \rightarrow \Gamma(T G), v \mapsto v_{r}: \mathfrak{g} \rightarrow \Gamma(T G)$ are a homomorphism and an antihomomorphism of Lie algebras, respectively.
2. $\left[v_{l}, w_{r}\right]=0$ for any $v, w \in \mathfrak{g}$.

Remark: Item 2 is an infinitesimal emanation of the fact that L_{g} and $R_{g^{\prime}}$ commute for any $g, g^{\prime} \in G$.
Example: Let $G:=G L(n, \mathbb{R})$ (nondegenerate $n \times n$-matrices with real entries) $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=$ $T_{I} G$ (all $n \times n$-matrices with real entries). Since G is an open set in a vector space, we have $T G=G \times \mathfrak{g}$ and any vector field is of the form $X \mapsto(X, V(X))$ i.e. is represented by a matrix valued function $V(X)=\left[\begin{array}{ccc}V_{11}(X) & \ldots & V_{1 n}(X) \\ & \ldots & \\ V_{n 1}(X) & \ldots & V_{n n}(X)\end{array}\right]$. It is easy to see that if $V \in \mathfrak{g}$, then $V_{l}(X)=X V, V_{r}=V X$. In other words, $V_{l}=X_{i j} V_{j k} \partial_{i k}, V_{r}=V_{i j} X_{j k} \partial_{i k}$. Thus we have $\left[V_{l}, W_{l}\right]=$ $\left(X_{i j} V_{j k} \partial_{i k} X_{i^{\prime} j^{\prime}} W_{j^{\prime} k^{\prime}}\right) \partial_{i^{\prime} k^{\prime}}-\ldots=\left(X_{i j} V_{j k} \delta_{i i^{\prime}} \delta_{k j^{\prime}} W_{j^{\prime} k^{\prime}}\right) \partial_{i^{\prime} k^{\prime}}-\ldots=\left(X_{i j} V_{j k} W_{k k^{\prime}}\right) \partial_{i k^{\prime}}-\left(X_{i j} W_{j k} V_{k k^{\prime}}\right) \partial_{i k^{\prime}}=$ $X_{i j}[V, W]_{j k^{\prime}} \partial_{i k^{\prime}}=[V, W]_{l}$ and $\left[V_{l}, W_{r}\right]=\left(X_{i j} V_{j k} \partial_{i k} W_{i^{\prime} j^{\prime}} X_{j^{\prime} k^{\prime}}\right) \partial_{i^{\prime} k^{\prime}}-\left(W_{i j} X_{j k} \partial_{i k} X_{i^{\prime} j^{\prime}} V_{j^{\prime} k^{\prime}}\right) \partial_{i^{\prime} k^{\prime}}=$ $\left(X_{i j} V_{j k} W_{i^{\prime} j^{\prime}} \delta_{i j^{\prime}} \delta_{k k^{\prime}}\right) \partial_{i^{\prime} k^{\prime}}-\left(W_{i j} X_{j k} \delta_{i i^{\prime}} \delta_{k j^{\prime}} V_{j^{\prime} k^{\prime}}\right) \partial_{i^{\prime} k^{\prime}}=\left(X_{i j} V_{j k} W_{i^{\prime} i}\right) \partial_{i^{\prime} k}-\left(W_{i j} X_{j k} V_{k k^{\prime}}\right) \partial_{i k^{\prime}}=0$.
Let us define a right action $\rho_{l}: v \mapsto v_{l}^{\sqcup}: \mathfrak{g} \rightarrow \Gamma\left(T T^{*} G\right)$ of \mathfrak{g} on $T^{*} G$ and a left action $\rho_{r}: v \mapsto v_{r}^{\sqcup}$: $\mathfrak{g} \rightarrow \Gamma\left(T T^{*} G\right)$ of \mathfrak{g} on $T^{*} G$. These actions are hamiltonian, the corresponding \mathcal{J}-maps are given by $\mathcal{J}_{l}: v \mapsto-H_{v_{l}}$ and $\mathcal{J}_{r}: V \mapsto-H_{v_{r}}$ and the corresponding moment maps $J_{l}, J_{r}: T^{*} G \rightarrow \mathfrak{g}^{*}$ are $\left\langle J_{l}(x), v\right\rangle=-H_{v_{l}}(x),\left\langle J_{r}(x), v\right\rangle=-H_{v_{r}}(x), x \in T^{*} G, v \in \mathfrak{g}$.

FACT. The orbits of the action ρ_{l} coincide with the fibers of the moment map J_{r} and vice versa.
Proof We know that the fibers of the moment map J_{r} are skew-orthogonal with respect to ω to the orbits of the action ρ_{r}. Let us prove that the orbits of ρ_{l} are also skew-orthogonal to that of ρ_{r}.

Indeed, $\omega\left(\eta\left(H_{v_{l}}\right), \eta\left(H_{v_{r}}\right)\right)=d H_{v_{l}}\left(\eta\left(H_{v_{r}}\right)\right)=\eta\left(H_{v_{r}}\right) H_{v_{l}}=\left\{H_{v_{r}}, H_{v_{l}}\right\}_{\eta}=-H_{\left[v_{r}, v_{l}\right]}=0$.
Summarizing, we get the following dual pair of Poisson maps:

Complete families of functions in involution: Let (M, η) be a Poisson structure. Let $\operatorname{Sing} \eta$ denote the union of all symplectic leaves of η of nonmaximal dimension.

We say that a set $I \subset \mathcal{E}(M)$ is a family of functions in involution if $\{f, g\}_{\eta}=0$ for any $f, g \in I$. We say that a family I of functions in involution is complete if there exists an open dense set $U \subset M$ such that $\operatorname{dim} \operatorname{Span}\left\{d_{x} f \mid f \in I\right\}=\operatorname{rank} \eta_{x}+(1 / 2) \operatorname{dim}\left(M-\operatorname{rank} \eta_{x}\right)$ for any $x \in U \backslash(U \cap \operatorname{Sing} \eta)$ (in other words, the common level sets of functions from I form a lagrangian foliation in any symplectic leaf of η on $U \backslash(U \cap \operatorname{Sing} \eta))$.

Example 1. Let η be nondegenerate. Then I is complete if and only if the common level sets form a lagrangian foliation on an open dense subset in M.

Example 2. Let M be 3-dimensional and rank $\eta_{x}=2$ on an open dense subset $U \subset M$. Assume f is a Casimir function for η on U and g is any function whose differential is linearly independent of that of f on U. Then f, g functionally generate a complete set of functions in involution.

For instance, let $M=\mathfrak{g}=\mathfrak{s o}(3, \mathbb{R})=\mathbb{R}^{3}, \eta=\eta_{\mathfrak{g}}$. Then $f=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ and we can take any independent g, say $g=x_{1}$. The corresponding lagrangian foliation consists of the circles obtained by the intersections of concentric spheres and parallel planes $\left\{x_{1}=\right.$ const $\}$. We can take $U=\mathbb{R}^{3} \backslash\left\{x_{2}=\right.$ $\left.0, x_{3}=0\right\}$.

Let (M, η) be a nondegenerate Poisson structure and let $p^{\prime}: M \rightarrow M^{\prime}, p^{\prime \prime}: M \rightarrow M^{\prime \prime}$ be a dual pair of surjective Poisson maps. Put $\eta^{\prime}:=p_{*}^{\prime} \eta, \eta^{\prime \prime}:=p_{*}^{\prime \prime} \eta$.

Fact. Assume $I^{\prime} \subset \mathcal{E}\left(M^{\prime}\right), I^{\prime \prime} \subset \mathcal{E}\left(M^{\prime \prime}\right)$ are complete families of functions in involution for $\eta^{\prime}, \eta^{\prime \prime}$ respectively. Put $\left(\left(p^{\prime}\right)^{*} I^{\prime}\right)=\left\{\left(\left(p^{\prime}\right)^{*} f\right) \mid f \in I^{\prime}\right\}$ and $\left(\left(p^{\prime \prime}\right)^{*} I^{\prime \prime}\right)=\left\{\left(\left(p^{\prime \prime}\right)^{*} g\right) \mid g \in I^{\prime \prime}\right\}$. Then the set $I:=\left(\left(p^{\prime}\right)^{*} I^{\prime}\right)+\left(\left(p^{\prime \prime}\right)^{*} I^{\prime \prime}\right) \subset \mathcal{E}(M)$ is a complete family of functions in involution for η.

Proof Let us first prove that the functions from I are in involution. Indeed, the functions form $\left(p^{\prime}\right)^{*} I^{\prime}$ are in involution because so are the functions from I^{\prime} and the map $\left(p^{\prime}\right)^{*}$ is a homomorphism of Poisson brackets. The same argument works for $\left(p^{\prime \prime}\right)^{*} I^{\prime \prime}$. Finally, any function f^{\prime} from $\left(p^{\prime}\right)^{*} I^{\prime}$ commutes with any function $f^{\prime \prime}$ from $\left(p^{\prime \prime}\right)^{*} I^{\prime \prime}$ due to the skew-orthogonality of the fibers of p^{\prime} and $p^{\prime \prime}$ (recall that $\eta\left(f^{\prime}\right), \eta\left(f^{\prime \prime}\right)$ are tangent to the fibers of $p^{\prime \prime}, p^{\prime}$, respectively): $\{f, g\}_{\eta}=\eta(f) g=-\omega(\eta(f), \eta(g))=0$.

Now let us prove the completeness. Let $\mathcal{F}^{\prime}, \mathcal{F}^{\prime \prime}$ denote the foliations of fibers of $p^{\prime}, p^{\prime \prime}$ respectively. Notice that $D:=T \mathcal{F}^{\prime}+T \mathcal{F}^{\prime \prime}$ is an integrable generalized distribution. Indeed, let (x, y) be local coordinates on M such that the foliation \mathcal{F}^{\prime} is given by $\left\{x^{1}=c_{1}, \ldots, x^{k}=c_{k}\right\}$. Then $D=\left\langle\frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{n-k}}, \eta\left(x^{1}\right), \ldots, \eta\left(x^{k}\right)\right\rangle$, here $n:=\operatorname{dim} M$. Since η is projectable along \mathcal{F}^{\prime}, the vector fields $\eta\left(x^{1}\right), \ldots, \eta\left(x^{k}\right)$ form an involutive generalized distribution (see the Liebermann-Weinstein criterion of projectability). Since the coefficients of these vector fields depend only on x they commute with $\frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{n-k}}$. Obviously the generalized foliation \mathcal{F} tangent to D is the pull-back (with respect to $p^{\prime \prime}$) of the symplectic foliation of $\eta^{\prime \prime}$ (whose characteristic distribution is spanned by $\left.\eta\left(x^{1}\right), \ldots, \eta\left(x^{k}\right)\right)$. Due to the symmetry of the objects with prime and double prime we deduce that \mathcal{F} is also the pull-back with respect to p^{\prime} of the symplectic foliation of η^{\prime}. We conclude that corank $\eta_{p^{\prime}(z)}^{\prime}=\operatorname{corank} \eta_{p^{\prime \prime}(z)}^{\prime \prime}$ for any $z \in M$ (here by definition the corank of a bivector η on a manifold M at a point $z \in M$ is the difference $\operatorname{dim} M-\operatorname{rank} \eta_{z}$).

Let $U^{\prime}, U^{\prime \prime}$ stand for the corresponding open dense sets in $M^{\prime}, M^{\prime \prime}$ appearing in the definition of the completeness of $I^{\prime}, I^{\prime \prime}$. Put $V:=\left(p^{\prime}\right)^{-1}\left(U^{\prime} \backslash\left(U^{\prime} \cap\right.\right.$ Sing $\left.\left.\eta^{\prime}\right)\right) \cap\left(p^{\prime \prime}\right)^{-1}\left(U^{\prime \prime} \backslash\left(U^{\prime \prime} \cap \operatorname{Sing} \eta^{\prime \prime}\right)\right), V^{\prime}:=p^{\prime}(V), V^{\prime \prime}:=$ $p^{\prime \prime}(V)$. The above considerations show that and that $\left(p^{\prime}\right)^{*} \mathcal{C}_{\eta^{\prime}}\left(V^{\prime}\right)=\left(p^{\prime \prime}\right)^{*} \mathcal{C}_{\eta^{\prime \prime}}\left(V^{\prime \prime}\right)=: Z$ (recall that $\mathcal{C}_{\eta}(U)$ denotes the space of the Casimir functions of a bivector η over an open set U).

Let us choose a functional basis $\left\{f_{1}, \ldots, f_{s^{\prime}}\right\}$ of I^{\prime} such that $\left.f_{1}\right|_{V^{\prime}}, \ldots,\left.f_{r^{\prime}}\right|_{V^{\prime}}$ is a functional basis of $\mathcal{C}_{\eta^{\prime}}\left(V^{\prime}\right)$ and any functional basis $\left\{g_{1}, \ldots, g_{s^{\prime \prime}}\right\}$ of $I^{\prime \prime}$. Then the functions $\left(p^{\prime}\right)^{*} f_{r^{\prime}+1}, \ldots,\left(p^{\prime}\right)^{*} f_{s^{\prime}},\left(p^{\prime \prime}\right)^{*} g_{1}, \ldots,\left(p^{\prime \prime}\right)^{*} g_{s^{\prime \prime}}$ are functionally independent on V since

$$
\left\{\left.\left(p^{\prime}\right)^{*} f\right|_{V} \mid f \in \mathcal{E}\left(V^{\prime}\right)\right\} \cap\left\{\left.\left(p^{\prime}\right)^{*} g\right|_{V} \mid g \in \mathcal{E}\left(V^{\prime \prime}\right)\right\}=Z
$$

Now, we have

$$
\begin{aligned}
s^{\prime}-r^{\prime} & =\frac{1}{2} \operatorname{rank} \eta_{p^{\prime}(z)}^{\prime}=\frac{1}{2}\left(\operatorname{dim} T_{z} \mathcal{F}^{\prime \prime}-\operatorname{dim} T_{z} \mathcal{F}^{\prime \prime} \cap T_{z} \mathcal{F}^{\prime}\right), \\
s^{\prime \prime} & =\frac{1}{2} \operatorname{rank} \eta_{p^{\prime \prime}(z)}^{\prime \prime}+\operatorname{corank} \eta_{p^{\prime \prime}(z)}^{\prime \prime}=\frac{1}{2}\left(\operatorname{dim} T_{z} \mathcal{F}^{\prime}-\operatorname{dim} T_{z} \mathcal{F}^{\prime \prime} \cap T_{z} \mathcal{F}^{\prime}\right)+\operatorname{dim} T_{z} \mathcal{F}^{\prime \prime} \cap T_{z} \mathcal{F}^{\prime},
\end{aligned}
$$

and, finally

$$
s^{\prime}-r^{\prime}+s^{\prime \prime}=\frac{1}{2}\left(\operatorname{dim} T_{z} \mathcal{F}^{\prime \prime}+\operatorname{dim} T_{z} \mathcal{F}^{\prime}\right)=\frac{1}{2} \operatorname{dim} M .
$$

Here z is any point of V.

Example: the Euler-Manakov top (n-dimensional free rigid body): Let $G=S O(n, \mathbb{R}), M=$ $T^{*} G$. Let $b(v, w)$ be a positively defined scalar product on $\mathfrak{s o}(n, \mathbb{R})^{*} \cong \mathfrak{s o}(n, \mathbb{R})=: \mathfrak{g}$. Then there exists an operator $A: \mathfrak{s o}(n, \mathbb{R}) \rightarrow \mathfrak{s o}(n, \mathbb{R})$, which is symmetric with respect to the standard scalar product $(v, w):=-\operatorname{Tr}(v w)$, i.e. $(A v, w)=(v, A w)$, such that $b(v, w)=(A v, w), v, w \in \mathfrak{g}$. Let $b_{l}: T^{*} Q \times T^{*} Q \rightarrow \mathbb{R}$ denote the left invariant extension of the scalar product b to a (contravariant) metric on Q and let $B: T^{*} Q \rightarrow \mathbb{R}$ denote the corresponding quadratic form.

The Euler-Manakov top is the hamiltonian system with the hamiltonian function $H:=B: M \rightarrow$ \mathbb{R} in case when the operator A is given by $A:=L^{-1}, L v:=D v+v D$, where $D:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, a diagonal matrix with the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. The eigenvalues λ_{i} coincide with the "moments of inertia" $\int_{V} x_{i}^{2} \sigma(x) d x$, where V is the region in \mathbb{R}^{n} occupied by the body and $\sigma(x)$ is the density function.

Consider the classical Euler case, $n=3$. The hamiltonian function is left invariant. This means that it belongs to the family $\left(p^{\prime}\right)^{*} I^{\prime}$ in the notations of the fact above, where $p^{\prime}=-J_{r}$. Consider the set $I^{\prime \prime}$ functionally generated by the Casimir function f on $\mathfrak{s o}^{*}(3, \mathbb{R})$ and any other independent function g. The functions $H,\left(p^{\prime \prime}\right)^{*} f,\left(p^{\prime \prime}\right)^{*} g$, where $p^{\prime \prime}:=J_{l}$ are independent first integrals in involution. Thus we have proven the complete integrability of the Euler top (because the dimension of the phase space M is 6).

In the general case $(n>3)$ we need more functions in involution for integrating the system. In the next sections we will construct complete families of functions in involution on \mathfrak{g}^{*} for any semisimple \mathfrak{g} (these families will play a role of $I^{\prime \prime}$). We will also construct complete families of functions in involution on $\mathfrak{s o}(n, \mathbb{R})^{*}$ playing the role of I^{\prime} and containing the reduced hamiltonian $b(v, v)=-\operatorname{Tr}((A v) v)=\sum_{i<j}\left(\lambda_{i}+\lambda_{j}\right)^{-1} v_{i j}^{2}$.

