
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 10

1 Hamiltonian actions and moment maps

A symplectic action of a Lie algebra g on (M,ω): An action ρ : g → Γ (TM) such that
Lρ(v)ω = 0 for any v ∈ g. Here L is the Lie derivative, the Cartan formula for it gives:

Lρ(v)ω = iρ(v)dω + diρ(v)ω = diρ(v)ω.

A weakly hamiltonian action of a Lie algebra g on (M, ω): An action ρ : g → Γ (TM) such
that there exists a linear map J : g → E(M) and the following diagram is commutative:

g
J //

ρ

##HHHHHHHHHH E(M)

η(·)
²²

Γ (TM) ,

i.e. ρ(v) = η(J (v)) for any v ∈ g.

Remark If J is finite-dimensional, we can weaken the requirement: the map J a priori need not
be linear (i.e. we only require that any vector field ρ(v) is hamiltonian). If J is any map with the
property ρ(·) = η(J (·)), we can make it linear: let e1, . . . , ek be a basis of g, put J ′(ei) := J (ei), i =
1, . . . , k, and extend this by linearity. The new map J ′ satisfies ρ(v) = η(J ′(v)) and is linear.

Any weakly hamiltonian action is symplectic: diη(f)
ω = ddf = 0. Conversely, any symplectic

action is locally weakly hamiltonian: diρ(v)ω = 0 implies by the Poincaré lemma that iρ(v)ω = df for
some function f , hence ρ(v) = η(f).

A moment map of a weakly hamiltonian action ρ : g → Γ (TM): the map J : M → g∗ ”dual
to J ”, i.e.

J (v)(x) = 〈v, J(x)〉, x ∈ M, v ∈ g.

Let J ′ : g → E(M) be another map with the property ρ(v) = η(J ′(v)). Then η((J ′−J )(v)) = 0,
hence C := J ′−J takes values in the space of Casimir functions of η (equal to R if M is connected,
which is assumed) and J ′ = J + C, where C : g → R is a linear map. The corresponding moment
map J ′ : M → g is given by

〈v, J ′(x)〉 = J ′(v)(x) = J (v)(x) + C(v),

i.e. differs from J by a constant addend C ∈ g∗.
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Remark: The map J determines the moment map J by the formula above uniquely, but the converse
also is true. Thus any smooth map J : M → g∗ generates a weakly hamiltonian action of g on M
such that one of its moment maps coincide with J .

A hamiltonian action of a Lie algebra g on (M, ω): A weakly hamiltonian action ρ : g → Γ (TM)
such that among linear maps J : g → E(M) with the property ρ(·) = η(J (·)) there exists a
homomorphism of Lie algebras (g, [, ]) and (E(M), {, }η).

Remark Note that for any other map J ′ = J +C with ρ(·) = η(J ′(·)) we have: J ′[v, w] = J [v, w]+
C([v, w]) = {J v,Jw}η+C([v, w]) = {J v+C(v),Jw+C(w)}η+C([v, w]) = {J ′v,J ′w}η+C([v, w]).
thus J ′ is a homomorphism if an only if C vanishes on the commutant [g, g] = {[v, w] | v, w ∈ g}
of the Lie algebra g. If g is semisimple (as sl(n,R), so(n,R), sp(n,R)), we have g = [g, g], hence the
homomorphic J is defined uniquely.

Fact. A map J : g → E(M) is a homomorphism if and only if the corresponding moment map
J : M → g∗ is Poisson, here g∗ is endowed with the Lie-Poisson structure ηg.

Proof Let e1, . . . , en be a basis of g and let y1, . . . , yn be the the elements of this basis regarded as
linear functions on g∗. With these notation we have in view of f the definition of the moment map
the following equalities: J ei = J∗yi, i = 1, . . . , n.

Denote by ck
ij the corresponding structure constants: [ei, ej] = ck

ijek. Assume J is a homomor-
phism, i.e. {J ei,J ej}η = ck

ijJ ek. This can be rewritten as {J∗yi, J
∗yj}η = ck

ijJ
∗yk = J∗{yi, yj}ηg ,

which means the Poisson property of the moment map. Inverting the considerations we get also
another implication. ¤
Remark: Similarly to the case of weakly hamiltonian actions any smooth Poisson map J : M → g∗

generates a hamiltonian action of g on M such that one of its moment maps coincide with J .

Hamiltonian actions and projectability: Let ρ : g → Γ (TM) be a hamiltonian action such that
its orbits form a foliation F and the factor space M/F is good. Let p : M → M ′ := M/F be the nat-
ural projection. Then η := ω−1 is projectable with respect to p. Indeed, TF = 〈η(J e1), . . . , η(J en)〉
and the dual foliation is given by {J e1 = c1, . . . ,J en = cn}, i.e. coincides with the fibers of the
moment map. As a result we get a dual pair of Poisson maps

(M, η)
J

%%KKKKKKKKKK
p
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(M ′, p∗η) (g∗, ηg).

Example 1: Let H : M → R be any function with the nonvanishing differential. Then we have
ρ : R→ Γ (TM), 1 7→ η(H),J : R→ E(M), 1 7→ H, J = H,TF = 〈η(H)〉

(M, η)
H=J

''NNNNNNNNNNN
p
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(M/F , p∗η) (R = R∗, 0).

In particular, if M := T ∗R2 \ {0}, ω = dp ∧ dq, H(q, p) = q2
1 + q2

2 + (p1)2 + (p2)2, we get the Hopf
fibrations over the symplectic leaves of p∗η.
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Example 2: Let M ⊂ g∗ be a coadjoint orbit endowed with the canonical symplectic form ω :=
(ηg|M)−1. Then the coadjoint action ρ : g → Γ (Tg∗), v 7→ ãd∗v is hamiltonian. Indeed, ãd∗v = ηg(v

′)
(see Lecture ??) where v′ denotes the linear function on g∗ defined by an element v ∈ g. Thus
J : g → E(M) is given by v 7→ v′|M and J : M → g∗ coincides with the inclusion M ↪→ g∗.

Example 3: Let ρ : g → Γ (TM) be a hamiltonian action with a moment map J : M → g∗ and
let h ⊂ g be a Lie subalgebra. Then ρ|h : h → Γ (TM) is a hamiltonian action and its moment map
Jh : M → h∗ is given by i∗ ◦ J , where i∗ : g∗ → h∗ = g/h⊥ is the projection dual to the inclusion
i : h ↪→ g.

Remark about relations between weakly hamiltonian and hamiltonian actions: Let ρ :
g → Γ (TM) be a weakly hamiltonian action. Let us examine obstructions for ρ to be a hamiltonian
action.

Let J : g → E(M) be map with the property ρ(·) = η(J (·)). Put c(v, w) := {J v,Jw}η −
J ([v, w]).

Fact. 1. c(v, w) is a constant function for any v, w ∈ g;

2. c is a 2-cocycle on the Lie algebra g, i.e. it is a bilinear skew-symmetric function on g satisfying∑
c.p. v,w,u c([v, w], u) = 0 for any v, w, u ∈ g.

Proof Item 1. We have η(c(v, w)) = η({J v,Jw}η − J ([v, w])) = [η(J v), η(Jw)] − ρ([v, w]) =
[ρ(v), ρ(w)]− ρ([v, w]) = 0, hence c(v, w) is a Casimir function for η.
Item 2. We have {J [v, w],J u}η = η(J [v, w])J u = ρ([v, w])J u = [ρ(v), ρ(w)]J u = ρ(v)ρ(w)J u −
ρ(w)ρ(v)J u = ρ(v)η(Jw)J u − ρ(w)η(J v)J u = ρ(v){Jw,J u}η − ρ(w){J v,J u}e =
{J v, {Jw,J u}η}η − {Jw, {J v,J u}η}η.

Hence
∑

c.p. v,w,u c([v, w], u) =
∑

c.p. v,w,u{J [v, w],J u}η − J ([[v, w], u])) = 0 due to the Jacobi
identity for [, ] and {, }η. ¤

It is known that for a semisimple g any 2-cocycle c is cohomologically trivial, i.e. there exists
C ∈ g∗ such that c(v, w) = C([v, w]).

Fact. If the cocycle c is trivial, the map J ′ := J + C : g → E(M) is a homomorphism.

Proof J ′([v, w]) = J ([v, w]) + C([v, w]) = J ([v, w]) + {J v,Jw}η − J ([v, w]) = {J v,Jw}η =
{J ′v,J ′w}η. ¤

We conclude that for semisimple g any weakly hamiltonian action is hamiltonian.
In general, the cocycle c is nontrivial. Note that c is defined nonuniquely, since so is the map J .

Taking J ′ = J + C (see one of the Remarks above) we get the formula c′(v, w) = {J ′v,J ′w}η −
J ′([v, w]) = {J v,Jw}η −J ([v, w])− C([v, w]) = c(v, w)− C([v, w]), i.e. the nontriviality of c does
not depend on the choice of J . So there exist weakly hamiltonian actions not being hamiltonian.
For such actions the moment maps are not Poisson, but one can modify the Poisson structure on g∗

(adding a cocycle to ηg and obtaining a Poisson structure with affine coefficients) in such a way that
the moment maps will be Poisson.
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