Algebraic and geometric aspects of modern theory of integrable systems

Lecture 10

1 Hamiltonian actions and moment maps

A symplectic action of a Lie algebra \mathfrak{g} on (M, ω) : An action $\rho : \mathfrak{g} \to \Gamma(TM)$ such that $\mathcal{L}_{\rho(v)}\omega = 0$ for any $v \in \mathfrak{g}$. Here \mathcal{L} is the Lie derivative, the Cartan formula for it gives:

$$\mathcal{L}_{\rho(v)}\omega = i_{\rho(v)}d\omega + di_{\rho(v)}\omega = di_{\rho(v)}\omega.$$

A weakly hamiltonian action of a Lie algebra \mathfrak{g} on (M, ω) : An action $\rho : \mathfrak{g} \to \Gamma(TM)$ such that there exists a linear map $\mathcal{J} : \mathfrak{g} \to \mathcal{E}(M)$ and the following diagram is commutative:

i.e. $\rho(v) = \eta(\mathcal{J}(v))$ for any $v \in \mathfrak{g}$.

Remark If \mathcal{J} is finite-dimensional, we can weaken the requirement: the map \mathcal{J} a priori need not be linear (i.e. we only require that any vector field $\rho(v)$ is hamiltonian). If \mathcal{J} is any map with the property $\rho(\cdot) = \eta(\mathcal{J}(\cdot))$, we can make it linear: let e_1, \ldots, e_k be a basis of \mathfrak{g} , put $\mathcal{J}'(e_i) := \mathcal{J}(e_i), i =$ $1, \ldots, k$, and extend this by linearity. The new map \mathcal{J}' satisfies $\rho(v) = \eta(\mathcal{J}'(v))$ and is linear.

Any weakly hamiltonian action is symplectic: $d_{i_{\eta(f)}}\omega = ddf = 0$. Conversely, any symplectic action is *locally* weakly hamiltonian: $di_{\rho(v)}\omega = 0$ implies by the Poincaré lemma that $i_{\rho(v)}\omega = df$ for some function f, hence $\rho(v) = \eta(f)$.

A moment map of a weakly hamiltonian action $\rho : \mathfrak{g} \to \Gamma(TM)$: the map $J : M \to \mathfrak{g}^*$ "dual to \mathcal{J} ", i.e.

$$\mathcal{J}(v)(x) = \langle v, J(x) \rangle, x \in M, v \in \mathfrak{g}.$$

Let $\mathcal{J}': \mathfrak{g} \to \mathcal{E}(M)$ be another map with the property $\rho(v) = \eta(\mathcal{J}'(v))$. Then $\eta((\mathcal{J}' - \mathcal{J})(v)) = 0$, hence $C := \mathcal{J}' - \mathcal{J}$ takes values in the space of Casimir functions of η (equal to \mathbb{R} if M is connected, which is assumed) and J' = J + C, where $C : \mathfrak{g} \to \mathbb{R}$ is a linear map. The corresponding moment map $J': M \to \mathfrak{g}$ is given by

$$\langle v, J'(x) \rangle = \mathcal{J}'(v)(x) = \mathcal{J}(v)(x) + C(v),$$

i.e. differs from J by a constant addend $C \in \mathfrak{g}^*$.

Remark: The map \mathcal{J} determines the moment map J by the formula above uniquely, but the converse also is true. Thus any smooth map $J: M \to \mathfrak{g}^*$ generates a weakly hamiltonian action of \mathfrak{g} on M such that one of its moment maps coincide with J.

A hamiltonian action of a Lie algebra \mathfrak{g} on (M, ω) : A weakly hamiltonian action $\rho : \mathfrak{g} \to \Gamma(TM)$ such that among linear maps $\mathcal{J} : \mathfrak{g} \to \mathcal{E}(M)$ with the property $\rho(\cdot) = \eta(\mathcal{J}(\cdot))$ there exists a homomorphism of Lie algebras $(\mathfrak{g}, [,])$ and $(\mathcal{E}(M), \{,\}_{\eta})$.

Remark Note that for any other map $\mathcal{J}' = \mathcal{J} + C$ with $\rho(\cdot) = \eta(\mathcal{J}'(\cdot))$ we have: $\mathcal{J}'[v, w] = \mathcal{J}[v, w] + C([v, w]) = \{\mathcal{J}v, \mathcal{J}w\}_{\eta} + C([v, w]) = \{\mathcal{J}v + C(v), \mathcal{J}w + C(w)\}_{\eta} + C([v, w]) = \{\mathcal{J}'v, \mathcal{J}'w\}_{\eta} + C([v, w]).$ thus \mathcal{J}' is a homomorphism if an only if C vanishes on the commutant $[\mathfrak{g}, \mathfrak{g}] = \{[v, w] \mid v, w \in \mathfrak{g}\}$ of the Lie algebra \mathfrak{g} . If \mathfrak{g} is semisimple (as $\mathfrak{sl}(n, \mathbb{R}), \mathfrak{so}(n, \mathbb{R}), \mathfrak{sp}(n, \mathbb{R})$), we have $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$, hence the homomorphic \mathcal{J} is defined uniquely.

FACT. A map $\mathcal{J} : \mathfrak{g} \to \mathcal{E}(M)$ is a homomorphism if and only if the corresponding moment map $J : M \to \mathfrak{g}^*$ is Poisson, here \mathfrak{g}^* is endowed with the Lie-Poisson structure $\eta_{\mathfrak{g}}$.

Proof Let e_1, \ldots, e_n be a basis of \mathfrak{g} and let y_1, \ldots, y_n be the the elements of this basis regarded as linear functions on \mathfrak{g}^* . With these notation we have in view of \mathfrak{f} the definition of the moment map the following equalities: $\mathcal{J}e_i = J^*y_i, i = 1, \ldots, n$.

Denote by c_{ij}^k the corresponding structure constants: $[e_i, e_j] = c_{ij}^k e_k$. Assume \mathcal{J} is a homomorphism, i.e. $\{\mathcal{J}e_i, \mathcal{J}e_j\}_{\eta} = c_{ij}^k \mathcal{J}e_k$. This can be rewritten as $\{J^*y_i, J^*y_j\}_{\eta} = c_{ij}^k J^*y_k = J^*\{y_i, y_j\}_{\eta_g}$, which means the Poisson property of the moment map. Inverting the considerations we get also another implication. \Box

Remark: Similarly to the case of weakly hamiltonian actions any smooth Poisson map $J: M \to \mathfrak{g}^*$ generates a hamiltonian action of g on M such that one of its moment maps coincide with J.

Hamiltonian actions and projectability: Let $\rho : \mathfrak{g} \to \Gamma(TM)$ be a hamiltonian action such that its orbits form a foliation \mathcal{F} and the factor space M/\mathcal{F} is good. Let $p : M \to M' := M/\mathcal{F}$ be the natural projection. Then $\eta := \omega^{-1}$ is projectable with respect to p. Indeed, $T\mathcal{F} = \langle \eta(\mathcal{J}e_1), \ldots, \eta(\mathcal{J}e_n) \rangle$ and the dual foliation is given by $\{\mathcal{J}e_1 = c_1, \ldots, \mathcal{J}e_n = c_n\}$, i.e. coincides with the fibers of the moment map. As a result we get a dual pair of Poisson maps

Example 1: Let $H : M \to \mathbb{R}$ be any function with the nonvanishing differential. Then we have $\rho : \mathbb{R} \to \Gamma(TM), 1 \mapsto \eta(H), \mathcal{J} : \mathbb{R} \to \mathcal{E}(M), 1 \mapsto H, J = H, T\mathcal{F} = \langle \eta(H) \rangle$

In particular, if $M := T^* \mathbb{R}^2 \setminus \{0\}, \omega = dp \wedge dq, H(q, p) = q_1^2 + q_2^2 + (p^1)^2 + (p^2)^2$, we get the Hopf fibrations over the symplectic leaves of $p_*\eta$.

Example 2: Let $M \subset \mathfrak{g}^*$ be a coadjoint orbit endowed with the canonical symplectic form $\omega := (\eta_{\mathfrak{g}}|_M)^{-1}$. Then the coadjoint action $\rho : \mathfrak{g} \to \Gamma(T\mathfrak{g}^*), v \mapsto \widetilde{ad_v}^*$ is hamiltonian. Indeed, $\widetilde{ad_v}^* = \eta_{\mathfrak{g}}(v')$ (see Lecture ??) where v' denotes the linear function on \mathfrak{g}^* defined by an element $v \in \mathfrak{g}$. Thus $\mathcal{J} : \mathfrak{g} \to \mathcal{E}(M)$ is given by $v \mapsto v'|_M$ and $J : M \to \mathfrak{g}^*$ coincides with the inclusion $M \hookrightarrow \mathfrak{g}^*$.

Example 3: Let $\rho : \mathfrak{g} \to \Gamma(TM)$ be a hamiltonian action with a moment map $J : M \to \mathfrak{g}^*$ and let $\mathfrak{h} \subset \mathfrak{g}$ be a Lie subalgebra. Then $\rho|_{\mathfrak{h}} : \mathfrak{h} \to \Gamma(TM)$ is a hamiltonian action and its moment map $J_{\mathfrak{h}} : M \to \mathfrak{h}^*$ is given by $i^* \circ J$, where $i^* : \mathfrak{g}^* \to \mathfrak{h}^* = \mathfrak{g}/\mathfrak{h}^{\perp}$ is the projection dual to the inclusion $i : \mathfrak{h} \hookrightarrow \mathfrak{g}$.

Remark about relations between weakly hamiltonian and hamiltonian actions: Let ρ : $\mathfrak{g} \to \Gamma(TM)$ be a weakly hamiltonian action. Let us examine obstructions for ρ to be a hamiltonian action.

Let $\mathcal{J} : \mathfrak{g} \to \mathcal{E}(M)$ be map with the property $\rho(\cdot) = \eta(\mathcal{J}(\cdot))$. Put $c(v, w) := \{\mathcal{J}v, \mathcal{J}w\}_{\eta} - \mathcal{J}([v, w])$.

FACT. 1. c(v, w) is a constant function for any $v, w \in \mathfrak{g}$;

2. c is a 2-cocycle on the Lie algebra \mathfrak{g} , i.e. it is a bilinear skew-symmetric function on \mathfrak{g} satisfying $\sum_{c.p. v,w,u} c([v,w],u) = 0$ for any $v, w, u \in \mathfrak{g}$.

Proof Item 1. We have $\eta(c(v,w)) = \eta(\{\mathcal{J}v,\mathcal{J}w\}_{\eta} - \mathcal{J}([v,w])) = [\eta(\mathcal{J}v),\eta(\mathcal{J}w)] - \rho([v,w]) = [\rho(v),\rho(w)] - \rho([v,w]) = 0$, hence c(v,w) is a Casimir function for η . Item 2. We have $\{\mathcal{J}[v,w],\mathcal{J}u\}_{\eta} = \eta(\mathcal{J}[v,w])\mathcal{J}u = \rho([v,w])\mathcal{J}u = [\rho(v),\rho(w)]\mathcal{J}u = \rho(v)\rho(w)\mathcal{J}u - \rho(v)\rho(w)\mathcal{J}u = \rho(v)\rho(w)\mathcal{J}v$

$$\begin{split} \rho(w)\rho(v)\mathcal{J}u &= \rho(v)\eta(\mathcal{J}w)\mathcal{J}u - \rho(w)\eta(\mathcal{J}v)\mathcal{J}u &= \rho(v)\{\mathcal{J}w,\mathcal{J}u\}_{\eta} - \rho(w)\{\mathcal{J}v,\mathcal{J}u\}_{e} = \\ \{\mathcal{J}v,\{\mathcal{J}w,\mathcal{J}u\}_{\eta}\}_{\eta} - \{\mathcal{J}w,\{\mathcal{J}v,\mathcal{J}u\}_{\eta}\}_{\eta}. \end{split}$$

Hence $\sum_{c.p.\ v,w,u} c([v,w],u) = \sum_{c.p.\ v,w,u} \{\mathcal{J}[v,w],\mathcal{J}u\}_{\eta} - \mathcal{J}([[v,w],u])) = 0$ due to the Jacobi identity for [,] and $\{,\}_{\eta}$. \Box

It is known that for a semisimple \mathfrak{g} any 2-cocycle c is cohomologically trivial, i.e. there exists $C \in \mathfrak{g}^*$ such that c(v, w) = C([v, w]).

FACT. If the cocycle c is trivial, the map $\mathcal{J}' := \mathcal{J} + C : \mathfrak{g} \to \mathcal{E}(M)$ is a homomorphism.

 $\begin{array}{l} \textit{Proof} \quad \mathcal{J}'([v,w]) \ = \ \mathcal{J}([v,w]) \ + \ C([v,w]) \ = \ \mathcal{J}([v,w]) \ + \ \{\mathcal{J}v,\mathcal{J}w\}_{\eta} \ - \ \mathcal{J}([v,w]) \ = \ \{\mathcal{J}v,\mathcal{J}w\}_{\eta} \ = \ \{\mathcal{J}v,\mathcal{J}w\}_{\eta} \ = \ \{\mathcal{J}v,\mathcal{J}w\}_{\eta}. \ \Box \end{array}$

We conclude that for semisimple \mathfrak{g} any weakly hamiltonian action is hamiltonian.

In general, the cocycle c is nontrivial. Note that c is defined nonuniquely, since so is the map \mathcal{J} . Taking $\mathcal{J}' = \mathcal{J} + C$ (see one of the *Remarks* above) we get the formula $c'(v, w) = \{\mathcal{J}'v, \mathcal{J}'w\}_{\eta} - \mathcal{J}'([v, w]) = \{\mathcal{J}v, \mathcal{J}w\}_{\eta} - \mathcal{J}([v, w]) - C([v, w]) = c(v, w) - C([v, w])$, i.e. the nontriviality of c does not depend on the choice of \mathcal{J} . So there exist weakly hamiltonian actions not being hamiltonian. For such actions the moment maps are not Poisson, but one can modify the Poisson structure on \mathfrak{g}^* (adding a cocycle to $\eta_{\mathfrak{g}}$ and obtaining a Poisson structure with affine coefficients) in such a way that the moment maps will be Poisson.