Algebraic and geometric aspects of modern theory of integrable systems

Lecture 1

1. Sketch of the (introductory part of the) course

1. Symplectic manifolds and hamiltonian equations.

Symplectic manifold: $(M, \omega), \omega \in \Gamma(\bigwedge^2 T^*M)$, locally $\omega = \omega_{ij}(x)dx^i \wedge dx^j$, ω nondegenerate (i.e. the matrix ω_{ij} nondegenrate) and closed, $d\omega = 0$.

Prototype: the canonical symplectic form on T^*Q , $\omega = dp_i \wedge dq^i$, here q^i local coordinates on Q, p_i the corresponding momenta.

Hamiltonian differential equation on (M, ω) : a differential equation given by a "hamiltonian" vector field $v(H) := \omega_{ij}^{-1}(x) \frac{\partial H}{\partial x^i}$, here $H \in C^{\infty}(M)$, a hamiltonian function. **Prototype:** the "natural" mechanical system on $M = T^*Q$, the hamiltonian function H(p) =

Prototype: the "natural" mechanical system on $M = T^*Q$, the hamiltonian function $H(p) = -(1/2m) \parallel p \parallel^2 -U(\pi_M(p)) \in C^{\infty}(T^*Q)$ is the Legendre transform of the lagrangian function $L = (m/2) \parallel w \parallel^2 -U(\tau_M(w)) \in C^{\infty}(TQ)$, here $\parallel \cdot \parallel$ is a norm on tangent vectors generated by some Riemannian metric on Q.

2. Completely integrable systems in the Arnold–Liouville sense.

First integral of differential equation given by a vector field v on M: a function $f \in C^{\infty}(M)$ such that $vf \equiv 0$.

First integrals in involution of a hamiltonian vector field v(H) on (M, ω) : functions f_1, f_2, \ldots such that $v(H)f_i \equiv 0$ and $\{f_i, f_j\} \equiv 0$, here $\{f, g\} := v(f)g$ (the Poisson bracket of functions f, g). In particular, $\{H, f_i\} \equiv 0$.

The Arnold–Liouville theorem: Let (M, ω) be symplectic, dim M = 2n. Assume a hamiltonian vector field v(H) admits n functionally independent integrals in involution. Then

- 1. if the common level sets of these integrals are compact and connected, they are (*n*-dimensional) tori $T^n = \{(\varphi_1, \ldots, \varphi_n) \mod 2\pi\};$
- 2. the restriction of the initial hamiltonian equation to T^n gives an almost periodic motion on T^n , i.e. in the "angle coordinates" φ the equation has the form

$$\frac{d\overrightarrow{\varphi}}{dt} = \overrightarrow{a}$$

here $\overrightarrow{a} = (a_1, \ldots, a_n)$ is a constant vector depending only on the level;

3. the initial equation can be integrated in "quadratures", i.e. the solutions can be obtained by means of a finite number of algebraic operations and operations of taking integral.

Integrable contra chaotic systems: A trajectory of "chaotic" system can be dense in a phase space M, a trajectory of "integrable" system lies on tori of dimension $\leq (1/2) \dim M$.

3. Poisson manifolds and Lie algebras

Nondegenerate Poisson manifolds: $(M, \vartheta), \vartheta \in \Gamma(\bigwedge^2 TM)$, locally $\vartheta = \vartheta^{kl} \frac{\partial}{\partial x^k} \wedge \frac{\partial}{\partial x^l}$, such that $\vartheta^{kl} = \omega_{kl}^{-1}$, here $\omega = \omega_{ij}(x)dx^i \wedge dx^j$ a symplectic form. How to encode the condition $d\omega = 0$ in terms of ϑ ? One of possible answers: Jacobi identity for the Poisson bracket $\{f, g\} := \vartheta^{kl} \frac{\partial f}{\partial x^k} \frac{\partial g}{\partial x^l}, \{\{f, g\}, h\} + \text{cyclic permutations} = 0.$

General Poisson manifolds: $(M, \vartheta), \vartheta \in \Gamma(\bigwedge^2 TM)$ such that the Jacobi identity holds for the corresponding Poisson bracket.

Symplectic leaves and Casimir functions of Poisson manifolds: Given a Poisson manifold (M, ϑ) , there exist a splitting $M = \bigcup_{t \in T} M_t$ of the manifold M to submanifolds M_t such that $\vartheta|_{M_t}$ is nondegenerate, i.e. inverse to some symplectic form. Casimir function is a function $f \in C^{\infty}(M)$ such that $\vartheta^{kl} \frac{\partial f}{\partial x^k} \equiv 0$, i.e. $\{f, g\} = 0$ for any $g \in C^{\infty}(M)$. Another characterization of Casimir functions: functions whose level sets coincide with the symplectic leaves M_t .

Lie algebras: A vector space \mathfrak{g} with a skew-symmetric binary operation $[,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying Jacobi identity.

Examples of Lie algebras:

- 1. $\mathfrak{g} := \mathfrak{gl}(n, \mathbb{R})$, real $n \times n$ -matrices, [A, B] := AB BA, commutator of matrices;
- 2. $\mathfrak{g} := \mathfrak{sl}(n, \mathbb{R})$, real $n \times n$ -matrices with zero trace;
- 3. $\mathfrak{g} := \mathfrak{so}(n, \mathbb{R})$, real skew-symmetric $n \times n$ -matrices.

Lie-Poisson structures as examples of Poisson manifolds: Given a Lie algebra \mathfrak{g} and a basis e_1, \ldots, e_n , let c_{ij}^k be the corresponding structure constants, i.e. $[e_i, e_j] = c_{ij}^k e_k$. Put $\vartheta_{\mathfrak{g}} := c_{ij}^k x_k \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}$, here $x^i = e_i$ (elements of \mathfrak{g} regarded as linear functions on the dual space \mathfrak{g}^*). Then $\vartheta_{\mathfrak{g}}$ is a Poisson structure on \mathfrak{g}^* .

Symplectic leaves of the Lie-Poisson structures: They coincide with the so-called coadjoint orbits on \mathfrak{g}^* . For instance, take one of the Lie algebras from the examples above. Then it has a scalar product (A|B) := Tr(AB) by means of which we can identify \mathfrak{g} with \mathfrak{g}^* . After this identification the symplectic leaves of $\vartheta_{\mathfrak{g}}$ become $\{XYX^{-1} \mid X \in G\}$, here $Y \in \mathfrak{g}$ is fixed, G is the set (the group) of 1.) nondegenerate $n \times n$ -matrices; 2.) $n \times n$ -matrices with determinant one; 3.) orthogonal $n \times n$ -matrices (i.e. $XX^T = I$). The corresponding Casimir functions are $Tr(X), Tr(X^2), \ldots$

3. Poisson and manifolds and reductions

"The Noether principle": If a vector field on \mathbb{R}^n admits a one-parametric group of diffeomorphisms preserving this vector field, the problem of integrating of the corresponding differential equation is reduced to a problem of integrating of another differential equation on \mathbb{R}^{n-1} .

Symplectic version of the Noether principle: If a hamiltonian function of a hamiltonian equation is invariant under some one-parametric group of transformations of the phase space M^{2n} which preserve also the symplectic form, then the equation can be reduced to another hamiltonian equation on a phase space of dimension 2n - 2. Looking a little bit more globally one can say that we will reduce our initial system to a hamiltonian system on some Poisson manifold of dimension 2n - 1 (the above mentioned phase space of dimension 2n - 2 is a symplectic leaf).

Example 1, rotation invariant natural mechanical system: Take $Q = \mathbb{R}^n$, the euclidian metric and a rotation invariant potential U. The group of rotations of Q can be extended to a group of

diffeomorphisms of T^*Q , preserving the canonical symplectic form (the hamiltonian H will be also preserved by this group).

Example 2, the Euler top: The mechanical system of free rigid body: the configuration space Q is $SO(3) = \{X \in \mathfrak{gl}(3, \mathbb{R}) \mid XX^T = I\}$; the potential is zero, the metric is a "left-invariant" (i.e. invariant with respect to left translations $Y \mapsto XY$ of SO(3)) metric on SO(3) depending of the shape of the body. The Noether principle (using the whole 3-parametric group of symmetries of T^*Q and H obtained from extension of the left translations to T^*Q) allows to reduce this system from T^*Q to $\mathfrak{so}(3,\mathbb{R})^*$ with the Lie–Poisson structure $\vartheta_{\mathfrak{so}(3,\mathbb{R})}$. The problem of finding first integrals in involution is now carried from a (bigger) symplectic manifold to a (smaller) Poisson manifold.

4. What will we do afterwards?

The main ideas which we will try to implement are

- 1. to find some mechanisms of building big families of functions in involution (with respect to $\vartheta_{\mathfrak{g}}$) on Lie algebras \mathfrak{g} (on their duals \mathfrak{g}^*);
- 2. to recognize among these functions some "physically reasonable" hamiltonians;
- 3. to prove that the remaining functions (interpreted as first integrals of the corresponding hamiltonian equation) form a "complete" family, i.e. lead to a completely integrable system.