
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 1

1. Sketch of the (introductory part of the) course

1. Symplectic manifolds and hamiltonian equations.
Symplectic manifold: (M,ω), ω ∈ Γ (

∧2 T ∗M), locally ω = ωij(x)dxi ∧ dxj, ω nondegenerate (i.e.
the matrix ωij nondegenrate) and closed, dω = 0.
Prototype: the canonical symplectic form on T ∗Q, ω = dpi ∧ dqi, here qi local coordinates on Q, pi

the corresponding momenta.
Hamiltonian differential equation on (M, ω): a differential equation given by a ”hamiltonian”
vector field v(H) := ω−1

ij (x) ∂H
∂xi , here H ∈ C∞(M), a hamiltonian function.

Prototype: the ”natural” mechanical system on M = T ∗Q, the hamiltonian function H(p) =
−(1/2m) ‖ p ‖2 −U(πM(p)) ∈ C∞(T ∗Q) is the Legendre transform of the lagrangian function
L = (m/2) ‖ w ‖2 −U(τM(w)) ∈ C∞(TQ), here ‖ · ‖ is a norm on tangent vectors generated by
some Riemannian metric on Q.

2. Completely integrable systems in the Arnold–Liouville sense.
First integral of differential equation given by a vector field v on M : a function f ∈ C∞(M)
such that vf ≡ 0.
First integrals in involution of a hamiltonian vector field v(H) on (M, ω): functions f1, f2, . . .
such that v(H)fi ≡ 0 and {fi, fj} ≡ 0, here {f, g} := v(f)g (the Poisson bracket of functions f, g).
In particular, {H, fi} ≡ 0.
The Arnold–Liouville theorem: Let (M, ω) be symplectic, dim M = 2n. Assume a hamiltonian
vector field v(H) admits n functionally independent integrals in involution. Then

1. if the common level sets of these integrals are compact and connected, they are (n-dimensional)
tori T n = {(ϕ1, . . . , ϕn)mod2π};

2. the restriction of the initial hamiltonian equation to T n gives an almost periodic motion on T n,
i.e. in the ”angle coordinates” ϕ the equation has the form

d−→ϕ
dt

= −→a ,

here −→a = (a1, . . . , an) is a constant vector depending only on the level;

3. the initial equation can be integrated in ”quadratures”, i.e. the solutions can be obtained by
means of a finite number of algebraic operations and operations of taking integral.
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Integrable contra chaotic systems: A trajectory of ”chaotic” system can be dense in a phase
space M , a trajectory of ”integrable” system lies on tori of dimension 6 (1/2) dim M .

3. Poisson manifolds and Lie algebras
Nondegenerate Poisson manifolds: (M,ϑ), ϑ ∈ Γ (

∧2 TM), locally ϑ = ϑkl ∂
∂xk ∧ ∂

∂xl , such that
ϑkl = ω−1

kl , here ω = ωij(x)dxi ∧ dxj a symplectic form. How to encode the condition dω = 0 in
terms of ϑ? One of possible answers: Jacobi identity for the Poisson bracket {f, g} := ϑkl ∂f

∂xk
∂g
∂xl ,

{{f, g}, h}+ cyclic permutations = 0.
General Poisson manifolds: (M, ϑ), ϑ ∈ Γ (

∧2 TM) such that the Jacobi identity holds for the
corresponding Poisson bracket.
Symplectic leaves and Casimir functions of Poisson manifolds: Given a Poisson manifold
(M,ϑ), there exist a splitting M =

⋃
t∈T Mt of the manifold M to submanifolds Mt such that ϑ|Mt is

nondegenerate, i.e. inverse to some symplectic form. Casimir function is a function f ∈ C∞(M) such
that ϑkl ∂f

∂xk ≡ 0, i.e. {f, g} = 0 for any g ∈ C∞(M). Another characterization of Casimir functions:
functions whose level sets coincide with the symplectic leaves Mt.
Lie algebras: A vector space g with a skew-symmetric binary operation [, ] : g × g → g satisfying
Jacobi identity.
Examples of Lie algebras:

1. g := gl(n,R), real n× n-matrices, [A,B] := AB −BA, commutator of matrices;

2. g := sl(n,R), real n× n-matrices with zero trace;

3. g := so(n,R), real skew-symmetric n× n-matrices.

Lie-Poisson structures as examples of Poisson manifolds: Given a Lie algebra g and a basis
e1, . . . , en, let ck

ij be the coresponding structure constants, i.e. [ei, ej] = ck
ijek. Put ϑg := ck

ijxk
∂

∂xi
∧ ∂

∂xj
,

here xi = ei (elements of g regarded as linear functions on the dual space g∗). Then ϑg is a Poisson
structure on g∗.
Symplectic leaves of the Lie-Poisson structures: They coincide with the so-called coadjoint
orbits on g∗. For instance, take one of the Lie algebras from the examples above. Then it has a scalar
product (A|B) := Tr(AB) by means of which we can identify g with g∗. After this identification
the symplectic leaves of ϑg become {XY X−1 | X ∈ G}, here Y ∈ g is fixed, G is the set (the
group) of 1.) nondegenerate n×n-matrices; 2.) n×n-matrices with determinant one; 3.) orthogonal
n× n-matrices (i.e. XXT = I). The corresponding Casimir functions are Tr(X), T r(X2), . . ..

3. Poisson and manifolds and reductions
”The Noether principle”: If a vector field on Rn admits a one-parametric group of diffeomor-
phisms preserving this vector field, the problem of integrating of the corresponding differential equa-
tion is reduced to a problem of integrating of another differential equation on Rn−1.
Symplectic version of the Noether principle: If a hamiltonian function of a hamiltonian equa-
tion is invariant under some one-parametric group of transformations of the phase space M2n which
preserve also the symplectic form, then the equation can be reduced to another hamiltonian equation
on a phase space of dimension 2n − 2. Looking a little bit more globally one can say that we will
reduce our initial system to a hamiltonian system on some Poisson manifold of dimension 2n−1 (the
above mentioned phase space of dimension 2n− 2 is a symplectic leaf).
Example 1, rotation invariant natural mechanical system: Take Q = Rn, the euclidian metric
and a rotation invariant potential U . The group of rotations of Q can be extended to a group of
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diffeomorphisms of T ∗Q, preserving the canonical symplectic form (the hamiltonian H will be also
preserved by this group).
Example 2, the Euler top: The mechanical system of free rigid body: the configuration space
Q is SO(3) = {X ∈ gl(3,R) | XXT = I}; the potential is zero, the metric is a ”left-invariant” (i.e.
invariant with respect to left translations Y 7→ XY of SO(3)) metric on SO(3) depending of the
shape of the body. The Noether principle (using the whole 3-parametric group of symmetries of T ∗Q
and H obtained from extension of the left translations to T ∗Q) allows to reduce this system from
T ∗Q to so(3,R)∗ with the Lie–Poisson structure ϑso(3,R). The problem of finding first integrals in
involution is now carried from a (bigger) symplectic manifold to a (smaller) Poisson manifold.

4. What will we do afterwards?
The main ideas which we will try to implement are

1. to find some mechanisms of building big families of functions in involution (with respect to ϑg)
on Lie algebras g (on their duals g∗);

2. to recognize among these functions some ”physically reasonable” hamiltonians;

3. to prove that the remaining functions (interpreted as first integrals of the corresponding hamil-
tonian equation) form a ”complete” family, i.e. lead to a completely integrable system.
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