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PBH formation mechanisms

. Collapse of enhanced cosmological perturbations

Ultra slow-roll (USR) inflation [P. Novikov et al. - 1994, J.G. Bellido et al. -
19906]

Early matter dominated eras [A. Polnarev et al. - 1982, B. Carr et al. - 1994,
T. Harada et al. - 2016]

. Collapse of cosmic loops [S. Hawking - 1989, A. Polnarev & R. Zembowicz
- 1991, A. Jenkins & M. Sakellariadou - 2020]

. Collapse of domain walls [M. Khlopov et al. - 1998, V. Dokuchaev - 2005, J.
Carriage et al. - 2016]

. Collapse through bubble collisions during a phase transition [M. Crawford
and D. Schramm - 1982, S. Hawking et al. - 1982, H Kodoma et al. - 1982,
|. Moss - 1994]



PBHs from collapse of primordial inhomogeneities

* Primordial Black Holes (PBHs) form in the early universe, out of the collapse of enhanced
energy density perturbations upon horizon reentry of the typical size of the collapsing

overdensity region. This happens when 6 > o.(w = p/p) [Carr - 1975].
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PBHs from collapse of primordial inhomogeneities

 Primordial Black Holes (PBHs) form in the early universe, before star formation, out of the
collapse of enhanced energy density perturbations upon horizon reentry of the typical

size of the collapsing overdensity region. This happens when 6 > o.(w = p/p) [Carr - 1975].
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Why we study PBHs?

mppy = My < H™! where y ~ O(1)
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PBHs evaporate at BBN

See for reviews in [Carr et al.- 2020, Sasaki et al - 2018, Clesse et al. - 2017]
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Constraints on PBH abundances
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e For the PBHs with masses mpgy < 10'°g, which have evaporated by now, the
PBH constraints are obtained by accounting for the effects of the products of PBH
Hawking evaporation on:

a) the abundances of the light elements produced during BBN,
b) the spectral shape of CMB radiation
c) the galactic and extragalactic cosmic ray background.

e For PBHs with masses mpgy > 101°g, which have not completed yet their

evaporation, we have constraints due to

a) gravitational lensing effects,

b) dynamical effects of a PBH onto an astrophysical system,
c) PBH accretion effects,

d) effects on the large scale structure formation,

e) gravitational wave (GW) production associated to PBHs
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Constraints on PBH abundances
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Open Issues in PBH Physics

PBH formation process [e.g. non spherical collapse, non standard w,
shape of the collapsing overdensity]

Modelling/Computation of PBH abundances (Peak theory vs Press-
Schechter formalism)

Clustering properties of PBHs
Merger rates of PBHs

etc.
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* 1) Primordial induced GWs generated through second order gravitational
effects: 3(3> 5 hd?, [Bugaev - 2009, Kohri & Terada - 2018].

/\

Ws  PBHs

28



PBHs and GWs

* 1) Primordial induced GWs generated through second order gravitational
effects: 3(3> 5 hd?, [Bugaev - 2009, Kohri & Terada - 2018].

/\

Ws  PBHs

 2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. -
2008, Dong et al. - 2015].

29



PBHs and GWs

* 1) Primordial induced GWs generated through second order gravitational
effects: 3(3> 5 hd?, [Bugaev - 2009, Kohri & Terada - 2018].

/\

Ws  PBHs

 2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. -
2008, Dong et al. - 2015].

 3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].

30



PBHs and GWs

1) Primordial induced GWs generated through second order gravitational
effects: 3(3> 5 hd?, [Bugaev - 2009, Kohri & Terada - 2018].
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2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. -
2008, Dong et al. - 2015].

3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].

4) GWs induced at second order by PBH number density fluctuations
[Papanikolaou et al. - 2020], abundantly produced during a PBH-dominated era.
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PBHs and GWs

1) Pi;imfdial sca'lar‘-i’nduce‘GWéA (SIGWS) génerated fhrough 'sevclond- Order '
t gravitational effects: Qg)h > hd?, [Bugaev - 2009, Kohri & Terada - 2018]. '
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GWSs PBHs

2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. -
2008, Dong et al. - 2015].

3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].

4) GWs induced at second order by PBH number density fluctuations
[Papanikolaou et al. - 2020].
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Scalar Induced Gravitational Waves
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Scalar Induced Gravitational Waves

e The equation of motion for the Fourier modes, h];, read as:

LD 2 h® > b + 2 h3 + k*hi = 4S.
’ k k k k
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Scalar Induced Gravitational Waves
e The equation of motion for the Fourier modes, h];, read as:
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PBH-dominated era phenomenology

PBHs with mppy; < 10°g (They evaporate before BBN)

These ultralight PBHs can drive the reheating process through their evaporation
[Zagorac et al. - 2019, Martin et al. - 2019, Inomata et al. - 2020] during which all the
SM particles can be produced.

Hawking evaporation of ultralight PBHs can alleviate as well the Hubble tension [Hooper et
al. - 2019, Nesseris et al. - 2019, Lunardini et al. - 2020] by injecting to the primordial plasma

dark radiation degrees of freedom which can increase N .

Evaporation of light PBHs can also produce naturally the baryon asymmetry
through CP violating out-of-equilibrium decays of Hawking evaporation products [J. D.
Barrow et al. - 1991, T. C. Gehrman et al. - 2022, N. Bhaumik et al. - 2022].

GWs induced by PBH number density fluctuations can interpret in a very good
agreement the recently released PTA GW data [Lewicki et al. - 2023, Basilakos et al.
- 2023]
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Gravitational waves from PBH number density
fluctuations

[T. Papanikolaou, V. Vennin, D. Langlois, JCAP 03 (2021) 053]
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Same mass [Dizgah, Franciolini & Riotto - 2019]
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The PBH Matter Field

Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018]

® ® Ps Same mass [Dizgah, Franciolini & Riotto - 2019]
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The PBH Matter Field

Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018]

® ® Ps Same mass [Dizgah, Franciolini & Riotto - 2019]
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The PBH Matter Field

Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018]

® ® Ps Same mass [Dizgah, Franciolini & Riotto - 2019]
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This isocurvature perturbation, dpgy; generated during the RD era will convert

during the PBHD era to a curvature perturbation {pgy;, associated to a PBH
gravitational potential .
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The PBH Matter Field

Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018]

® ® Ps Same mass [Dizgah, Franciolini & Riotto - 2019]
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This isocurvature perturbation, opg; generated during the RD era will convert
during the PBHD era to a curvature perturbation (ppyy, associated to a PBH
gravitational potential ®.
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GW Detectability
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[Papanikolaou et al. - 2020]
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GW Detectability

10° 10
10°- 10° —4- — M =10, B=2x10"°
) i _6_3-— M=5x108, 8=2x10"" _ e _
10" 10 . 1 --- BBN A.LIGO
(A - .
107 10° § ;B: 83
- 0 _10_: LISA
103 = :
09 = —12 -
= N
1079 = Ry <7 DECIG
N ] §
1077 103 —16 _:
10_9 102 _18 ]
1 I I I 1 I 1 I 1 I I I I | 1
. 1 —4 —2 0 2
Yo 0 100 10 10 v Log;(f[Hz|)
()
B [Domenech et al. - 2020]

[Papanikolaou et al. - 2020]

 Peaked GW signal at around ki, due to the suddenness of the transition to the IRD era
for PBH monochromatic mass distributions [Domenech et al. - 2020].
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Peaked GW signal at around ki due to the suddenness of the transition to the IRD era
for PBH monochromatic mass distributions [Domenech et al. - 2020].

During the transition, @’ goes very quickly from ®' = 0 (since in a MD era ® = constant ) to
@’ £ (. This entails a resonantly enhanced production of GWs sourced mainly by the

H>D? term in S%.
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Gravitational waves from PBH number density
fluctuations: The effect of an extended PBH mass
distribution

[T. Papanikolaou, JCAP 10 (2022) 089]
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The PBH mass function and the PBH abundance
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The PBH mass function and the PBH abundance
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The PBH mass function and the PBH abundance
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The PBH mass function and the PBH abundance
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Evolving the PBH gravitational potential

* Our physical system is comprised by matter in form of PBHs which “decays” to
radiation through the process of PBH evaporation.
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Evolving the PBH gravitational potential

* Our physical system is comprised by matter in form of PBHs which “decays” to
radiation through the process of PBH evaporation.
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The gravitational potential ®
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The GW spectrum
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Gravitational waves from PBH number density
fluctuations: The effect of primordial non-
Gaussianities

[T. Papanikolaou, X.C He. X.H. Ma, Y.F. Cai, E.N. Saridakis, M. Sasaki,
Phys. Lett. B 857 (2024) 138997]
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Primordial non-Gaussianities of local type

(27)36®3) (k1 + ko) Pr (k)
(27)36®) (k1 + ko + ks3)

(R(k1)R(k2))
(R(k1)R(k2)R(k3))

X ngL [Pr(k1)Pr(k2) + 2 perms]
(R(k1)R(k2)R(ks)R(ka)) = (2)36® (k1 + k2 + ks + ka)

54 :
X {%QNL _PR(kl)PR(kg)PR(k3) + 3 perms]

+ 7~L [Pr(k1)Pr(k2) Pr(|k1 + k3|) + 11 perms] }
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Primordial non-Gaussianities of local type

(27)36®3) (k1 + ko) Pr (k)
(27)36®) (k1 + ko + ks3)

(R(k1)R(k2))
(R(k1)R(k2)R(k3))

X ngL [Pr(k1)Pr(k2) + 2 perms]

(R(k1)R(k2)R(k3)R(ks)) = (27)36®) (k1 + ko + ks + k)

54 :
X {%QNL _PR(kl)PR(kg)PR(k3) + 3 perms]

+ 7~L [Pr(k1)Pr(k2) Pr(|k1 + k3|) + 11 perms] }

[Path integral formalism for n-point [S. Matarrese et al. - 1986,
correlation functions (galaxy halo bias)] S. Matarresse and L. Verde - 2008]

Eppn(X1s Xo) = (Oppu(X1)Oppu(Xy)) = ‘:@ ppy(k)eX ®1*)d In k
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Primordial non-Gaussianities of local type
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Primordial non-Gaussianities of local type

(27)36®3) (k1 + ko) Pr (k)
(27)36@) (ky + ko + k3)

(R(k1)R(k2))
(R(k1)R(k2)R(k3))

X ngL [Pr(k1)Pr(k2) + 2 perms]

(R(k1)R(k2)R(k3)R(ks)) = (27)36®) (k1 + ko + ks + k)

54 :
X {%QNL _PR(kl)PR(kg)PR(k3) + 3 perms]

+ 7~L [Pr(k1)Pr(k2) Pr(|k1 + k3|) + 11 perms] }

[Path integral formalism for n-point [S. Matarrese et al. - 1986,
correlation functions (galaxy halo bias)] S. Matarresse and L. Verde - 2008]

Eppu(Xp> Xn) = (Opgp(X1)0ppp(Xy)) = [ Popn(k) K —X) ] In k

|

0 -
5 4 k? 4 \* _
gjd)(k) = S(ID(k) S+—-— N TNL‘@%(k) + ‘@5PBH,P0isson(k)
9 96R
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The non-Gaussian PBH matter power spectrum

Mpgy =2 % 10°g, Qg =5x 1075 7, = 5% 107
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The non-Gaussian PBH matter power spectrum

Mppy =2 x 10° g, Qppur =5 x 1078, 7y, =5 x 1074
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Non-Gaussian Induced GWs

Mppy =2 x 10° g, Qppps =5 X 1075 7y, = 5 x 1074,
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Constraining non-Gausianities
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Testing alternative gravity theories
with PBHs and induced GWs:

The case of non-singular bouncing cosmology

[T. Papanikolaou, S. Banerjee, Y.F. Cai, S. Capozziello, E.N. Saridakis,
JCAP 06 (2024) 066]
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Bing Bang cosmology.
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The non-singular bouncing paradigm

Motivation

* |tis free of the initial singularity problem.

* |t can address the horizon and flathess problems of Hot Bing
Bang cosmology.

 With matter contracting phases, one can easily give rise to scale-
iInvariant curvature power spectra, observed on the CMB scales.
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The non-singular bouncing paradigm

Motivation

It is free of the initial singularity problem.

It can address the horizon and flathess problems of Hot Bing
Bang cosmology.

With matter contracting phases, one can easily give rise to

scale-invariant curvature power spectra, observed on the
CMB scales.

“Caveats"

Effective violation of the null energy condition for a short

period of time, T, k"k* <0 = p + 3p <0.
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Non-singular matter bouncing cosmology:
The background evolution

Background dynamics

A. Matter contracting phase

[ — f_ 2 - 2 comoving length
a(t) = a_ = cwitht —f = ——. ‘ |
t_ - t_ | |

B. Bouncing phase

t2
a(t) = abeYT, with H(t) = Yt. 2

com
k

C. HBB expanding phase 0 N

oo\ 12
t—1, | N 1
a(t) = a, , withz, — 7, =
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The dynamics of primordial curvature perturbations

a/p +p

c,HMp,

!

Z .
Ve t (Cszkz - ?> v, =0, with v, = z®, and 7 =

[Mukhanov-Sasaki (MS) equation]
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The dynamics of primordial curvature perturbations

as/p +p

c,HMp,

!

< .
Ve t (Cs2k2 - ?) v, =0, with v, =z, and z =

[Mukhanov-Sasaki (MS) equation]

e ¢, is the curvature perturbation sound speed depending on the details of the
underlying gravity theory. For GR, ¢, = 1.
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The dynamics of primordial curvature perturbations

as/p +p

c,HMp,

!

< .
Ve t (Cs2k2 - ?) v, =0, with v, =z, and z =

[Mukhanov-Sasaki (MS) equation]

e ¢, is the curvature perturbation sound speed depending on the details of the
underlying gravity theory. For GR, ¢, = 1.

 Considering Bunch Davies vacuum as our initial conditions on sub-horizon scales,
i.e. v, = e M1/ /2k for k > aH, one can solve analytically the MS equation.
k
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The dynamics of primordial curvature perturbations

v, + (cszk2 —

!

<
<

—) v, =0, withv, =z%£, and 7z =

as/p +p

c,HMp,

[Mukhanov-Sasaki (MS) equation]

e ¢, is the curvature perturbation sound speed depending on the details of the
underlying gravity theory. For GR, ¢, = 1.

 Considering Bunch Davies vacuum as our initial conditions on sub-horizon scales,
i.e. v, = e M1/ /2k for k > aH, one can solve analytically the MS equation.
k

 Remarkably, one finds an analytic approximation for the curvature power spectrum

P 5(k) reading as

P (k) =

K| R, |

272

-

g

aEHE

for ck < |aH |

2¢ M2.a3
48r<cMpa

a’H? < c.k

1272c,Mja® \ aH

2
) for ck > |aH| .
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The dynamics of primordial curvature perturbations

as/p +p

c,HMp,

!

< .
Ve t (Cs2k2 - ?) v, =0, with v, =z, and z =

[Mukhanov-Sasaki (MS) equation]

e ¢, is the curvature perturbation sound speed depending on the details of the
underlying gravity theory. For GR, ¢, = 1.

 Considering Bunch Davies vacuum as our initial conditions on sub-horizon scales,
.e. v, = e =177/ 2k for k > aH, we solve analytically the MS equation.

e One then can find an analytic approximation for the curvature power spectrum
P 4(k) during the contracting phase reading as

-

a’H?
K3\ b | 2 TRV for ck < |aH |
P (k) = ~ <
R 2 2 3172 2
d (S5 for ek > |aH|
L 1272c,M3a® \ aH OF G a '




The dynamics of primordial curvature perturbations

z" . a\/pt+p
v/ + | ¢2k* —— | v, =0, with v, = z%, and 7 = ,
< CSHMPI

* Considering in the following to a short duration bouncing phase and requiring
continuity of v, and v, one can derive & 4(k) during both the bouncing and the
HBB eras.
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The dynamics of primordial curvature perturbations

a\/p+p

c,HMp,

!

< :
Ve + (Cs2k2 - ?) v, =0, with v, =z, and z =

* Considering in the following to a short duration bouncing phase and requiring
continuity of v, and v, one can derive & 4(k) during both the bouncing and the
HBB eras.

e Since &£ is conserved on super-horizon scales during the HBB era one can
show that at horizon-crossing time, i.e. k = aH (PBH formation time) that

0.7Y5 cos? A2 1.4B2%, /¢, Y7 cos A sin Ay/k

P (k) = ' — ’
) c3 HAH2m2(H2 4 2Y)? c3 HAH22(H} + 2Y)*
5 3 o 2 2 _ 2Y?cos A .
Y°[0.7¢; ,HZ sin A+ 0.9B“Y cos A < D2+ 2T) +\/Tsm A> k
+ > + O(k?),
H3
4e \H>H3m? (1 + E) (H2 +2Y)2

with A = (H_+ H,)/\/Y and B=+/H_/Y .
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The dynamics of primordial curvature perturbations
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The dynamics of primordial curvature perturbations
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Ve + (Cs2k2 - ?) v, =0, with v, =z, and z =

* Considering in the following to a short duration bouncing phase and requiring
continuity of v, and v, one can derive & 4(k) during both the bouncing and the
HBB eras.

e Since &£ is conserved on super-horizon scales during the HBB era one can
show that at horizon-crossing time, i.e. k = aH (PBH formation time) that
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The dynamics of primordial curvature perturbations

a\/p+p

c,HMp,

!

< :
Ve + (Cs2k2 - ?) v, =0, with v, =z, and z =

* Considering in the following to a short duration bouncing phase and requiring
continuity of v, and v, one can derive & 4(k) during both the bouncing and the
HBB eras.

e Since &£ is conserved on super-horizon scales during the HBB era one can
show that at horizon-crossing time, i.e. k = aH (PBH formation time) that

0775 cos? A2 1.4B%, /¢, n Y7 cos A sin Ay/k
P (k) =~ ‘ —~ ’
k) c3 HAH2m2(H2 4 2Y)* c3 HAHI2(H} + 2Y )
5 3 . 2 2 2Y?cos A
Y°10.7¢,  ,H” sin A<+ 0.9B“Y cos A < B2+ 2T) + \/_ sin A)
+ + Ok,

2
4e H>H3m? <1 + —> (H2 +2Y)2

with A = (H_+ H,)/\/Y and B=+/H_/Y .
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Pr (k)

The curvature power spectrum
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The curvature power spectrum
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The PBH abundance

1 d :
pM) = PPBH _ [ PDF(6)dé within peak theory
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fpBH = QPBH.0/DM.0

The PBH abundance

1 d :
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The scalar-induced GW signal
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10—

Induced GW signal at nHz
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Testing alternative gravity theories
with PBHs and induced GWs

Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R)
gravity, T. Papanikolaou C. Tzerefos, S. Basilakos and E. N. Saridakis, JCAP 10 (2022) 013 - e-
Print: 2112.15059 [astro-ph.CO]

No constraints for f(T) gravity from gravitational waves induced from primordial black hole
fluctuations, T.Papanikolaou, C. Tzerefos, S. Basilakos and E. N. Saridakis, Eur. Phys. J. C 83
(2023) 1, 31 + e-Print: 2205.06094 [gr-gc]

Constraining F(R) bouncing cosmologies with primordial black holes, S. Banerjee, T.
Papanikolaou, E. N. Saridakis, Phys. Rev. D 106 (2022) 12, 124012 - e-Print: 2206.01150 [gr-gc]

Scalar induced gravitational waves in modified teleparallel gravity theories, C. Tzerefos, T.
Papanikolaou, S. Basilakos and E. N. Saridakis, Phys. Rev. D 107 (2023) 12, 124019 - e-Print:
2303.16695 [gr-gc]

Primordial black holes in loop quantum cosmology: the effect on the threshold, T.
Papanikolaou, Class. Quant. Grav. 40 (2023) 13, 134001 - e-Print: 2301.11439 [gr-qc]

Gravitational-wave signatures of gravito-electromagnetic couplings, T. Papanikolaou, C.
Tzerefos, S. Capozziello, G. Lambiase, e-Print: 2408.17259 [astro-ph.CO]
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Probing fundamental high energy physics theories
with PBHs and induced GWs:

The case of no-scale supergravity

[S. Basilakos, D.V. Nanopoulos, T. Papanikolaou, E. N. Saridakis, C. Tzerefos
Phys. Lett. B 850 (2024) 138507]
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No-Scale Supergravity

e Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976]
is the low-energy effective field theory (EFT) a higher dimensional Superstring
theory, combining the principles of supersymmetry (SUSY) and general relativity.
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No-Scale Supergravity

Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976]
is the low-energy effective field theory (EFT) a higher dimensional Superstring
theory, combining the principles of supersymmetry (SUSY) and general relativity.

Working within the context of early-Universe cosmology, one can in principle embed
an inflationary framework within SUGRA compatible with CMB data.
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No-Scale Supergravity

Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976]
is the low-energy effective field theory (EFT) a higher dimensional Superstring
theory, combining the principles of supersymmetry (SUSY) and general relativity.

Working within the context of early-Universe cosmology, one can in principle embed
an inflationary framework within SUGRA compatible with CMB data.

This can occur naturally within "no-scale" supergravity models, where all the

relevant energy scales are functions of only Mp, [E. Cremmer et al. - 1983, J. R.
Ellis, C. Kounnas and D. V. Nanopoulos - 1984]

102



No-Scale Supergravity

Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976]
is the low-energy effective field theory (EFT) a higher dimensional Superstring
theory, combining the principles of supersymmetry (SUSY) and general relativity.

Working within the context of early-Universe cosmology, one can in principle embed
an inflationary framework within SUGRA compatible with CMB data.

This can occur naturally within "no-scale" supergravity models, where all the

relevant energy scales are functions of only Mp, [E. Cremmer et al. - 1983, J. R.
Ellis, C. Kounnas and D. V. Nanopoulos - 1984]

The simplest representation of SUGRA is characterized by 2 functions. The Kahler
potential K and the superpotential W.

103



No-Scale Supergravity

Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976]
is the low-energy effective field theory (EFT) a higher dimensional Superstring
theory, combining the principles of supersymmetry (SUSY) and general relativity.

Working within the context of early-Universe cosmology, one can in principle embed
an inflationary framework within SUGRA compatible with CMB data.

This can occur naturally within "no-scale" supergravity models, where all the

relevant energy scales are functions of only Mp, [E. Cremmer et al. - 1983, J. R.
Ellis, C. Kounnas and D. V. Nanopoulos - 1984]

The simplest representation of SUGRA is characterized by 2 functions. The Kahler

potential K and the superpotential W. At the end, one can write the SUGRA action
and the effective inflationary potential as

ij

S = Jd4x, I=r: (K:a DIH DI — V>, with V(®@, @) = eK(KVD,WD:W — 3| W),
02

o K
where KY(®,®P)=———, I W=90W+KW.
0D 0P/
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No-Scale Supergravity

Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976]
is the low-energy effective field theory (EFT) a higher dimensional Superstring
theory, combining the principles of supersymmetry (SUSY) and general relativity.

Working within the context of early-Universe cosmology, one can in principle embed
an inflationary framework within SUGRA compatible with CMB data.

This can occur naturally within "no-scale" supergravity models, where all the

relevant energy scales are functions of only Mp, [E. Cremmer et al. - 1983, J. R.
Ellis, A. Lahanas, D. V. Nanopoulos & K. Tamvakis - 1984]

The simplest representation of SUGRA is characterized by 2 functions. The Kahler

potential K and the superpotential W.

For K=-3In <T+ T— %) and ¢ = 1/3c tanh (%) one gets Starobinsky inflation [J.
3

R. Ellis, D. V. Nanopoulos & K. Olive - PRL 2013],
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PBHs in no-scale SUGRA inflection-point inflation
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PBHs in no-scale SUGRA inflection-point inflation

e Working within the simplest no-scale SUGRA model, namely the Wess-Zumino

A

one, where W = 5¢2 — —qb?’, one can produce naturally (light and not only)

3

PBHs by introducing non-perturbative deformations of K [D.V. Nanopoulos, V.
Spanos, and |. Stamou - 2020] which can be recast as

K=-3In (T+ T — ¢3—¢ + ae‘b(¢+‘5)4(gb + 43)4> :
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PBHs in no-scale SUGRA inflection-point inflation

e Working within the simplest no-scale SUGRA model, namely the Wess-Zumino

A

one, where W = %¢2 — —qb?’, one can produce naturally (light and not only)

3

PBHs by introducing non-perturbative deformations of K [D.V. Nanopoulos, V.
Spanos, and |. Stamou - 2020] which can be recast as

K=-3In (T+ T — ¢3—¢ + ae‘b(¢+‘5)4(gb + 43)4> :

e One then gets the following inflection-point inflationary potential:

3e1200° h2(cu? — 20/3ciud + 3422

V(g) = .
(—48agp* + e9* (=3¢ + ¢2)|” {e49* — 24a¢h?[6 + 4bd2(—9 + 8bh2)] )
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PBHs in no-scale SUGRA inflection-point inflation

Working within the simplest no-scale SUGRA model, namely the Wess-Zumino
A
2 _ —qb3, one can produce naturally (light and not only)

3

PBHs by introducing non-perturbative deformations of K [D.V. Nanopoulos, V.
Spanos, and |. Stamou - 2020] which can be recast as

one, where W = %¢

K=-3In (T+ T — ¢3—¢ + ae‘b(¢+‘5)4(gb + 43)4> :

One then gets the following inflection-point inflationary potential:

3¢ 207" (cu® — 24/3cud + 32742

V(g) = .
(—48agp* + e9* (=3¢ + ¢2)|” {e49* — 24a¢h?[6 + 4bd2(—9 + 8bh2)] )

In particular, inflection-point inflation, where V"'( ¥ qection) = V' Winflection) == 0,

one realises naturally an ultra slow-roll (USR) phase, during which the non-
constant mode of the curvature perturbation grows exponentially leading to
PBH formation.
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Ultra-light PBHs in no-scale SUGRA
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Ultra-light PBHs in no-scale SUGRA
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10—10 .

Ultra-light PBH domination

Working within peak theory, we derive the
PBH mass function defined as

106

108 1010 1012

113



Ultra-light PBH domination
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GWs induced by inflationary adiabatic perturbations.
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GWs induced by inflationary adiabatic perturbations.
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A distinctive three-peaked GW signal
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Testing fundamental high energy physics theories
with PBHs and induced GWs
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Conclusions

 PBHs are associated with a very rich phenomenology
depending on their mass.

e Within the asteroid-mass window one can produce up to the
totality of the dark matter with PBHs.

* Through scalar-induced GWs one can probe

A. The physics of the very early Universe [small-scale & ,(k),
primordial non-Gaussianities].

B. The underlying nature of gravity

C. Fundamental High Energy Physics (HEP) theories

124



Thanks for your attention!



AppendiX



Deriving & 4 (k)

The uniform energy density curvature perturbations {pgyy and £

1 1
Cr:—q)+z5ra CPBH:—(I)+§5PBH
The isocurvature perturbation

3
§=3 (CPBH — Cr) = OppH — Z5r
The comoving curvature perturbation £

2Q|H + D
R =— + b ~—-fork< Z
3 14w

5
When w = 0, ® = constant and ®’' = 0. Thus, fork < ', X = - = E(I).

Fork < #,{ = Cpgy =+ S/3 = 8/3 =~ 6ppy(t:)/3. Thus, @ = Spgy(#)/S for k K .

For sub-horizon scales, i.e. kK > F#,

d*5p 24+ 3s dép 3 2+ 3s
>+ = - Oppgy = 0 = Oppy =

t-) with s = a/a
ds? 2s(s+ 1) ds 2s(s + 1) 2 + 3 Oppi () d

2 2
| 2 ( k 9 ([ # 4
nowing tha = — , one gets tha = — or :
K that dpgyy s\ 75 o ts that @ 2\ Opppl(f) for k > #
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From the curvature power spectrum to the PBH mass function

, A1+ w) [°° dk
o~ =
(5 + 3w)?

2_4(1+w)2r°% rn <L>2
M . (kR)*"W=(k, R)P (k) e

—(kR)*'W?(k, R)P (k)
0 k

(5+3w)? J,

1% 2
Peak Theory : /' (v) = 'M——e_” 12,
4r? o3
)
where v = —
c

Mppp(v) & y 3.3
= O — 30 K 3 vt
o=y, WO ﬂ(M):J v <va——1/202—5c> d ——e ",

Ve

Mppy = Mg FE (6 — d,) where §, depending on the shape of P.(k)

[Niemeyer et al. - 1997] [Musco et al - 2020]

3
%=@—§$

[DelLuca et al., Young et al - 2019]

128



The PBH matter power spectrum

* In this case, we have a gas of PBHs with different masses. We should define a
PBH mean separation scale accounting for the extended PBH mass distribution
function.

1/3
Mmax 0 = tini
IMmm Mp (M. 1 {1 Dty (M) } dInM (M) \ 7
(M)(0) = _ 5= < ) |
Lfma" B(M,H)dIn M 47ppeH

min

, where k < kyy =

4
P, (&) = (|87%H %) = —
3kUV

P (k)—S2(k)2 X | 5+ik—2 )
(D e R¥/4 kUV 9 kg
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The gravitational potential ®

as = 3.35 x 1073
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The scales considered

3o\ 7 217 2\ %7
| 37 [ 2% % tag
a) 5PBH,I< xda. 5PBHJ<NL('7I) = 1=k = kUV <_> <_> <_)

2 a, o13

b) Being quite conservative, we consider only modes k € [k, k.., ]-

3
2 k
max [ d IQIJ] CD( ) 757 (: kﬁj\] :)
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Primordial non-Gaussianities of local type

Eppn(X1> X2) = (Gppu(X1)0ppu(Xa)) = [g’pBH(k)@k'(Xl_XZ)d Ink

7 1~ m L) [Lndp W2 (pOW2_ (py)Po(p)P
(SPBH( ) = 9%2( )% 6 ™NL(P1s P2y P> P2) 10(;31(191) 1oca1(l92) @(PQ 9;3(172)
9op (2r)
k3
+F(k — independent terms) e s/
T
l P

) -2 r 4 -
5 4 k 4y _
g)tb(k) = Scb(k) 5+ Eﬁ 9_ TNL@%(k) + <q)(SPBH,Poisson(k)

d OR
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The non-Gaussian PBH matter power spectrum

k

(& k
Ansatz 1 : Py = Plke > () 4 22x 107 <

0.05Mpc-1

0.965—-1
> R Wlth @@(kf) ~ 10_2
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The non-Gaussian PBH matter power spectrum

k
0.05Mpc-!

112

(&
Ansatz 1 1 Py = Pglkpe > () +22x 107 <

0.965—-1
) , with P (k) ~ 1072

k — 1 (1n n? %2
Ansatz 2 : oy (ky, ky, ks, ky) = NL6( 2 [ 2<1 7t >+ 5 perms]
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The non-Gaussian PBH matter power spectrum
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The non-Gaussian PBH matter power spectrum

Mppy =2 x 10° g, Qppur =5 x 1078, 7y, =5 x 1074
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Hierarchy of scales

173
kuv _ (QPBH,f> kg _ V20
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ke 960y Mp, |

M —17/24
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10*
Early PBH domination : Qpgy¢ > 6 X 10_10_g
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Cosmological motivation for no-scale SUGRA

No-scale SUGRA models have some very attractive features:

1. They naturally give rise to Strarobinsky-like inflationary models, favoured
by Planck [J.R. Ellis et al. - 2013, C. Kounnas et al. - 2013].

2. The inflationary energy scale being naturally much smaller than My, [J.
R. Ellis, D. V. Nanopoulos, K. A. Olive and K. Tamvakis - (1982)] consistent with

a very small r < 0.004.

3. The inflaton can be viewed as a singlet field in a see-saw mechanism
responsible for the generation of neutrino-masses [Murayama et al. - 1993],
providing as well an efficient scenario for reheating and leptogenesis [M.
Fukugita and T. Yanagida - 1986].

4. One is naturally met with a vanishing cosmological constant at the tree
level [E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos - 1983].
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