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T. Harada et al. - 2016]


2. Collapse of cosmic loops [S. Hawking - 1989, A. Polnarev & R. Zembowicz 
- 1991, A. Jenkins & M. Sakellariadou - 2020]


3. Collapse of domain walls [M. Khlopov et al. - 1998, V. Dokuchaev - 2005, J. 
Carriage et al. - 2016] 


4. Collapse through bubble collisions during a phase transition [M. Crawford 
and D. Schramm - 1982, S. Hawking et al. - 1982, H Kodoma et al. - 1982, 
I. Moss - 1994]
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• Primordial Black Holes (PBHs) form in the early universe, out of the collapse of enhanced 
energy density perturbations upon horizon reentry of the typical size of the collapsing 
overdensity region. This happens when  [Carr - 1975].δ > δc(w ≡ p/ρ)
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• Primordial Black Holes (PBHs) form in the early universe, before star formation, out of the 
collapse of enhanced energy density perturbations upon horizon reentry of the typical 
size of the collapsing overdensity region. This happens when  [Carr - 1975].δ > δc(w ≡ p/ρ)
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mPBH = γMH ∝ H−1 where γ ∼ O(1)
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fPBH(M) ≡
ΩPBH,0

ΩDM,0



Open Issues in PBH Physics

• PBH formation process [e.g. non spherical collapse, non standard w, 
shape of the collapsing overdensity]


• Modelling/Computation of PBH abundances (Peak theory vs Press-
Schechter formalism) 


• Clustering properties of PBHs


• Merger rates of PBHs


• etc.
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• 2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. - 
2008, Dong et al. - 2015].


• 3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].
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[Papanikolaou et al. - 2020], abundantly produced during a PBH-dominated era.
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PBHs and GWs
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• 1) Primordial scalar-induced GWs (SIGWs) generated through second order 
gravitational effects: , [Bugaev - 2009, Kohri & Terada - 2018].  

• 2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. - 
2008, Dong et al. - 2015].


• 3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].


• 4) GWs induced at second order by PBH number density fluctuations 
[Papanikolaou et al. - 2020]. 


ℒ(3)
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ds2 = a2(η){−(1 + 2Φ)dη2 + [(1 − 2Φ)δij +
hij

2 ] dxidxj} .



• The equation of motion for the Fourier modes, , read as:h ⃗k

ℒ(3)
Φ,h ∋ hΦ2 ⇒ hs,′￼′￼

⃗k
+ 2ℋhs,′￼

⃗k
+ k2hs

⃗k
= 4Ss

⃗k
.

Scalar Induced Gravitational Waves
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⃗k
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⃗k
= ∫

d3 ⃗q
(2π)3/2

es
ij( ⃗k)qiqj [2Φ ⃗qΦ ⃗k− ⃗q +

4
3(1 + w)
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ΩGW(η, k) ≡
1

ρtot

dρGW

d ln k
=

1
24 ( k

a(η)H(η) )
2

𝒫h(η, k),

with 𝒫h(η, k) ≡
k3 |hk |2

2π2
∝ ∫ dv∫ du (∫ f(v, u, k, η)dη)

2

𝒫Φ(kv)𝒫Φ(ku) .
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ΩGW(η, k) ≡
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ρtot

dρGW

d ln k
=
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ℛ =
5 + 3w

3(1 + w)
Φ for k ≪ ℋ
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ΩPBH = ρPBH/ρtot ∝ a−3/a−4 ∝ a
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agreement the recently released PTA GW data [Lewicki et al. - 2023, Basilakos et al. 
- 2023]

45

      PBHs with  (They evaporate before BBN) mPBH < 109g

• These ultralight PBHs can drive the reheating process through their evaporation 
[Zagorac et al. - 2019, Martin et al. - 2019, Inomata et al. - 2020] during which all the 
SM particles can be produced.

• Hawking evaporation of ultralight PBHs can alleviate as well the Hubble tension [Hooper et 
al. - 2019, Nesseris et al. - 2019, Lunardini et al. - 2020] by injecting to the primordial plasma 
dark radiation degrees of freedom which can increase .Neff

• Evaporation of light PBHs can also produce naturally the baryon asymmetry 
through CP violating out-of-equilibrium decays of Hawking evaporation products [J. D. 
Barrow et al. -  1991, T. C. Gehrman et al. - 2022, N. Bhaumik et al. - 2022].



Gravitational waves from PBH number density 
fluctuations 

46

[T. Papanikolaou, V. Vennin, D. Langlois,  JCAP 03 (2021) 053]
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δρPBH,f + δρr,f = 0
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[Isocurvature perturbation]
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This isocurvature perturbation,  generated during the RD era will convert 
during the PBHD era to a curvature perturbation , associated to a PBH 
gravitational potential .
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𝒫Φ(k) = S2
Φ(k)

2
3π ( k

kUV )
3

(5 +
4
9

k2

k2
d )

−2

, with SΦ(k) ≡ ( 2
3

k
kevap )

−1/3
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GW Detectability

[Papanikolaou et al. - 2020]



 

• Peaked GW signal at around  due to the suddenness of the transition to the lRD era 
for PBH monochromatic mass distributions [Domenech et al. - 2020].
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[Domenech et al. - 2020]
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for PBH monochromatic mass distributions [Domenech et al. - 2020].
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[Domenech et al. - 2020]

GW Detectability

[Papanikolaou et al. - 2020]



Gravitational waves from PBH number density 
fluctuations: The effect of an extended PBH mass 

distribution 
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[T. Papanikolaou, JCAP 10 (2022) 089]
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𝒫ζ(k) = Aζ (k /k0)ns(k)−1,

with ns(k) = ns,0 +
αs

2!
ln ( k

k0 )
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β(M) ≡
1

ρtot

dρPBH

d ln M
within peak theory

ΩPBH(t) = ∫
Mmax

Mmin

β̄ (M, t) {1 −
t − tini

Δtevap(Mf) }
1/3

d ln M

𝒫ζ(k) = Aζ (k /k0)ns(k)−1,

with ns(k) = ns,0 +
αs

2!
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The PBH mass function and the PBH abundance
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Evolving the PBH gravitational potential
•Our physical system is comprised by matter in form of PBHs which “decays” to 

radiation through the process of PBH evaporation. 
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Evolving the PBH gravitational potential
•Our physical system is comprised by matter in form of PBHs which “decays” to 

radiation through the process of PBH evaporation. 
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δ′￼PBH = − θPBH + 3Φ′￼− aΓΦ
θ′￼PBH = − ℋθPBH + k2Φ

δ′￼r = −
4
3

(θr − 3Φ′￼) + aΓ
ρPBH

ρr
(δPBH − δr + Φ)

θ′￼r =
k2

4
δr + k2Φ − aΓ

3ρPBH

4ρr ( 4
3

θr − θPBH)
Φ′￼= −

k2Φ + 3ℋ2Φ + 3
2 ℋ2 ( ρPBH

ρtot
δPBH + ρr

ρtot
δr)

3ℋ

δα ≡ (ρα − ρtot)/ρtot,

θ ≡ ∂vi /∂xi

′￼≡
d
dη

, with dη ≡ dt/a

⟨Γ⟩(t) =
∫ tevap,max

tevap,min
β(tevap)ΓM(tevap, t)d ln tevap

∫ tevap,max

tevap,min
β(tevap)d ln tevap

, with ΓM(tevap, t) ≡ −
1
M

dM
dt

=
1

3(tevap − t)

Adiabatic initial conditions : δPBH,ini = − 2Φini, δr,ini =
4
3

δPBH,ini, θPBH,ini = θr,ini = 0, Φini = 1



The gravitational potential Φ
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The GW spectrum
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Gravitational waves from PBH number density 
fluctuations: The effect of primordial non-

Gaussianities 

[T. Papanikolaou, X.C He. X.H. Ma, Y.F. Cai, E.N. Saridakis, M. Sasaki,

Phys. Lett. B 857 (2024) 138997]



Primordial non-Gaussianities of local type
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Primordial non-Gaussianities of local type
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[S. Matarrese et al. - 1986, 

S. Matarresse and L. Verde - 2008] 

[Path integral formalism for n-point 
correlation functions (galaxy halo bias)]

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k



Primordial non-Gaussianities of local type
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[S. Matarrese et al. - 1986, 

S. Matarresse and L. Verde - 2008] 

[Path integral formalism for n-point 
correlation functions (galaxy halo bias)]

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k

kR ≪ 1 R ∼ 1/kf



Primordial non-Gaussianities of local type
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[S. Matarrese et al. - 1986, 

S. Matarresse and L. Verde - 2008] 

[Path integral formalism for n-point 
correlation functions (galaxy halo bias)]

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k

kR ≪ 1 R ∼ 1/kf

𝒫Φ(k) = S2
Φ(k)(5 +

4
9

k2

k2
d )

−2

[( 4ν
9σR )

4

τ̄NL𝒫ℛ(k) + 𝒫δPBH,Poisson(k)]



The non-Gaussian PBH matter power spectrum

71

MPBH = 2 × 105g, ΩPBH,f = 5 × 10−8, τ̄NL = 5 × 10−4



The non-Gaussian PBH matter power spectrum
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Non-Gaussian Induced GWs
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Constraining non-Gausianities
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Testing alternative gravity theories  
with PBHs and induced GWs:  

The case of non-singular bouncing cosmology

[T. Papanikolaou, S. Banerjee, Y.F. Cai, S. Capozziello, E.N. Saridakis, 

JCAP 06 (2024) 066]



The non-singular bouncing paradigm

   Motivation
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• It is free of the initial singularity problem.


• It can address the horizon and flatness problems of Hot 
Bing Bang cosmology.
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The non-singular bouncing paradigm

   Motivation 

• It is free of the initial singularity problem.


• It can address the horizon and flatness problems of Hot Bing 
Bang cosmology.


• With matter contracting phases, one can easily give rise to scale-
invariant curvature power spectra, observed on the CMB scales.
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The non-singular bouncing paradigm
   Motivation 

• It is free of the initial singularity problem.


• It can address the horizon and flatness problems of Hot Bing 
Bang cosmology.


• With matter contracting phases, one can easily give rise to 
scale-invariant curvature power spectra, observed on the 
CMB scales.


   “Caveats" 

• Effective violation of the null energy condition for a short 
period of time, .Tμνkμkν < 0 ⇒ ρ + 3p < 0
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Non-singular matter bouncing cosmology:  
The background evolution

81

Background dynamics 

A.   Matter contracting phase  

, with .


B.   Bouncing phase 

 , with .


C. HBB expanding phase


, with . 

a(t) = a− ( t − t̃−

t− − t̃− )
2/3

t− − t̃− =
2

3H−

a(t) = abe
Υt2

2 H(t) = Υt

a(t) = a+ (
t − t̃+

t+ − t̃+ )
1/2

t+ − t̃+ =
1

2H+

η− η+

λcom ≡
2π
k



The dynamics of primordial curvature perturbations
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[Mukhanov-Sasaki (MS) equation]

v′￼′￼k + (c2
s k2 −

z′￼′￼

z ) vk = 0, with vk ≡ zℛk and z ≡
a ρ + p

csHMPl
.



The dynamics of primordial curvature perturbations

•  is the curvature perturbation sound speed depending on the details of the 
underlying gravity theory. For GR, .
cs

cs = 1
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a ρ + p

csHMPl
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[Mukhanov-Sasaki (MS) equation]



The dynamics of primordial curvature perturbations

•  is the curvature perturbation sound speed depending on the details of the 
underlying gravity theory. For GR, .


• Considering Bunch Davies vacuum as our initial conditions on sub-horizon scales, 
i.e.  for , one can solve analytically the MS equation.

cs
cs = 1

vk = e−ikη/ 2k k ≫ aH
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The dynamics of primordial curvature perturbations

•  is the curvature perturbation sound speed depending on the details of the 
underlying gravity theory. For GR, .


• Considering Bunch Davies vacuum as our initial conditions on sub-horizon scales, 
i.e.  for , one can solve analytically the MS equation.


• Remarkably, one finds an analytic approximation for the curvature power spectrum 
 reading as 

cs
cs = 1

vk = e−ikη/ 2k k ≫ aH

𝒫ℛ(k)
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v′￼′￼k + (c2
s k2 −

z′￼′￼

z ) vk = 0, with vk ≡ zℛk and z ≡
a ρ + p

csHMPl
.

[Mukhanov-Sasaki (MS) equation]

𝒫ℛ(k) ≡
k3 |ℛk |2

2π2
≃

a3
−H2

−

48π2csM2
Pla3 for csk ≪ |aH |

a3
−H2

−

12π2csM2
Pla3 ( csk

aH )
2

for csk ≫ |aH | .



The dynamics of primordial curvature perturbations

•  is the curvature perturbation sound speed depending on the details of the 
underlying gravity theory. For GR, .


• Considering Bunch Davies vacuum as our initial conditions on sub-horizon scales, 
i.e.  for , we solve analytically the MS equation.


• One then can find an analytic approximation for the curvature power spectrum 
 during the contracting phase reading as 


•  increases on super-horizon scales during the contracting phase!

cs
cs = 1

vk = e−ikη/ 2k k ≫ aH

𝒫ℛ(k)

𝒫ℛ(k)
86
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[Mukhanov-Sasaki (MS) equation]

𝒫ℛ(k) ≡
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The dynamics of primordial curvature perturbations

• Considering in the following to a short duration bouncing phase and requiring 
continuity of  and  one can derive  during both the bouncing and the 
HBB eras.

vk v′￼k 𝒫ℛ(k)
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The dynamics of primordial curvature perturbations

• Considering in the following to a short duration bouncing phase and requiring 
continuity of  and  one can derive  during both the bouncing and the 
HBB eras.


• Since  is conserved on super-horizon scales during the HBB era one can 
show that at horizon-crossing time, i.e.  (PBH formation time) that 

vk v′￼k 𝒫ℛ(k)

ℛ
k = aH
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0.7Υ8 cos2 A2
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s,mH4

−H2
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1.4B2 cs,mΥ17/2 cos A sin A k
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The dynamics of primordial curvature perturbations

• Considering in the following to a short duration bouncing phase and requiring 
continuity of  and  one can derive  during both the bouncing and the 
HBB eras.


• Since  is conserved on super-horizon scales during the HBB era one can 
show that at horizon-crossing time, i.e.  (PBH formation time) that 
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with A = (H− + H+)/ Υ and B = H−/Υ .
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The curvature power spectrum
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The curvature power spectrum
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The PBH abundance
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⇒ fPBH ≡
ΩPBH,0
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The PBH abundance
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1

ρtot
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The scalar-induced GW signal
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Induced GW signal at nHz
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Testing alternative gravity theories  
with PBHs and induced GWs

• Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) 
gravity, T. Papanikolaou C. Tzerefos, S. Basilakos and E. N. Saridakis, JCAP 10 (2022) 013 • e-
Print: 2112.15059 [astro-ph.CO]


• No constraints for f(T) gravity from gravitational waves induced from primordial black hole 
fluctuations, T.Papanikolaou, C. Tzerefos, S. Basilakos and E. N. Saridakis, Eur. Phys. J. C 83 
(2023) 1, 31 • e-Print: 2205.06094 [gr-qc]


• Constraining F(R) bouncing cosmologies with primordial black holes, S. Banerjee, T. 
Papanikolaou, E. N. Saridakis, Phys. Rev. D 106 (2022) 12, 124012 • e-Print: 2206.01150 [gr-qc]


• Scalar induced gravitational waves in modified teleparallel gravity theories, C. Tzerefos, T. 
Papanikolaou, S. Basilakos and E. N. Saridakis, Phys. Rev. D 107 (2023) 12, 124019 • e-Print: 
2303.16695 [gr-qc]


• Primordial black holes in loop quantum cosmology: the effect on the threshold, T. 
Papanikolaou, Class. Quant. Grav. 40 (2023) 13, 134001 • e-Print: 2301.11439 [gr-qc]


• Gravitational-wave signatures of gravito-electromagnetic couplings, T. Papanikolaou, C. 
Tzerefos, S. Capozziello, G. Lambiase,  e-Print: 2408.17259 [astro-ph.CO]

https://arxiv.org/abs/2112.15059
https://arxiv.org/abs/2205.06094
https://arxiv.org/abs/2206.01150
https://arxiv.org/abs/2303.16695
https://arxiv.org/abs/2301.11439
https://arxiv.org/abs/2408.17259
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Probing fundamental high energy physics theories 
with PBHs and induced GWs:  

The case of no-scale supergravity

[S. Basilakos, D.V. Nanopoulos, T. Papanikolaou, E. N. Saridakis, C. Tzerefos

	 Phys. Lett. B 850 (2024) 138507]



No-Scale Supergravity
• Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976] 

is the low-energy effective field theory (EFT) a higher dimensional Superstring 
theory, combining the principles of supersymmetry (SUSY) and general relativity.
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• Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976] 

is the low-energy effective field theory (EFT) a higher dimensional Superstring 
theory, combining the principles of supersymmetry (SUSY) and general relativity.


• Working within the context of early-Universe cosmology, one can in principle embed 
an inflationary framework within SUGRA compatible with CMB data. 

• This can occur naturally within "no-scale" supergravity models, where all the 
relevant energy scales are functions of only  [E. Cremmer et al. - 1983, J. R. 
Ellis, C. Kounnas and D. V. Nanopoulos - 1984]


 

• The simplest representation of SUGRA is characterized by 2 functions. The Kahler 

potential  and the superpotential W. At the end, one can write the SUGRA action 
and the effective inflationary potential as

MPl

K
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where Kij̄(Φ, Φ̄) ≡
∂2K

∂Φi∂Φ̄ j̄
, 𝒟iW ≡ ∂iW + KiW .

S = ∫ d4x −g (Kij̄∂μΦi∂μΦ̄ j̄ − V), with V(Φ, Φ̄) = eK(Kij̄𝒟iW𝒟j̄W̄ − 3 |W |2 ),



No-Scale Supergravity
• Supergravity (SUGRA) [D. Z. Freedman et al. - 1976, S. Deser and B. Zumino - 1976] 

is the low-energy effective field theory (EFT) a higher dimensional Superstring 
theory, combining the principles of supersymmetry (SUSY) and general relativity.


• Working within the context of early-Universe cosmology, one can in principle embed 
an inflationary framework within SUGRA compatible with CMB data. 

• This can occur naturally within "no-scale" supergravity models, where all the 
relevant energy scales are functions of only  [E. Cremmer et al. - 1983, J. R. 
Ellis, A. Lahanas, D. V. Nanopoulos & K. Tamvakis - 1984]


 

• The simplest representation of SUGRA is characterized by 2 functions. The Kahler 

potential  and the superpotential W.


• For  and  one gets Starobinsky inflation [J. 

R. Ellis, D. V. Nanopoulos & K. Olive - PRL 2013],

MPl

K

K = − 3 ln (T + T̄ −
ϕϕ̄
3 ) ϕ = 3c tanh ( χ

3 )
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V(χ) =
μ2

4 (1 − e− 2
3 χ)

2

.
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PBHs in no-scale SUGRA inflection-point inflation



• Working within the simplest no-scale SUGRA model, namely the Wess-Zumino 

one, where , one can produce naturally (light and not only) 

PBHs by introducing non-perturbative deformations of  [D.V. Nanopoulos, V. 
Spanos, and I. Stamou - 2020] which can be recast as

W =
μ
2

ϕ2 −
λ
3

ϕ3

K
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PBHs in no-scale SUGRA inflection-point inflation

K = − 3 ln (T + T̄ −
ϕϕ̄
3

+ ae−b(ϕ+ϕ̄)4(ϕ + ϕ̄)4) .

V(ϕ) =
3e12bϕ2ϕ2(cμ2 − 2 3cλμϕ + 3λ2ϕ2)

[−48aϕ4 + e4bϕ2(−3c + ϕ2)]2 {e4bϕ2 − 24aϕ2[6 + 4bϕ2(−9 + 8bϕ2)]}
.



• Working within the simplest no-scale SUGRA model, namely the Wess-Zumino 

one, where , one can produce naturally (light and not only) 

PBHs by introducing non-perturbative deformations of  [D.V. Nanopoulos, V. 
Spanos, and I. Stamou - 2020] which can be recast as


• One then gets the following inflection-point inflationary potential:


• In particular, inflection-point inflation, where , 
one realises naturally an ultra slow-roll (USR) phase, during which the non-
constant mode of the curvature perturbation grows exponentially leading to 
PBH formation.

W =
μ
2

ϕ2 −
λ
3

ϕ3

K

V′￼′￼(χinflection) = V′￼(χinflection) ≃ 0
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PBHs in no-scale SUGRA inflection-point inflation

K = − 3 ln (T + T̄ −
ϕϕ̄
3

+ ae−b(ϕ+ϕ̄)4(ϕ + ϕ̄)4) .

V(ϕ) =
3e12bϕ2ϕ2(cμ2 − 2 3cλμϕ + 3λ2ϕ2)

[−48aϕ4 + e4bϕ2(−3c + ϕ2)]2 {e4bϕ2 − 24aϕ2[6 + 4bϕ2(−9 + 8bϕ2)]}
.
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Working within peak theory, we derive the 
PBH mass function defined as

ΩPBH(t) = ∫
Mmax

Mmin

β̄ (M, t) {1 −
t − tini

Δtevap(Mf) }
1/3

d ln M .

Accounting for the PBH Hawking 
evaporation the PBH abundance reads



GWs induced by inflationary adiabatic perturbations.
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A distinctive three-peaked GW signal

kNL ∼ 235kevapkevap
kUV kf

𝒫ΦPBH
(k) = S2

Φ(k)
2

3π ( k
kUV )

3

(5 +
4
9

k2

k2
d )

−2

PBH number density perturbations

𝒫ℛ(kNL) = 1 𝒫ΦPBH
(kUV) = 1
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Testing fundamental high energy physics theories 
with PBHs and induced GWs

• Primordial black holes and gravitational waves from non-canonical inflation, T. 
Papanikolaou, A. Lymperis, S. Lola, E.N. Saridakis, Published in: JCAP 03 (2023) 003 • e-Print: 
2211.14900 [astro-ph.CO]


• Induced gravitational waves from flipped SU(5) superstring theory at nHz, S. Basilakos, D. 
V. Nanopoulos, T. Papanikolaou, E.N. Saridakis, C. Tzerefos, Phys. Lett. B 849 (2024) 138446,  
e-Print: 2309.15820 [hep-th]


• Revisiting string-inspired running-vacuum models under the lens of light primordial black 
holes, T. Papanikolaou, C. Tzerefos, S. Basilakos, E.N. Saridakis, N. E. Mavromatos, Phys. 
Rev. D 110 (2024) 2, 024055 • e-Print: 2402.19373 [gr-qc]


• Observable Signatures of No-Scale Supergravity in NANOGrav, S. Basilakos, D. V. 
Nanopoulos, T. Papanikolaou, E.N. Saridakis, C. Tzerefos, JMPD (2024) • e-Print: 2409.02936 
[gr-qc]


• Gravitational wave signatures from reheating in Cern-Simons running-vacuum 
cosmology, S. Basilakos, C. Tzerefos, T. Papanikolaou, S. Basilakos, N.E. Mabromatos, e-
Print: 2411.14223 [gr-qc]

https://arxiv.org/abs/2211.14900
https://arxiv.org/abs/2309.15820
https://inspirehep.net/literature/2763343
https://inspirehep.net/literature/2763343
https://arxiv.org/abs/2402.19373
https://inspirehep.net/literature/2825262
https://arxiv.org/abs/2409.02936
https://arxiv.org/abs/2411.14223
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• PBHs are associated with a very rich phenomenology 

depending on their mass. 

• Within the asteroid-mass window one can produce up to the 
totality of the dark matter with PBHs. 

• Through scalar-induced GWs one can probe


A.  The physics of the very early Universe [small-scale ,             

primordial non-Gaussianities].


B.   The underlying nature of gravity 


C.   Fundamental High Energy Physics (HEP) theories


𝒫ℛ(k)
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Thanks for your attention!
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Appendix
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Deriving 𝒫Φ(k)

• The uniform energy density curvature perturbations  and :


• The isocurvature perturbation


• The comoving curvature perturbation 


• When ,  and . Thus, for , .


• For , . Thus,  for  .


• For sub-horizon scales, i.e. , 


• Knowing that , one gets that 

ζPBH ζr

ℛ

w = 0 Φ = constant Φ′￼= 0 k ≪ ℋ ℛ = − ζ =
5
3

Φ

k ≪ ℋ ζ = ζPBH = ζr + S/3 ≃ S/3 ≃ δPBH(tf)/3 Φ = δPBH(tf)/5 k ≪ ℋ

k ≫ ℋ

δPBH = −
2
3 ( k

aH )
2

Φ Φ = −
9
4 ( ℋd

k )
2

δPBH(tf) for k ≫ ℋ .

ζr = − Φ +
1
4

δr, ζPBH = − Φ +
1
3

δPBH

S = 3 (ζPBH − ζr) = δPBH −
3
4

δr

ℛ =
2
3

Φ′￼/ℋ + Φ
1 + w

+ Φ ≃ − ζ for k ≪ ℋ

d2δPBH

ds2
+

2 + 3s
2s(s + 1)

dδPBH

ds
−

3
2s(s + 1)

δPBH = 0 ⇒ δPBH =
2 + 3s
2 + 3sf

δPBH(tf) with s = a/ad
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From the curvature power spectrum to the PBH mass function
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𝒫ζ(k) σ2 =
4(1 + w)2

(5 + 3w)2 ∫
∞

0

dk
k

(kR)4W̃2(k, R)𝒫ζ(k)

μ2 =
4(1 + w)2

(5 + 3w)2 ∫
∞

0

dk
k

(kR)4W̃2(k, R)𝒫ζ(k)( k
aH )

2

Peak Theory : 𝒩(ν) =
μ3

4π2

ν3

σ3
e−ν2/2,

where ν ≡
δ
σ

βν =
MPBH(ν)

MH
𝒩(ν)Θ(ν − νc)

MPBH = MH𝒦(δ − δc)γ

[Niemeyer et al. - 1997]

δm = δl −
3
8

δ2
l

[DeLuca et al., Young et al - 2019]

β(M ) = ∫
4
3σ

νc

dν
𝒦
4π2 (νσ −

3
8

ν2σ2 − δc)
γ μ3ν3

σ3
e−ν2/2,

𝒫ζ(k)

where δc depending on the shape of 𝒫ζ(k)

[Musco et al - 2020]



The PBH matter power spectrum
• In this case, we have a gas of PBHs with different masses. We should define a 

PBH mean separation scale accounting for the extended PBH mass distribution 
function.
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⟨M⟩(t) ≡
∫ Mmax

Mmin
Mβ̄ (M, t) {1 − t − tini

Δtevap(Mf) }
1/3

d ln M

∫ Mmax

Mmin
β̄ (M, t) d ln M

⇒ r̄ = ( 3⟨M⟩
4πρPBH )

1/3

.

PδPBH
(k) ≡ ⟨ |δPBH

k |2 ⟩ =
4π

3k3
UV

, where k < kUV =
a
r̄

𝒫Φ(k) = S2
Φ(k)

2
3π ( k

kUV )
3

(5 +
4
9

k2

k2
d )

−2



The gravitational potential Φ
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a) δPBH,k ∝ a : δPBH,kNL
(ηr) = 1 ⇒ kNL = k3/7

UV ( 3π
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1/7

( ad

ar )
2/7

( 4a2
d

9t2
d )

2/7

kmax = min[kd, kNL] ⇒ 𝒫Φ(k) =
2

75π ( k
kUV )

3

.b) Being quite conservative, we consider only modes k ∈ [kr, kmax]
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Primordial non-Gaussianities of local type
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kR ≪ 1 R ∼ 1/kf

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k

𝒫δPBH
(k) ≃ 𝒫ℛ(k)ν4 ( 4

9σR )
4

∫
d3p1d3p2

(2π)6
τNL(p1, p2, p1, p2)W2

local(p1)W2
local(p2)Pℛ(p1)Pℛ(p2)

+
k3

2π2
(k − independent terms)

τ̄NL

{
𝒫Φ(k) = S2

Φ(k)(5 +
4
9

k2

k2
d )

−2

[( 4ν
9σR )

4

τ̄NL𝒫ℛ(k) + 𝒫δPBH,Poisson(k)]



The non-Gaussian PBH matter power spectrum
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, with 𝒫ℛ(kf) ≃ 10−2
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2σ2τ (ln2 k1
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The non-Gaussian PBH matter power spectrum
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The non-Gaussian PBH matter power spectrum
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 Scale Hierarchy : 105Mpc−1 < kevap < kd < kc < kUV ≪ kf ∼ 1/R
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Hierarchy of scales
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kUV

kf
= (

ΩPBH,f

γ )
1/3

,
kd

kf
= 2ΩPBH,f ,

kevap

kf
= (

3.8g*ΩPBH,f

960γ )
1/3

( MPBH

MPl )
−2/3

.

ΩGW(η0, kUV) < 10−6 (BBN GW bound) : ΩPBH,f ≲ 10−6 ( MPBH

104g )
−17/24

Early PBH domination : ΩPBH,f > 6 × 10−10 104g
MPBH

 Scale Hierarchy : 105Mpc−1 < kevap < kd < kc < kUV ≪ kf ∼ 1/R

PBH mass range : 1g < MPBH < 109g



Cosmological motivation for no-scale SUGRA

No-scale SUGRA models have some very attractive features:


1. They naturally give rise to Strarobinsky-like inflationary models, favoured 
by Planck [J.R. Ellis et al. - 2013, C. Kounnas et al. - 2015].


2. The inflationary energy scale being naturally much smaller than  [J. 
R. Ellis, D. V. Nanopoulos, K. A. Olive and K. Tamvakis - (1982)] consistent with 
a very small .


3. The inflaton can be viewed as a singlet field in a see-saw mechanism 
responsible for the generation of neutrino-masses [Murayama et al. - 1993], 
providing as well an efficient scenario for reheating and leptogenesis [M. 
Fukugita and T. Yanagida - 1986]. 

4. One is naturally met with a vanishing cosmological constant at the tree 
level [E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos - 1983].


MPl

r < 0.004
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