GRAVITATIONAL WAVE PROBES OF DARK SECTORS

Pedro Schwaller Mainz University

Particle Physics and Cosmology Seminar University of Warsaw November 28, 2024

Gravitational waves and dark sectors

Gravitational waves as windows into the early, dark Universe

Primordial gravitational wave sources

- Overview
- Audible axions

Thoughts on the PTA signal

Complementary probes via CMB spectral distortions

What do we know about the early Universe?

Thermal History

Gravitational Waves?

Gravitational waves as messengers from the early Universe

- Travel undisturbed from earliest times
- Only produced by violent, non-equilibrium physics
 - Stochastic GW background

Relevant scale: Hubble radius ↔ GW wavelength

GW frequency

 $f_{\rm GW} \sim T_*$

Age of Universe

O PRISMA⁺

Audible Axions

Axion misalignment and DM $\phi_i = \theta f, \quad \phi'_i \approx 0, \quad \theta \sim \mathcal{O}(1)$ Axion EOM $\phi'' + 2aH\phi' + am_{\phi} = 0$

Redshifts with a^{-3} , i.e. like non-relativistic matter

Candidate for non-particle dark matter

 $\phi_i = \theta f$

ALP dynamics - with dark photon $\phi_i = \theta f, \quad \phi'_i \approx 0, \quad \theta \sim \mathcal{O}(1)$ Equation of motion (ϕ) $\phi'' + 2aH\phi' + a^2V'(\phi)$ $\frac{2}{\phi} - \frac{\alpha}{fa^2} \mathbf{X}' \cdot (\nabla \times \mathbf{X})$

ALP starts rolling when $H \sim m_{\phi}$

ALP is damped due to exponential production of dark photons

- Reduced relic abundance enlarge natural DM parameter space
- Or production of vector DM

Agrawal, Marques-Tavares, Xue, 2018 And others...

 $\phi_i = \theta f$

How does this work?

Equation of motion (in momentum space)

$$X_{\pm}''(\tau, \boldsymbol{k}) + \left(k^2 \pm k \frac{\alpha}{f} \phi'(\tau)\right) X_{\pm}(\tau, \boldsymbol{k}) = 0$$

The rolling ALP induces a tachyonic instability

$$X''_{\pm} + \omega_{\pm}(\tau)X_{\pm} = 0$$
 with $\omega_{\pm} = k^2 \mp k \frac{\alpha}{f} \phi'$

Exponential growth of a range of dark photon modes

$$X(\tau) \propto e^{|\omega|\tau}$$
 for $k \sim \frac{\alpha \phi'}{2f}$

(Note: Ordinary ALP decay is inefficient)

Dark photon spectrum ϕ

Initial condition violates parity (field rolls to the left or to the right)

 $\omega \hat{\Phi} h \hat{\phi} dak \hat{k} p h \hat{\phi} \phi'$ helicity dominates

$$0 < k < \frac{\alpha \phi'}{f}, \quad \frac{k}{m} \lesssim \alpha \theta$$
$$\kappa = \frac{1}{2f} \gtrsim \frac{1}{2}m$$

O PRISMA+

O PRISMA+

The exponential growth amplifies quantum fluctuations in the dark photon fields which source a chiral gravitational wave background

GW probes of audible ALPs

Machado, Ratzinger, Stefanek, PS, 1912.01107

O PRISMA⁺

Audible relaxion

Audible relaxion

 $-\mathcal{L} \supset V(H,\phi) + \frac{r_X}{4} \frac{\phi}{f_{\phi}} X_{\mu\nu} \widetilde{X}^{\mu\nu}$

 $V(H,\phi) = V_{\rm roll}(\phi) + \mu_H^2(\phi)|H|^2 + \lambda|H|^4 + V_{\rm br}(H,\phi)$

Dark photon friction essential for trapping relaxion after reheating

 \rightarrow Potentially observable GW signal

Banerjee, Madge, Perez, Ratzinger, PS, 2105.12135

JGU

GWs from kinetic misalignment

Consider the case of large initial $\dot{\phi}$

Detectable signal also for smaller decay constants

Fix ALP mass to fit DM relic abundance

Also consistent with Axiogenesis!

From Madge, Ratzinger, Schmitt, PS, 2111.12730

See also Co, Harigaya, Pierce, 2104.02077

Supercool audible axions

Assume ϕ is trapped initially (e.g. trapped misalignment)

Rolling delayed below $m_{\phi} \sim H$

Benefits:

- Observable GWs at smaller f_{ϕ}
- Also for smallerALP coupling
- Potentially even with SM photon

Christopher Gerlach, Daniel Schmitt, PS, in progress

Pulsar Timing Arrays

What is a Pulsar Timing Array?

© Tonia Klein

Pulsar timing arrays

NANOGrav has observed evidence for a stochastic GW background at nano-Hz frequencies: NANOGrav Collaboration,

Strong evidence for Hellings-Downs correlation

Also supported by new EPTA+InPTA, CPTA data (PPTA less)

Did PTAs hear the audible axion?

PRISMA⁺

What about other models?

This is a very strong signal!

 $\Omega_{\rm GW, \, today} \sim 10^{-9}$

Comparison: The photon density today is $\Omega_{\gamma} \sim 10^{-5}$, but photons were in thermal equilibrium in early Universe

Any source that can explain this must:

- ► Represent a significant fraction of the total energy density at the time of production, $T_* \sim (10 1000) \,\text{MeV}$
- Be very efficient at converting that energy to GW radiation
- ▶ Then disappear before onset of BBN, $T \sim 1 \,\mathrm{MeV}$

Supercooled phase transitions

Benchmark model: Coleman-Weinberg model with vanishing tree level potential $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^2 + D_{\mu}\Phi^{\dagger}D^{\mu}\Phi - V(\Phi,T)$

Two parameter model: Mass scale M and coupling g

Signal dominated by colliding bubbles and sound shells

Simulated by Lewicki and Vaskonen, 2208.11697

Supercooled phase transitions

Madge et al, 2306.14856

Comparison with 12 year data

Large supercooling and reheating

- Dilution of baryons, dark matter
- Two BBNs

Pheno: Light scalar $m_{\phi} \approx M$, decay to electrons and photons

Higgs portal not viable, instead

FCC? Or low energy e+e- machine (e.g. MESA in Mainz)

$$\mathcal{L} \supset c_{ee} \frac{|\Phi|^2}{\Lambda^2} L H \bar{e} + c_{\gamma\gamma} \frac{|\Phi|^2}{\Lambda^2} F_{\mu\nu} F^{\mu\nu}$$

Axion/ALP domain walls

Domain walls appear when discrete symmetries are spontaneously broken to degenerate ground states

Long lasting GW source, until DWs annihilate, before dominating the Universe ideally

Review: Saikawa, 1703.02576

Axion DW: $U(1)_{PQ} \rightarrow Z_N$

Surface tension $\sigma = 8m_a f_a^2$

Annihilation triggered by QCD instantons

$$T_{\rm ann} \sim 1 \, {\rm GeV} \, \left(\frac{g_*(T_{\rm ann})}{80}\right)^{-\frac{1}{4}} \left(\frac{\Lambda_{\rm QCD}}{400 \, {\rm MeV}}\right)^2 \left(\frac{10^7 \, {\rm GeV}}{f_a}\right) \sqrt{\frac{10 \, {\rm GeV}}{m_a}}$$

Madge et al, 2306.14856

Axion/ALP domain walls

Madge et al, 2306.14856

Maybe room for improvement (FCC-hh?)

Invisibly decaying DWs

Madge et al, 2306.14856

Pushing the limits

Spectral distortions?

Around $10^4 \leq z \leq 10^6$, photon number is frozen

Any energy added to the photons leads to a so called μ distortion

Energy source we consider here: Gravitational damping of dark sector fluctuations

JG

Example source: Annihilating domain walls

Already probes allowed parameter space

Complementary to GW probes, can break degeneracy

Multi-messenger cosmology

High frequency GW searches

Higher Frequency \rightarrow shorter wavelength

Experiment may fit in your laboratory

Gravity couples to everything

Any very sensitive device could potentially be a detector

Current interest:

Cavities for axion searches

Berlin et al, 2112.11465

Gertsenshtein effect: GWs convert to photons in strong magnetic field

Sources? Primordial BH, superradiance, or ...?

E&M on curved backgrounds is confusing however

E and B fields not uniquely defined everywhere in detector, depend on chosen coordinate frame $E_a = F_{a0}$?

Observables should be independent!

Proposed coordinate independent perturbation scheme

Applied to:

- Thin rod
- ► Sphere

Including mechanical deformations

Compared with commonly used

approximations \rightarrow can identify range of validity and provide error estimate

Wolfram Ratzinger, Sebastian Schenk, PS, 2404.08572

 $E_a = \hat{e}^{\mu}_a F_{\mu\nu} u^{\nu} !$

Summary

GWs are new window to early, dark Universe

Future GW measurements will (start to) probe unknown dynamics in the early Universe

▶ Phase transitions, scalar field (axion) dynamics, cosmic strings, domain walls

Evidence for stochastic GW background in nano-Hz range, consistent with several new physics scenarios

Combination of laboratory, GW and astro/cosmo measurements required to identify sources - spectral distortions can help in PTA range

High-frequency GW searches emerging as new frontier

Exciting times :)

Extra slides :)

E&M on curved backgrounds is confusing however

Figure 2: Amplitude of the observed magnetic field measured by a pickup loop attached to the spherical cavity of radius R, as a function of ωR . Here, the sound velocity is chosen to be $v_s = 10^{-2}$. Furthermore, the (relative) wall thickness is $\Delta R/R = 1/100$, and we have chosen only a plus polarisation of the gravitational wave, $h^+ = 1$ and $h^- = 0$. As an example, the pickup loop is located at angles of $\theta = \pi/5$ and $\varphi = 0$, such that in a spherical basis $d^- = 0.572$, $d^0 = -0.588$ and $d^+ = -0.572$. Similarly, in our example, the magnetic background field in this basis is given by $\overline{B}^- = 0.416$, $\overline{B}^0 = 0.81$ and $\overline{B}^+ = -0.416$, respectively.

One more: Primordial black holes

PRiSMA⁺

Depta et al,

2306.17836

Compatible with primordial GWs from new physics

NANOGrav Collaboration, 2306.16219, APJL 951

ALP dynamics - once more

 $\phi_i = \theta f, \quad \phi'_i \approx 0, \quad \theta \sim \mathcal{O}(1)$

Equation of motion

$$\phi'' + 2aH\phi' + a^2V'(\phi)$$
$$-\nabla^2\phi - \frac{\alpha}{fa^2}\mathbf{X}' \cdot (\nabla \times \mathbf{X}) = 0$$

Once a significant population of dark photons is produced, the back-scattering into ALP fluctuations becomes nonnegligible

Requires fully numerical treatment on the lattice

Important to get correct relic abundance prediction

From 2012.11584 with W. Ratzinger, B. Stefanek

See also Kitajima, Sekiguchi, Takahashi, 2018 Agrawal, Kitajima, Reece et al, 2020

Corrections to GW signal

Qualitative features unchanged, but polarisation is washed out at large couplings

> From 2012.11584 with W. Ratzinger, B. Stefanek see also 2010.10990 by (Kitajima, Soda, Urakawa)

Detectable region - update

From 2012.11584 with W. Ratzinger, B. Stefanek

Axion/ALP domain walls

Madge et al, 2306.14856

Now what about the spectral distortions?

Spectral distortions?

Around $10^4 \leq z \leq 10^6$, photon number is frozen

Any energy added to the photons leads to a so called μ distortion

Energy source we consider here: Gravitational damping of dark sector fluctuations

JG

Spectral distortions as probes of low scale GWs

Tensor fluctuations (GWs) also source μ distortions

But difficult to test. Better to directly go for the scalar fluctuations (that also source the GWs)

Spectral distortions from dark sector anisotropies

Assume decoupled dark sector, $\Omega_d \ll 1$

Large fluctuations $\delta_d = \delta \rho_d / \rho_d \sim 1$

 Gravitationally induced sound waves in photons e_{ac}

Resulting μ distortions

$$\mu = \int d\log k \ \epsilon^{\lim}_{ac}(k) \mathcal{W}(k),$$

Example source I: Dark sector phase transition

Note: Ω_d fixed to satisfy $N_{\rm eff}$ constraints

Ramberg, Ratzinger & PS, 2209.14313

Example source II: Annihilating domain walls

Already probes allowed parameter space

Complementary to GW probes, can break degeneracy

Multi-messenger cosmology

Source III: (global) cosmic strings

Note: Local strings mainly radiate from small loops and are thus NOT an efficient source of spectral distortions

Example source IV: Audible axions...

Expect better sensitivity for axion fragmentation

Fit with broken power law signals

Wolfram Ratzinger & PS, 2009.11875

Fit with Phase Transition

Generic PT parameterisation, best fit with PT at temperatures in few MeV range

Challenge for model building \rightarrow Hint for dark sector

Wolfram Ratzinger & PS, 2009.11875

Fit with Phase Transition

Generic PT parameterisation, best fit with PT at temperatures in few MeV range

Some model parameters excluded by PTA data now!

At higher frequencies

LISA will probe above 10 GeV, colliders could fill gap

Standard model

The hot early Universe sources GWs!

- Classical picture: thermal fluctuations source tensor fluctuations
- Quantum picture: gluon + gluon -> graviton

64

From Ringwald,

Zhu, 2020

Schütte-Engel, Tamarit, 2020

Original computations:

Ghiglieri, Jackson, Laine,

Ghiglieri, Laine, 2015

f [Hz]

GWs from Phase Transitions

First order PT \rightarrow Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

PT signal

PT characterised by few parameters:

- Latent heat $\alpha \approx \frac{\Omega_{\text{vacuum}}}{\Omega_{\text{rad}}}$
- Bubble wall velocity $\,arcall^{\,}$
- Bubble nucleation rate eta
- PT temperature T_*

More details, see e.g.:

Relic abundance

Energy density
$$ho_{\phi} = rac{1}{2} m_{\phi}^2 \theta^2 f^2$$

$$m_{\phi} \sim H_{\rm osc} \sim \frac{T_{\rm osc}^2}{M_P}$$

Hubble

$$\frac{\rho_{\phi}}{\rho_{\rm rad}} \sim \frac{m_{\phi}^2 \theta^2 f^2}{T_{\rm osc}^4} \sim \frac{\theta^2 f^2}{M_P^2}$$

Increases due to redshift

$$\frac{a_{\rm osc}}{a_{\rm eq}} \sim \frac{\sqrt{m_{\phi}M_P}}{\rm eV}$$

Relic abundance II (ALP)

