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Gravitational waves from the early Universe



Gravitational-wave echo from the Big Bang

[National Astronomical Observatory of Japan, gwpo.nao.ac.jp]

Birth of
the

Chance to peek behind the veil of the CMB
= Probe cosmology of the primordial Universe at very early times

= Probe particle physics at extremely high energies — New physics!?



Beyond-the-Standard-Model (BSM) options

= Accelerated expansion before the Hot Big Bang
= Complementarity: GWs + CMB observations

Abbrevations: GW: gravitational wave; CMB: cosmic microwave background; QFT: quantum field theory;
EW: electroweak; QCD: quantum chromodynamics; PBH: primordial black hole; GUT: grand unified theory
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Beyond-the-Standard-Model (BSM) options

= Accelerated expansion before the Hot Big Bang = First-order transition in the QFT vacuum structure
= Complementarity: GWs + CMB observations = Complementarity: GWs + EW /QCD / dark sector

= Overdensities that emit GWs and collapse to PBHs = Phase transition remnants preserving the old vacuum
= Complementarity: GWs + primordial black holes = Complementarity: GWs + grand unified theories

Abbrevations: GW: gravitational wave; CMB: cosmic microwave background; QFT: quantum field theory;
EW: electroweak; QCD: quantum chromodynamics; PBH: primordial black hole; GUT: grand unified theory



Gravitational waves from cosmic strings



Cosmic strings

[Ringeval: 1005.4842]

P =pei®
@] =0 .
= Topological defects after spontaneous

symmetry breaking, s.t. w1 (M) nontrivial

9 = For instance, breaking of global /local
Bl U(1); symmetry restored at string cores
= Condensed matter: Magnetic field vortices
(quantum vortices) in a superconductor

Relevant parameters
= Gpu: String tension = energy per unit length, in units of G = 1/M1%

= «: Size of string loops at time of formation, in units of the horizon dj, ~ t ~ H™!



Cosmic strings in grand unified theories

Semi-simple unified groups
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Cosmic-string tension: Controlled by energy scale of spontaneous symmetry breaking
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Interesting possibilities

v~ Agur ~ 10878 GeV, v ~ Ajgermediate ~ 10770 GeV



Gravitational waves from cosmic strings

[Allen, Martins, Shellard: ctc.cam.ac.uk/outreach] [Gouttenoire, Servant, Simakachorn: 1912.02569)]

loop

kink cusp

Gravitational waves from
= Cusps
= Kinks

Infinitely | tri d string | ; . . .
n |r?| ely cfng strings and s rlng2 oops « Kink—kink collisions
scaling regime: pcs X perit < H

= Nambu—Goto strings: Infinitely thin, particle emission irrelevant at late times

= Abelian-Higgs strings: Short-lived loops, decay into massive particles

[Vachaspati, Vilenkin: PRD 31 (1985) 3052] [LISA Cosmology Working Group, Auclair et al.: 1909.00819]



GW spectrum

[S. Blasi, V. Brdar, KS: 2009.06607]
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Broadband signal
= Reflects scaling regime, GW emission during radiation and matter domination
= Interesting target for future GW experiments. Source of the PTA signal?



2023 PTA results

[NANOGrav: 2306.16219] [NANOGrav: 2306.16213]
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Recent PTA results

== i e rmana] = Evidence for nHz GWB signal
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= Stable cosmic strings do not yield
a good fit (spectrum too flat)

_ _ = Alternatives doing a better job:
s /e metastable strings, superstrings




Upper limits

PTA upper limit on the tension of stable Nambu—Goto strings

Gp<1070 5 v<5x108Gev

[NANOGrav: 2306.16219]

T T T T T T T T T T T T T T L e e s L S B AN

r —— STABLE-C 7| — STABLE-C + SMBHB -
I — STABLE-K —— STABLE-K + SMBHB
[ ~— STABLE-M ——— STABLE-M + SMBHB

STABLE-N —— STABLE-N + SMBHB

B e e e e e

p £ B i R i
LA N Ll I\

-10.5  —10.0 -9.5 -13 —12 -1 —10
log, Gt log,o G

L |
—11.0

Different models
= GW emission dominated by cusps (c), kinks (k), fundamental mode (m); numerical result (n)

= GWs from cosmic strings only or in combination with GWs from supermassive BH binaries



Prospects for LISA

[LISA Cosmology Working Group: 2405.03740]

Identifying tension cutoffs, CS model II, BOS P;
K A LISA 4yr PLS
; —=~ Foregrounds
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Expected sensitivity: Gu ~ 101617« v ~ few x 1010 GeV

= GW signal from cosmic strings competes with galactic and extragalactic foregrounds



Low-scale cosmic strings



Phenomenology at low string tension
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= Shrink because of GW emission

dt
— =-TGu, I~ 50
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ini
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Two facts about string loops
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= Characteristic length at birth
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by = 2acty a ~ 0.05 to
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Phenomenology at low string tension
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Two facts about string loops
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Phenomenology at low string tension

O Mo = '3
Two facts about string loops
b
tini
= Shrink because of GW emission O O
dl
— = —-IGpu, r~50 © Q
dt
= Characteristic length at birth O
Ha
L. =2at., a=~005 o | vy O

Loop length decreases linearly in time between birth and today

é(tO) = o = rG/J«(tO - t*) 5 ty € [tini7 tO]

Computation of GW signal only valid starting from some early initial time tin;

Observation: For late tin; and small enough G, no loop ever reaches zero length!
Shortest loops = earliest loops today. Length: £iin = Cx (tini) — TGu (to — tini)



Sharp cutoff frequency
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Sharp cutoff frequency

13
Present-day frequencies of GWs emitted by strings Gu =1l

2() 2k

=

2k/€(t)  Frequency at emission
£(t) Loop length at emission
k Mode number (k =1,2,--+)
a(t)/ap  Cosmological redshift factor L O

01

Minimal length ¢in implies frequency cutoff
= Focus on fundamental mode (k = 1) for now

= Shortest loops today: minimal length, minimal
redshift — highest possible frequency

2 2
Zmin 2atiui - rG/J' (tO - tini)

feut =
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Initial loop length

Cutoff frequency is positive and finite if: 2 tini > FTGu (to — tini) ® TGu ty

re Gu —20\ 1/2
tini > tout = T;uto ~ 225 (10%20) . T < Teut ~ 330ke\/< e )

Problem: ti,; is model-dependent and typically not well known

Four reasonable options

©®  tini = trorm Network formation Ptot = 3H? M%,l ~ u2

@  tini = tric End of friction regime BT3/1u~2H

1/2
®  tini = tignk  Particles from kinks subdominant Py ~ N“z ~ T Gu?



Initial loop length

Cutoff frequency is positive and finite if: 2 tini > FTGu (to — tini) ® TGu ty

_TGp
tini > teut = ?fo ~22s (ﬁ) ’

Gu

Tini < Tcut ~ 330 keV(

10720 1/2
Gu )

Problem: ti,; is model-dependent and typically not well known

Four reasonable options

(1]

(2]
(3]
(4]

tini
tini
tini

tini

tform
tric
tiink

teusp

Network formation

End of friction regime
Particles from kinks subdominant

Particles from cusps subdominant

Ptot = 3H2M§>1 ~
BT/~ 2H

Pyink ~ ~ rGM2

Ny pt/?
Z
N3/

o7z ™ |'Gu2

Pcusp (!



Parameter space

[KS, Schréder: 2405.10937]

Vacuum expectation value v/GeV
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= Gu and Tin; values resulting in a cutoff frequency in the k = 1 GWB spectrum

= Hierarchy of temperature scales for Gu ~ 10729 Tousp < Tric < Tiink < Trorm



Earlier results in the literature

[1709.02434]
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Earlier results in the literature

[1709.02434]

107 - PTA aLIGO O1 1

aLIGO
design

What's new? Nothing! Our Qaw is standard, but we do not integrate from tj,; = 0

kmax
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8m 5 r 12k (a(t)) (Zka(t) )
Qaw (F) = - (G S g (2 el L
ow =5 @Y g7 | (52) (5
k= ini




Example spectra

Numerical spectra based on VOS loop

number densities [KS, Schrader: 2405.10037]

Lo i logyo (Gpt)  logig (Tini/GeV)
1| —20.0 —5.1  (Tcusp)
— 2 | —19.0 —3.9  (Tcusp)
| 3| —234 —33  (Taic)
107 4 | —224 —2.3  (Thic)

= No fine-tuning required

101}

GWB spectrum hQ(f)

= Sweet spot where signal even
observable by BBO and DECIGO

107
| = Power-law behavior can be
understood analytically

107%

Challenge: Subtraction of galactic and

10°° 107t 10?10 10° 10!

extragalactic foregrounds. Impossible?
GW frequency f/Hz




Summation of oscillation modes

Total GWB spectrum

Qaw (f) =

(1)
GW'
spectrum from the fundamental mode

can be written in terms of ie.,

Simple approximation for QEU\\

Q) ~ O (four — F) AF/2




Summation of oscillation modes

Total GWB spectrum

kmax (1)

Qi (F/K)

Qaw ()= Y 2D
k

k=1 max

(1)
GW'
spectrum from the fundamental mode

can be written in terms of ie.,

Simple approximation for QEU\\

Q) ~ O (four — F) AF/2

Power-law behavior of the total GWB spectrum at low and high frequencies

R0 £3/2 RO il Fae \ &8
low X 5 high X q+1/2 f



Features in the GW spectrum

[KS, Schréder: 2405.10937]

Total spectrum R

10°1

GWB spectrum  1’Q(f)
2

I :
107! 10
GW frequency f/Hz

10-17

Novel features in the spectrum: Series of peaks and dips at integer multiples of feyt
on top of a broken power law (f3/2 — f*1/3) — Clear target for GW experiments
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Loop number and energy densities

Assumption: Gu is so low that no loop has fully decayed yet because of GW emission

Consequence: All loops produced since tjn; still exist in our present Universe

21



Loop number and energy densities

Assumption: Gu is so low that no loop has fully decayed yet because of GW emission

Consequence: All loops produced since tjn; still exist in our present Universe

Present-day loop number density

e 50 [/10%s)3%/?
N (to) = / de g (4, to) ~ 7( >
0

kpC3 (Bl

Present-day loop energy density

1 [~ G 1025 /2
dl pl npw z7t:10*13< )( )
pcritA " RI\[( ) 10-19 tini

= Cosmologically harmless

h2Q (to) =

= Signatures from nearby loops? Microlensing, GW bursts?
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From VOS to BOS
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Distribution of

initial loop lengths

[1309.6637]

0.0 -
1076 107°

1074

Sharp spectral features follow from the assumption of a unique initial loop length,
« =~ 2a ty with v ~ 0.05. But initial loop length deviates from perfect delta peak.
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New number densitities

Loop number density in terms of the loop production function

"t NA 3
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tini
Standard choice in the velocity-dependent one-scale (VOS) model
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Numerical simulations by Blanco-Pillado, Olum, and Shlaer (BOS) better described by
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New number densitities

Loop number density in terms of the loop production function

t N 3
n(zm):/ dt’f(e’,t’)(‘:((’;))) , 5/:€+rGu(t7t/)

tini
Standard choice in the velocity-dependent one-scale (VOS) model

FC

Flt.e) = 2at?

§(£—2at), «=~0.05

Numerical simulations by Blanco-Pillado, Olum, and Shlaer (BOS) better described by
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New loop number densities providing a better description of the BOS results
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Smeared GW spectrum

[KS, Schrader: 2405.10937]
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Series of peaks and dips washed out for broader distributions of initial loop lengths
Still, even for broad distributions, oscillations in the index ns may remain detectable
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Conclusions
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Summary and outlook

Low-scale cosmic strings
Gu~10733...1071° — v~ 102GeV---10° GeV

Initial time tin; # 0: Loop production no longer impeded by thermal friction, GW
emission from loops no longer subdominant to particle emission from cusps and kinks,

max kPk
Qw = H2< )Z /

ini

= No loop produced at t > tjn; ever shrinks to zero length — microlensing, bursts?

= Sharp frequency cutoff in k = 1 GWB spectrum, series of peaks and dips in Qaw
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Summary and outlook

Low-scale cosmic strings
Gu~10733...1071° — v~ 102GeV---10° GeV

Initial time tin; # 0: Loop production no longer impeded by thermal friction, GW
emission from loops no longer subdominant to particle emission from cusps and kinks,

max kPk
Qw = H2< )Z /

ini

= No loop produced at t > tjn; ever shrinks to zero length — microlensing, bursts?

= Sharp frequency cutoff in k = 1 GWB spectrum, series of peaks and dips in Qaw

Next steps
= Nonscaling models where particle emission occurs whenever £ < lcri¢

= Model building: Cosmic strings v ~ 10° GeV, GWs from phase transition?

Stay tuned! Thanks a lot for your attention

27



	Gravitational waves from the early Universe
	Gravitational waves from cosmic strings
	Low-scale cosmic strings
	From VOS to BOS
	Conclusions

