Generation of PBH Spin: Broad 0000000

Dependence on FOPT Parameter

Future Scope

Spinning Primordial Black Holes from First Order Phase Transitions

Indra Kumar Banerjee

IISER Berhampur

17/10/2024

Based on Spinning Primordial Black Holes from First Order Phase Transition, IKB, U. K. Dey, JHEP 07 (2024) 006, arXiv: 2311.03406

Indra Kumar Banerjee

< 口 > < 同 >

Introduction

- 2 Creation Mechanism
- **3** Generation of PBH Spin: Broad PS
- Opendence on FOPT Parameters
- Future Scope

IISER Berhampur

Indra Kumar Banerjee

Introduction

- **2** Creation Mechanism
- **3** Generation of PBH Spin: Broad PS
- **4** Dependence on FOPT Parameters
- **5** Future Scope

- * ロ ト * 個 ト * 差 ト * 差 ト * 差 * の < @

Indra Kumar Banerjee

Spinning Primordial Black Holes from First Order Phase Transitions

IISER Berhampur

• Black holes formed in the early universe.

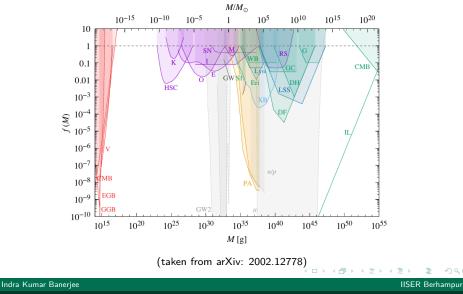
- * ロ > * @ > * 注 > * 注 > 「注 = うへで

Indra Kumar Banerjee

- Black holes formed in the early universe.
- They can partially or completely play the role of dark matter in the standard cosmology.

IISER Berhampur

- Black holes formed in the early universe.
- They can partially or completely play the role of dark matter in the standard cosmology.
- Many theoretical predictions, such as Hawking evaporation or superradiant instability, can be verified from PBHs.



- Black holes formed in the early universe.
- They can partially or completely play the role of dark matter in the standard cosmology.
- Many theoretical predictions, such as Hawking evaporation or superradiant instability, can be verified from PBHs.
- PBHs can originate from inflation, cosmic strings, first-order phase transitions (FOPT), etc

- Black holes formed in the early universe.
- They can partially or completely play the role of dark matter in the standard cosmology.
- Many theoretical predictions, such as Hawking evaporation or superradiant instability, can be verified from PBHs.
- PBHs can originate from inflation, cosmic strings, first-order phase transitions (FOPT), etc
- Can be expressed by its mass, spin and charge.

Constraints

• Cosmological phase transition may have occurred during the early universe due to the decrease in temperature.

IISER Berhampur

- Cosmological phase transition may have occurred during the early universe due to the decrease in temperature.
- The potential term in the Lagrangian $V(\phi, T)$ can exhibit a true minima below some temperature, whereas the universe is in a false minima.

- Cosmological phase transition may have occurred during the early universe due to the decrease in temperature.
- The potential term in the Lagrangian $V(\phi, T)$ can exhibit a true minima below some temperature, whereas the universe is in a false minima.
- In order to have a FOPT, there must be a barrier between the two minima, which must be crossed.

- Cosmological phase transition may have occurred during the early universe due to the decrease in temperature.
- The potential term in the Lagrangian $V(\phi, T)$ can exhibit a true minima below some temperature, whereas the universe is in a false minima.
- In order to have a FOPT, there must be a barrier between the two minima, which must be crossed.
- Physically, this corresponds to nucleation of true vacuum bubbles.

$$\Gamma = \Gamma_0 e^{\beta t}$$

・ロ・・雪・・雪・・雪・ うらぐ

Indra Kumar Banerjee

Spinning Primordial Black Holes from First Order Phase Transitions

IISER Berhampur

$$\Gamma = \Gamma_0 e^{\beta t}$$

• Some important parameters:

Image: A mathematical states and a mathem

Indra Kumar Banerjee

$$\Gamma = \Gamma_0 e^{\beta t}$$

Some important parameters:
1 Strength of the PT:

 α : ~ ρ_V / ρ_r

IISER Berhampur

Image: A mathematical states and a mathem

Indra Kumar Banerjee

$$\Gamma = \Gamma_0 e^{\beta t}$$

• Some important parameters:

1 Strength of the PT:

$$\alpha$$
: ~ ρ_V / ρ_r
2 Duration of the PT:
 $\beta/H = T_* d(S_3/T)/dT|_{T=T}$

IISER Berhampur

Image: A mathematical states and a mathem

Indra Kumar Banerjee

$$\Gamma = \Gamma_0 e^{\beta t}$$

• Some important parameters:

1 Strength of the PT:

$$\alpha: \sim \rho_V / \rho_r$$

2 Duration of the PT:
 $\beta/H = T_* d(S_3/T)/dT|_{T=T_*}$
3 Nucleation Temperature:
 $T_n: (\Gamma/V)|_{T=T_n} \sim O(1)$

Indra Kumar Banerjee

IISER Berhampur

Image: A mathematical states and a mathem

Introduction

2 Creation Mechanism

3 Generation of PBH Spin: Broad PS

Opendence on FOPT Parameters

6 Future Scope

Indra Kumar Banerjee

• Collapse of overdense region in the early universe result in PBH.

Image: A match the second s

Indra Kumar Banerjee

- Collapse of overdense region in the early universe result in PBH.
- These overdense regions are generated from curvature (or density) perturbations.

Image: A mathematical states and a mathem

Indra Kumar Banerjee

Spinning Primordial Black Holes from First Order Phase Transitions

IISER Berhampur

- Collapse of overdense region in the early universe result in PBH.
- These overdense regions are generated from curvature (or density) perturbations.
- Inflation, FOPT, etc can lead to these curvature perturbations.

- Collapse of overdense region in the early universe result in PBH.
- These overdense regions are generated from curvature (or density) perturbations.
- Inflation, FOPT, etc can lead to these curvature perturbations.
- Curvature perturbations from FOPTs can arise through the difference in nucleation time of the true vacuum bubble in different Hubble patches.

• FOPTs in the radiation dominated universe generates a curvature perturbation of the form

$$\mathcal{P}_{\zeta} = A^2(\alpha, \beta/H, \dots)(kR_{\mathcal{H}})^3.$$

Spinning Primordial Black Holes from First Order Phase Transitions

Indra Kumar Baneriee

• FOPTs in the radiation dominated universe generates a curvature perturbation of the form

$$\mathcal{P}_{\zeta} = A^2(\alpha, \beta/H, \dots)(kR_{\mathcal{H}})^3.$$

• For strong and slow FOPTs ($\alpha \sim \mathcal{O}(1)$) (2208.14086),

 $A=f(\alpha,\beta/H,\ldots)$

Image: A mathematical states and a mathem

• FOPTs in the radiation dominated universe generates a curvature perturbation of the form

$$\mathcal{P}_{\zeta} = A^2(\alpha, \beta/H, \dots)(kR_{\mathcal{H}})^3.$$

For strong and slow FOPTs (α ~ O(1)) (2208.14086),

$$A=f(\alpha,\beta/H,\ldots)$$

• For super-strong (supercooled) and slow FOPTs ($\alpha \gg 100$) (2402.04158),

$$A = f(\beta/H) \propto (\beta/H)^{-5/2}$$

Image: A math a math

Introduction

2 Creation Mechanism

3 Generation of PBH Spin: Broad PS

- Opendence on FOPT Parameters
- **5** Future Scope

- * ロ > * @ > * 注 > * 注 > 「注 = の < @

Indra Kumar Banerjee

Spinning Primordial Black Holes from First Order Phase Transitions

IISER Berhampur

• PBH spin is calculated from the angular momentum of the region which collapses.

- PBH spin is calculated from the angular momentum of the region which collapses.
- The angular momentum can be calculated from the tidal torque of that region.

- PBH spin is calculated from the angular momentum of the region which collapses.
- The angular momentum can be calculated from the tidal torque of that region.
- A few important aspects of the calculation

- PBH spin is calculated from the angular momentum of the region which collapses.
- The angular momentum can be calculated from the tidal torque of that region.
- A few important aspects of the calculation

1 Spectral Moments

- PBH spin is calculated from the angular momentum of the region which collapses.
- The angular momentum can be calculated from the tidal torque of that region.
- A few important aspects of the calculation
 - 1 Spectral Moments
 - Profile Shape

- PBH spin is calculated from the angular momentum of the region which collapses.
- The angular momentum can be calculated from the tidal torque of that region.
- A few important aspects of the calculation
 - 1 Spectral Moments
 - Profile Shape
 - **3** Turn Around Point

IISER Berhampur

- PBH spin is calculated from the angular momentum of the region which collapses.
- The angular momentum can be calculated from the tidal torque of that region.
- A few important aspects of the calculation
 - Spectral Moments
 - Profile Shape
 - 3 Turn Around Point
 - **4** Reference and RMS Spin

IISER Berhampur

< 🗇 🕨

Spectral Moments

• The spectral index of the density perturbation can be expressed as

$$\sigma_n^2 = \frac{4}{9} \eta_{\text{init}}^4 \int_{k_{\text{max}}/r_k}^{k_{\text{max}}} \frac{dk}{k} k^{2n+4} \mathcal{P}(k),$$

where $r_k = k_{\text{max}}/k_{\text{min}}$.

• For our power spectrum, the spectral moments take the form,

$$\sigma_n^2 = \frac{4}{9} \eta_{\text{init}}^4 A^2 k_{\text{max}}^{4+2n} \frac{1 - r_k^{-7-2n}}{7+2n}.$$

• Furthermore, if we consider $k_{\min} = 0$,

$$\sigma_n^2 = \frac{4}{9}\eta_{\text{init}}^4 A^2 k_{\text{max}}^{4+2n} \frac{1}{7+2n}.$$

IISER Berhampur

The density perturbation,

$$\delta_{\rm CMC}(\eta, \mathbf{r}) = \delta_{pk} g_{\delta}(r; k_{\delta}).$$

• The density profile for the case of the broad power spectrum,

$$g_{\delta}(r;k_{\delta}) = a_{\delta}^* - b_{\delta}^* (k_{\max}r)^2,$$

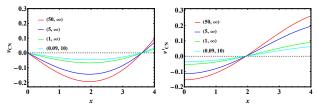
where

$$a_{\delta}^* \approx 13.76 - 16.5\alpha_{\delta},$$

$$b_{\delta}^* \approx 3.21\alpha_{\delta} - 2.33,$$

and $\alpha_{\delta} = k_{\delta}^2 / k_{\max}^2$.

• Density perturbation at $k_{\delta} = k_{c\delta} = \sigma_1/\sigma_0$,


$$g_{\delta}(r;k_{c\delta}) = \psi_{\delta}(r) = 1 - \frac{7}{54}(k_{\max}r)^2 = 1 - \frac{(rk_{c\delta})^2}{6}.$$

Indra Kumar Banerjee

IISER Berhampur

- The point in time when the overdense region decouples from the background and the process of the collapse start.
- In case of radiation domination, irrespective of the dependence on k, $x_{ta} = 1.95$.

Dependence of the velocity and the change in velocity on $x = k\eta$. The different curves represent different values of (j, r_k) where $\mathcal{P}_{\zeta} \propto k^j$.

< 口 > < 同 >

Introduction Creation Mechanism Generation of PBH Spin: Broad PS Dependence on FOPT Parameters Future Scop

Reference and RMS Spin

The reference spin of the overdense region at turn around point,

$$A_{\rm ref}(\eta_{\rm ta}) = \frac{\frac{4}{3} \left[a^4 \rho_b g_{\rm CN} \right]_{\eta = \eta_{\rm ta}} (1 - f)^{5/2} R_*^5}{G M_{ta}^2}$$

where,

$$\begin{aligned} R_* &= \sqrt{3} \frac{\sigma_1}{\sigma_2}, \\ g_{\rm CN} &= \frac{2}{3} A k_{\rm max} \, G, \\ G^2 &= \int_0^1 dx x T_{v_{\rm CN}}^2(x) x^3, \\ T_{v_{\rm CN}}^2(x) &= \frac{\sqrt{3}}{8} \frac{((x/\sqrt{3})^2 - 2) \sin(x/\sqrt{3}) + 2(x/\sqrt{3}) \cos(x/\sqrt{3})}{(x/\sqrt{3})^2}. \end{aligned}$$

Indra Kumar Banerjee

• Simplifying this for our case we find,

$$A_{\rm ref}(\eta_{\rm ta}) = 0.00286A(1-f)^{-1/2}.$$

• The RMS spin of the region can be expressed as,

$$\sqrt{\langle a_*^2 \rangle} = A_{\rm ref} \times 5.96 \times \frac{\sqrt{1-\gamma^2}}{\gamma^6 \nu},$$

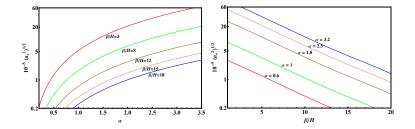
where $\nu = 1.92/\sigma_0$, and $\gamma = \sigma_1^2/(\sigma_0\sigma_2)$.

• Finally, the RMS spin can be expressed as,

$$\sqrt{\langle a_*^2 \rangle} = 3.4 \times 10^{-4} \left(\frac{M_{\rm PBH}}{M_H}\right)^{-1/3} A^2$$

Indra Kumar Banerjee

IISER Berhampur


Introduction

- **2** Creation Mechanism
- **③** Generation of PBH Spin: Broad PS
- **4** Dependence on FOPT Parameters
- **5** Future Scope

- <ロ> <四> <ヨ> <ヨ> <日> -

Indra Kumar Banerjee

Dependence of the RMS spin of a PBH population on α and β/H .

Spinning Primordial Black Holes from First Order Phase Transitions

IISER Berhampur

(日)、<日)、<</p>

Dependence of the RMS spin of a PBH population on β/H for $\alpha \gg 1$.

Spinning Primordial Black Holes from First Order Phase Transitions

IISER Berhampur

Image: A math a math

Introduction

- **2** Creation Mechanism
- **3** Generation of PBH Spin: Broad PS
- **4** Dependence on FOPT Parameters
- 6 Future Scope

- * ロ > * @ > * 注 > * 注 > … 注 … のへで

Indra Kumar Banerjee

Spinning Primordial Black Holes from First Order Phase Transitions

IISER Berhampur

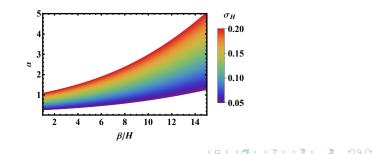
- Some studies have shown that the value of *j* may vary depending on the FOPT parameters and value of *k*. This scheme of calculation can be modified to account for those cases as well.
- FOPTs in Non-standard cosmology, such as some early matter-dominated era, may give rise to PBH with high initial spin, which has implications in Hawking evaporation superradiant instability, gravitational waves, etc.

Introduction 00000

Thanks!

- * ロ * * 母 * * 国 * * 国 * * の < ?

Indra Kumar Banerjee



Behaviour of \mathcal{P}_{ζ} for $\alpha \sim \mathcal{O}(1)$

The form of the curvature perturbation in this case can be expressed as,

$$\mathcal{P}_{\zeta}(k) = 34.5[\sigma_H(\alpha,\beta/H)]^2(kR_{\mathcal{H}})^3,$$

where the behaviour of the function $\sigma_H(\alpha,\beta/H)$ can be expressed as,

Indra Kumar Banerjee

Spinning Primordial Black Holes from First Order Phase Transitions

IISER Berhampur

The gauge invariant quantities corresponding to the density and the velocity perturbations can be expressed as,

$$\Delta(x) = D\sqrt{3} \left(\frac{\sin z}{z} - \cos z\right),$$
$$V(x) = D\left[\frac{3}{4} \left(\frac{2}{z^2} - 1\right) \sin z - \frac{3}{2} \frac{\cos z}{z}\right],$$

where D is an arbitrary constant, whose value depends on the shape of perturbation, $z = x/\sqrt{3}$, and $x = k\eta$. For the CMC

Indra Kumar Banerjee

Solution from Cosmological Linear Perturbation Theory II

gauge, the density perturbation and the velocity of the region can be expressed as

$$\delta_{\rm CMC} = D \frac{\sqrt{3}z^2}{z^2 + 2} \left(2 \frac{\sin z}{z} - \cos z \right),$$
$$v_{\rm CMC} = -\frac{3}{4} D \frac{(z^2 - 2)\sin z + 2z\cos z}{z^2 + 2}.$$

For the conformal Newtonian gauge, the quantities take the form

$$\delta_{\rm CN} = \sqrt{3}D \frac{2(z^2 - 1)\sin z + (2 - z^2)z\cos z}{z^4},$$
$$v_{\rm CN} = \frac{3}{4}D \frac{(2 - z^2)\sin z - 2z\cos z}{z^2}.$$

Indra Kumar Banerjee

IISER Berhampur