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Abstract. In this note we discuss Pythagorean possibilities for the tunings of a piano and suggest an
analytic metric - the tempered index - for comparing one tuning to another. In particular, we examine
all Pythagorean tuning systems with less than 500 keys in the keyboard and with the generating harmonic
frequency smaller that f = 21. We show that among all of these systems the smallest comma occurs for
the 10-step scale system. This enables us to define Pythagorean t-step systems with a good comma for an
arbitrary number t of steps in the scale. We also define a notion of a tempered index of such systems. We
show that within these definitions the classical 12-step Pythagorean scale system generated by the harmonic
f = 3, i.e by the interval 3

2
of the ‘perfect fifth’, has much larger tempered index than the 10-step Pythagorean

system generated by the harmonic f = 13 i.e. by the interval 13
8

. It turns out that the t = 10, f = 13, system
has the smallest tempered index among all systems we considered, and that the classical t = 12, f = 3 system
has the largest tempered index among all of them.

1. Motivation

In January 2023 I contacted the world renowned jazz pianist Leszek Możdżer, to ask if he would be willing
to give a piano recital for the participants of a mathematics conference ‘GRIEG meets Chopin’ that I was
helping to organize. To my surprise Leszek Możdżer’s answer to my request was positive, but with one
caveat. Specifically, would I help him with the mathematics needed to redesign his Östlind and Almquist
concert piano from the usual 12-step equally tempered (TET) scale to the 10-step TET scale? Możd er
further proposed that, at the concert during the mathematical conference, two pianos would be played: his
redesigned 10-TET acoustic Östlind and Almquist piano and the usual 12-TET Steinway piano.

Without thinking much about ‘why the ten-step scale?’ I gladly accepted Możdżer’s proposal and in
short order prepared a table with data needed to retune the piano from 12-TET to 10-TET. But while
the mathematics I used was straightforward the actual retuning of the 12-TET piano to the 10-TET scale
encountered many technical isuues. These were eventually resolved by the combined efforts of two teams
of Leszek Możdżer (with Roman Galiński, Jan Grzyśka, Ryszard Mariański, Mirosław Mastalerz, Sławomir
Rosa) and mine (Aleksander Bogucki, Andrzej Włodarczyk). My team even filed a patent aplication with
the major ideas of this retuning.

As a result the World Premiere of the Acoustic Decaphonic Piano by Leszek Możdżer took place on July
13, 2023 in the Nowa Miodowa Concert Hall in Warsaw, Poland. In a briliant program he premiered a
number of his compositions writen for two pianos, both traditional 12-TET and the decaphonic 10-TET,
some of which were played on both instruments simultanously. He also performed a number of world’s piano
masterpieces paraphrased for the 10TET acoustic piano. In the opinion of many of those in attendence,
he proved that with his virtuosity and for his musical compositions/paraphrases, the 10TET piano is a
wonderful instrument [1].

Leszek Możdżer’s answer to my question ‘why you want a 10-scale piano?’ is beyond the scope of this note;
shortly: it was quite unsatisfactory for me. So, since January 2023 I have been looking for a mathematical
argument that would characterize the 10-step musical scale among all other scales. The present paper is an
attempt for such a characterization.
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In this characterization the main idea consists in defining what a t-step Pythagorean musical scale is, and
comparing such a scale, for each t, with its corresponding t-step equally tempered scale. An implementation
of this idea required the following notions: a generating frequency, a good comma, Pythagorean t-step scale
with a good comma, and an tempered index of a musical tuning system. All of these notions are defined in
the next sections and, eventually, they are used to answer the question ‘why 10 is a unique choice?’.

2. The 12-scale Pythagorean and equally tempered systems

The well known Pythagorean tuning system assigns the following multipliers to each step of its 12-step
scale:

1 256
243

9
8

32
27

81
64

4
3

729
512

3
2

128
81

27
16

16
9

243
128

2

Cells in the above table represent 12 keys of a piano keyboard spanning an octave. The frequencies of pure
tones played by a given key expressed in Herzes are given by the frequency in Herzes played by the first key,
multiplied by the multiplier from the cell correponding to this key. For example if, the key corresponding
to the cell with multiplier 27

16
plays a pure tone of 432Hz, then the first key plays a pure tone of frequency

f0 = 256Hz. The frequencies of the keys in other octaves of the piano are determined in the same way, but
now the frequencies of the keys in the octave with a number n = −3,−2,−1, 0, 1, 2, 3 are multiplied by the
frequency 2n × f0 = 2n × 256Hz.

The multipliers hℓ in the above table are obtained by taking successive powers of

h1 = 3
2
,

and possibly dividing or multiplying them by 2, to keep the obtained number hℓ in the range of the interval
[1, 2]. In this way all the multipliers are of the form

hℓ =
(
3
2

)ℓ
2mℓ ,

where ℓ is an integer, and mℓ is a unique integer such that |hℓ − 1| < 1.
The number h1 = 3

2
corresponds to the musical interval of a perfect fifth. It is chosen to put as many

perfect fifths intervals on the piano keyboard as possible, because for the Western World Ear perfect fifths
intervals sound nice and harmonious. The reason for the number 3

2
is twofold:

• First, the Western World Ear perceives the frequencies with frequency ratio 2 : 1 as the same, and
• second, the number three is the next number in the harmonic series 1, 2, 3, 4, 5, . . . after the number

1 and its musically equivalent number 2.
Since the number 3 is beyond the octave [1, 2] one takes its musical equivalent h1 = 3 : 2 to represent the
sound of the harmonic 3 in the octave [1, 2].

A typical piano has a span of seven octaves. The reason for this is that

(3
2
)12 ≃ 129.746

and that this number differs from
27 = 128,

by no more than 1.4%. The aproximate equality

(3
2

12 ≃ 27,

or better, the aproximate equality

(3
2
)
12
7 ≃ 2,

means that starting with the first key on the piano keyboard, after hiting twelve consecutive keys distanced
from each other by a perfect fifth h1 = 3

2
, one arrives at the key with (almost) the same pitch class as of

the starting key. This last key of the passage, has the aproximate multiplier 27, so it appears after passing
seven octaves on the keyboard.

The difference

c(3,12,7) =
∣∣∣ (3

2

)12
7 − 2

∣∣∣ ≃ 0.00387547
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is related to the Pytahgorean comma, and for the purpose of this paper will be called just a comma. We
observe that

0.003 < c(3,12,7) < 0.004,

and define a positive real number ϵ to be the upper bond in this inequality,

ϵ = 0.004.

Note that the comma c(3,12,7) is entirely defined by the three numbers 3, 12 and 7. It therefore can be
easilly generalized for another triple of natural numbers (2k+ 1, t, s). We have the following definition.

Definition 2.1. Let nk = 2k + 1, with k = 1, 2, 3, . . . , be an odd natural number. Let m0 be the unique
natural number such that 1 < nk

2m0
< 2. If∣∣∣ ( nk

2m0

) t
s − 2

∣∣∣ < ϵ = 0.004,

with t and s being some natural numbers, then the triple of numbers (nk, t, s) is called a triple with a good
comma. The good comma for this triple is defined to be

c(nk,t,s) =
∣∣∣ ( nk

2m0

) t
s − 2

∣∣∣.
Triples with a good comma enable us to define a generalization of the 12-step Pythagorean scale, which

as far as comma is concerned, are not worse than the original.
Such systems are defined as follows.

Definition 2.2. Let (nk, t, s) be a triple with a good comma. Define a generating frequency to be a number
h1 = nk

2m0
, where the natural number m0 is such that 1 < h1 < 2. Consider a t-step scale tuning system

with t keys in each octave, and such that its base octave have the frequency multipliers:

hℓ = (h1)
ℓ 2mℓ ,

with mℓ an integer such that |hℓ − 1| < 1. Here the integer ℓ runs as

ℓ = − t−1
2

,− t−1
2

+ 1, . . . ,−1, 0, 1, . . . , t−1
2

when t is odd,

and as

ℓ = − t
2
+ 1,− t

2
+ 2, . . . ,−1, 0, 1, . . . , t

2
when t is even.

Such tuning system is called a Pythagorean t-step scale. Its (good) comma is equal to c(nk,t,s).

Although one can consider Pythagorean t-step scales for any triple with a good comma, but it is reasonable
to consider bounds on not so high harmonics (not too big nk = 2k+1), and not too many keys on the keyboard
(not too large number ts).

For this reason in the following theorem we made the restrictions:

k ≤ 10 & ts < 500.

We have the following theorem.

Theorem 2.3. If k ≤ 10 and ts < 500 then the only triples with a good comma are given in the table below:
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triple with comma
a good comma c(nk,t,s)

(nk, t, s) ×103

(13, 10, 7) 0.871016
(9, 53, 9) 0.928274
(21, 28, 11) 1.90363
(5, 28, 9) 2.15556
(9, 47, 8) 2.34232
(5, 31, 10) 2.80238
(3, 29, 17) 2.94065
(15, 21, 19) 3.26428
(11, 24, 11) 3.32468
(15, 11, 10) 3.3525
(21, 23, 9) 3.5923
(7, 21, 17) 3.71073
(3, 12, 7) 3.87547

.

Remark 2.4. The suprisng thing is that the triple (3, 12, 7) of the classical 12-step Pythagorean system has
the largest comma c(3,12,7) = 3.87547×10−3 in the table, and as such, occupies the table’s last row. Actually,
what is even more surprising, is that the smallest comma occurs for the triple (13, 10, 7), which corresponds
to the Pythagorean ten-step system. As can be seen from the triple (13, 10, 7), its corresponding decimal
(or better to say decaphonic) system is generated by the thirteen’s harmonic, with the generating interval
h1 = 13

8
playing the role of the ‘fifth’ in this system. The number of octaves needed to traverse the full circle

of these ‘fifth’s is equal to seven, which is given by s = 7 appearing in the corresponding triple. This last
fact is also a surprise, as s = 7 appears also in the classical 12-step Pythagorean system.

Remark 2.5. It is further worth noting that the comma of decaphonic (13, 10, 7) system is more than four
times smaller than the comma of the usual Pythagorean 12-step system. When we take into account only
the systems whose keyboards have the usual-pianos-total-number-of-about-100-keys, the comma c(13,10,7)
leads the list of the smallest commas really signigficantly.

3. Comparing decaphonic system with the others
The decaphonic Pythagorean system corresponding to the triple (13, 10, 7) has the following multipliers:

1 2197
2048

32768
28561

16
13

169
128

371293
262114

256
169

13
8

28561
16384

4096
2197

2

In this section we want to compare it with all the Pythagorean t-scales from the Theorem 2.3. We recall
(see Definition 2.2) that any such scale has multipliers

hℓ =
(
2k+1
2m0

)ℓ
2mℓ ,

with numbers k, m0, mℓ, and the range of the numbers ℓ determined by the corresponding triple with a good
comma (2k + 1, t, s). To each of such systems there is associated an equally tempered system with t-steps,
characterized by thhe condition that the ratios of any two consecutive steps in it are the same. The equally
tempered system associated with the Pythagorean (2k+ 1, t, s) system has multipliers

Hℓ =
(
2a

)ℓ

2Mℓ ,

with
a = s

t
,

and with the same indices ℓ as in hℓ, and with the integer Mℓ such that |Hℓ − 1| < 1.
There is a geometric way of describing Pythagorean and equally tempered systems. We briefly introduce

it now.
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First we look at the Pythagorean t-scale system, and to avoid the fuzz with the coefficient mℓ appearing
in the multiplier hℓ, we represent its t steps by the points

zℓ = eiφℓ

on the unit circle in the complex plane C. In this representation the angle corresponding to the value hℓ is1

φℓ = 2π log2 hℓ = 2π (mℓ + ℓα),

where

α = log2(2k+ 1).

Now, for the t-scale equally tempered system we associte to each of its steps with multipliers Hℓ, the points

Zℓ = eiΦℓ = ei2πℓa

on the unit circle S1 ⊂ C, with the corresponding angles

Φℓ = 2π log2 Hℓ = 2π (Mℓ + ℓa).

For example, for t = 12 with (nk, t, s) = (3, 12, 7) and α = log2 3, these definitions give:

ℓ -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

φℓ
2π

10−6α 8−5α 7−4α 5−3α 4−2α 2−1α 0α −1 + 1α −3 + 2α −4 + 3α −6 + 4α −7 + 5α −9 + 6α

zℓ e(−6)2πiα e(−5)2πiα e(−4)2πiα e(−3)2πiα e(−2)2πiα e(−1)2πiα e(0)2πiα e(1)2πiα e(2)2πiα e(3)2πiα e(4)2πiα e(5)2πiα e(6)2πiα

Φℓ
2π

1
2

1
12

2
3

1
4

5
6

5
12

0 7
12

1
6

3
4

1
3

11
12

1
2

Zℓ eπi = −1 e
πi
6 e

4πi
3 e

πi
2 e

5πi
3 e

5πi
6 e0πi = 1 e

7πi
6 e

πi
3 e

3πi
2 e

2πi
3 e

11πi
6 eπi = −1

,

and for t = 10 with (nk, t, s) = (13, 10, 7) and α = log2 13, they give:

ℓ -5 -4 -3 -2 -1 0 1 2 3 4 5

φℓ
2π

19−5α 15−4α 12−3α 8−2α 4−1α 0α −3 + 1α −7 + 2α −11 + 3α −14 + 4α −18 + 5α

zℓ e(−5)2πiα e(−4)2πiα e(−3)2πiα e(−2)2πiα e(−1)2πiα e(0)2πiα e(1)2πiα e(2)2πiα e(3)2πiα e(4)2πiα e(5)2πiα

Φℓ
2π

1
2

1
5

9
10

3
5

3
10

0 7
10

2
5

1
10

4
5

1
2

Zℓ eπi = −1 e
2πi
5 e

9πi
5 e

6πi
5 e

3πi
5 e0πi = 1 e

7πi
5 e

4πi
5 e

πi
5 e

8πi
5 eπi = −1

.

Note that, due to the magic of the Euler’s formula, e2πimℓ = 1 = e2πiMℓ , the points zℓ of the Pythagorean
scales and Zℓ of the equally tempered scales are totally determined by the integer ℓ alone; the information
as to the exact values of mℓ and Mℓ is not needed to determine the position of the points zℓ or Zℓ on the
circle. In the figure below we plot the Pythagorean points zℓ with red dashes, and equally tempered points
Zℓ with green points and dashes on the unit circle. The left figure is for the 12-step (3, 12, 7) scales, and the
right figure is for the 10-step (13, 10, 7) scales. In these pictures the following is visible:

1This angle is in radians. If one needs this angle in degrees it is φℓ = 3600 log2(hℓ). It is worth mention, that piano tuners
measure this angle in cents, where they define it as φℓ = 1200 log2(hℓ).
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• The equally tempered system is represented by the vertices of a regular t-gon; there is a regular
dodecagon with green vertices corresponding to the 12TET system on the left, and a regular decagon
with green vertices corresponding to the 10TET system on the right. The equal musical intervals
between the equally tempered scale points are visualised by the equal angles between the successive
green bullets/green dashes.

• Except for z0 = Z0 = 1, the equally tempered green keys are not coincident with the Pythagorean
red keys. The angular distances between the successive red dashes are not equal.

• The splitting between the vertices of the regular dekagon and the red dashes is much larger at the
left figure corresponding to t = 12. It is particularly notable for the tritone key Z6 = Z−6 = −1
(the green bullets/dashes most to the West in both pictures). Actually, for ℓ = ±6 on the left and
ℓ = ±5 on the right, we have two Pythagorean red tritones on each of the figures. They are equally
distanced from the corresponding equally tempered green tritone. It is a matter of taste which of
these tritones, h−6 or h6 on the left figure (h−5 or h5 on the right figure), should be chosen to make
the t-step Pythagorean scale complete. It is customary to chose h6 as the 12th element of the scale.
Accordingly, we also have chosen h5 as the 10th element of the (13, 10, 7) scale.

Let us close this section by the introduction of a quantity which measures how much a Pythagorean scale
differs from its equally tempered system.

Definition 3.1. The tempered index of the Pythagorean system corresponding to a triple (nk, t, s) is

δ(nk,t,s) =
1

t−1

t
2∑

ℓ=−
t
2
+1

|Φℓ −φℓ| when t is even,

and it is

δ(nk,t,s) =
1

t−1

t−1
2∑

ℓ=−
t−1
2

|Φℓ −φℓ| when t is odd.

According to this definition the tempered index is the average of the absolute values of the nonzero
differences between corresponding angles of the equally tempered and Pythagorean points of the scale. Here
this average is expressed in radians per step.

Using the explicit values of Φℓ and ϕℓ from the table above we get:

δ(3,12,7) =
2π
11

(36 log2 3− 57) ≃ 0.0335008 radian
step ,

and
δ(13,10,7) =

2π
9
(25 log2 13−

185
2
) ≃ 0.00767453 radian

step .
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One can also calculate this difference in cents per step2 to obtain:

δ(3,12,7) ≃ 6.39818 cent
step ,

and
δ(13,10,7) ≃ 1.46573 cent

step ,

or in angular degrees per step to have:

δ(3,12,7) ≃ 1.91946 deg
step ,

and
δ(13,10,7) ≃ 0.439718 deg

step .

Clearly, the classical 12-step system has much larger tempered index than the 10-step one.

Remark 3.2. We end this paper with the remark that our characterization of t = 10 is limited by our
assumptions. If, for example, we extended the list of generating harmonics from f = 21 to f = 63 and
mantained the number of the keys in the keyboard ts < 500, we would find triples (nk, t, s) that have better
commas than (13, 10, 7); associated with them there are Pytahgorean systems with smaller tempered index
than the decimal system (13, 10, 7). But these systems have either much larger keybord than the (13, 10, 7)
system, or are generated by very high harmonics such us f = 57 or f = 59. We therefore restricted our
considerations to that which is included in this paper.
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