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Krzysztof Tchoń, Professor of Control Engineering and
Robotics, Institute of Computer Engineering, Control and
Robotics, Wrocław University of Technology
Masato Ishikawa, Dr.Eng., Associate Professor
Department of Mechanical Engineering, Graduate School
of Engineering, Osaka University

2/37



Inspiration

Bronisław Jakubczyk, Professor of Mathematics,
Mathematical Institute, Polish Academy of Sciences,
Warszawa
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Trident snake
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Trident snake - an animation
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Trident snake - translational control
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Trident snake - rotational control
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Almost real snake robot
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Even better almost real snake robot
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Simplest real snake robot
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Simplest real snake robot
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Simplest snake’s animation
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Simplest snake animation - movement in the
orthogonal direction
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Parametrizing M the configuration space of the trident
snake

Coordinates: (x , y , φ1, φ2, φ3, α)
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Parametrizing M the configuration space of the
tri-segment snake

Coordinates: (x , y , φ1, φ2, α)
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Nonholonomic constraints

Movement of each wheel is constrained by the condition
that the wheel can NOT move in the direction
perpendicular to it.
Consider a bar with end points (xi , yi) = ri and (xj , yj) = rj
and the wheel attached at a point (x̄ , ȳ) = r̄ on the bar.
The above mentioned constraint means that:

dr
dt
× (ri − rj) = 0,

or, simpler:
ωij := dr× (ri − rj) = 0.

I emphasize that the 1-form ωij is a scalar form! Explicitly:

ωij = (yi − yj)dx̄ − (xi − xj)dȳ = 0.
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Possible movements

A movement of a snake in the plane corresponds to a
curve γ(t) = (x(t), y(t), φi(t), α(t)) in the configuration
space M.
Velocity of a snake at time t is γ̇(t). This is a vector tangent
to the curve γ(t), and in turn tangent to the configuration
space M at point γ(t).
The six (five) - dimensional space Tγ(t)M of possible
velocities of a snake is constrained by THREE constraints
enforced by the three wheels.
Indeed, the velocity of a snake at point γ(t) has to satisfy

γ̇(t)_|ωij = 0. (∗)

And we have THREE ωijs.
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Nonholonomic distributions

In case of a trident snake, the configuration space M is
6-dimensional and the space of velocities at each point is
restricted from dimension 6, by three linear conditions (*),
to a vector space of dimension 6-3=three. This defines a
rank three distribution in dimension six.
In case of a tri-segment snake, the configuration space M
is 5-dimensional and the space of velocities at each point
is restricted from dimension 5, by three linear conditions
(*), to a vector space of dimension 5-3=two. This defines a
rank two distribution in dimension five.
ARE THESE DISTRIBUTIONS GENERIC?
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Generalities on distributions

A rank r distribution D on a manifold M of dimension n is
a smooth assignment x 7→ Dx of vector subspaces
Dx ⊂ TxM of dimension r to each point x of M.
Given a rank r distribution D one constructs spaces:

D−1 = D, D−2 = [D−1,D−1]+D−1, . . .Dk−1 = [D0,Dk ]+Dk .

These, at each point x ∈ M, define a sequence of integers
N(x) = (n−1,n−2, . . . ,np, . . . ), called the growth vector,
which are the dimensions of vector spaces D−s

x = D−s(x).
We will only consider D such that N(x) = const.
Note that if D−2 = D−1 the distribution D is integrable.
On the other extreme, the distribution D is bracket
generating if there exists an integer p < 0 such that
np = n = dimM.

18/37



Generalities on distributions

A rank r distribution D on a manifold M of dimension n is
a smooth assignment x 7→ Dx of vector subspaces
Dx ⊂ TxM of dimension r to each point x of M.
Given a rank r distribution D one constructs spaces:

D−1 = D, D−2 = [D−1,D−1]+D−1, . . .Dk−1 = [D0,Dk ]+Dk .

These, at each point x ∈ M, define a sequence of integers
N(x) = (n−1,n−2, . . . ,np, . . . ), called the growth vector,
which are the dimensions of vector spaces D−s

x = D−s(x).
We will only consider D such that N(x) = const.
Note that if D−2 = D−1 the distribution D is integrable.
On the other extreme, the distribution D is bracket
generating if there exists an integer p < 0 such that
np = n = dimM.

18/37



Generalities on distributions

A rank r distribution D on a manifold M of dimension n is
a smooth assignment x 7→ Dx of vector subspaces
Dx ⊂ TxM of dimension r to each point x of M.
Given a rank r distribution D one constructs spaces:

D−1 = D, D−2 = [D−1,D−1]+D−1, . . .Dk−1 = [D0,Dk ]+Dk .

These, at each point x ∈ M, define a sequence of integers
N(x) = (n−1,n−2, . . . ,np, . . . ), called the growth vector,
which are the dimensions of vector spaces D−s

x = D−s(x).
We will only consider D such that N(x) = const.
Note that if D−2 = D−1 the distribution D is integrable.
On the other extreme, the distribution D is bracket
generating if there exists an integer p < 0 such that
np = n = dimM.

18/37



Generalities on distributions

A rank r distribution D on a manifold M of dimension n is
a smooth assignment x 7→ Dx of vector subspaces
Dx ⊂ TxM of dimension r to each point x of M.
Given a rank r distribution D one constructs spaces:

D−1 = D, D−2 = [D−1,D−1]+D−1, . . .Dk−1 = [D0,Dk ]+Dk .

These, at each point x ∈ M, define a sequence of integers
N(x) = (n−1,n−2, . . . ,np, . . . ), called the growth vector,
which are the dimensions of vector spaces D−s

x = D−s(x).
We will only consider D such that N(x) = const.
Note that if D−2 = D−1 the distribution D is integrable.
On the other extreme, the distribution D is bracket
generating if there exists an integer p < 0 such that
np = n = dimM.

18/37



Generalities on distributions

A rank r distribution D on a manifold M of dimension n is
a smooth assignment x 7→ Dx of vector subspaces
Dx ⊂ TxM of dimension r to each point x of M.
Given a rank r distribution D one constructs spaces:

D−1 = D, D−2 = [D−1,D−1]+D−1, . . .Dk−1 = [D0,Dk ]+Dk .

These, at each point x ∈ M, define a sequence of integers
N(x) = (n−1,n−2, . . . ,np, . . . ), called the growth vector,
which are the dimensions of vector spaces D−s

x = D−s(x).
We will only consider D such that N(x) = const.
Note that if D−2 = D−1 the distribution D is integrable.
On the other extreme, the distribution D is bracket
generating if there exists an integer p < 0 such that
np = n = dimM.

18/37



Generalities on distributions

A rank r distribution D on a manifold M of dimension n is
a smooth assignment x 7→ Dx of vector subspaces
Dx ⊂ TxM of dimension r to each point x of M.
Given a rank r distribution D one constructs spaces:

D−1 = D, D−2 = [D−1,D−1]+D−1, . . .Dk−1 = [D0,Dk ]+Dk .

These, at each point x ∈ M, define a sequence of integers
N(x) = (n−1,n−2, . . . ,np, . . . ), called the growth vector,
which are the dimensions of vector spaces D−s

x = D−s(x).
We will only consider D such that N(x) = const.
Note that if D−2 = D−1 the distribution D is integrable.
On the other extreme, the distribution D is bracket
generating if there exists an integer p < 0 such that
np = n = dimM.

18/37



Symbol of a distribution

From now on: only bracket generating distributions.
A symbol algebra of a distribution D at x ∈ M is a
nilpotent Lie algebra g−(x) defined as a direct sum:

g−(x) = gp(x)⊕ · · · ⊕ g−2(x)⊕ g−1(x),

where g−1(x) = D−1
x and

g−2(x) = D−2
x /D−1

x , ..., gp(x) = Dp
x/D

p+1
x .

The commutator in g−(x) is defined in such a way that
gk−1 = [g−1(x), gk (x)] and [g−1(x), gp(x)] = {0}.
From now on: only distributions with constant symbol.
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Remarks

In low dimensions the growth vector N of a distribution D
may determine its symbol. This happens e.g. in the case of
distributions with growth vectors N = (2,3,5) and
N = (3,6). It follows that the distributions with such growth
vectors are generic among, respectively, all rank 2
distributions in dimension 5, and rank 3 distributions in
dimension 6.
Returning to snakes I repeat the question: ARE THE
DISTRIBUTIONS CORRESPONDING TO THE POSSIBLE
VELOCITY SPACES OF TRIDENT SNAKE AND
TRI-SEGMNET SNAKE, RESPECTIVELY, (3,6) and
(2,3,5)?
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Why it is interesting?

Distributions D on M and D′ on M ′ are locally equivalent iff
there exists a local diffeomorphism φ : M → M ′ such that
φ∗D = D′.
There are (2,3,5) distributions which are locally
nonequivalent. The same happens with (3,6) distributions.
A vector fields X on M is an infinitesimal symmetry of a
distribution D iff [X ,D] ⊂ D. Infinitesimal symmetries form
a Lie algebra gsym - the Lie algebra of symmetries of the
distribution.
Among all nonequivalent (3,6) distributions there is a
unique most symmetric one, with the largest Lie algebra
of symmetries. This (3,6) distribution has gsym isomorphic
to simple Lie algebra so(3,4).
Among all nonequivalent (2,3,5) distributions there is a
unique most symmetric one, with the largest Lie algebra
of symmetries. This (2,3,5) distribution has gsym
isomorphic to the split real form of the exceptional simple
Lie algebra g2.21/37
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Fundamental problems

Is the growth vector N of the velocity distribution of the
trident snake (3,6)? If so, can one arrange a geometry of
this snake (by changing lengths of the sides of the triangle,
and changing the lengths of the legs) to get a snake
having velocity distribution with so(3,4) symmetry?
More interestingly:
Is the growth vector N of the velocity distribution of the
tri-segment snake (2,3,5)? If so, can one arrange a
geometry of this snake to get a snake having velocity
distribution with g2 symmetry?
The answer to this second question would give yet another
mechanical realization of the exceptional Lie algebra g2.
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What is simple and what is difficult?

It is very easy to see that the growth vectors of velocity
distributions of the trident snake and the tri-segment snake
are, respectively, (3,6) and (2,3,5). This is indpenendent
of the particular design of the snakes!
What is difficult, is to calculate invariants of the velocity
distributions for these snakes. Finding solutions for the
symmetry equations for these distributions is equally
difficult.
Let me illustrate these difficulties in the case of a
tri-segment snake.
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Hunting - introducing nice coordinates

Four points ri = (xi , yi), = 1,2,3,4, on the plane (x0y)
corresponding to the ends of the segments of the snake.
Dimension count: 4× 2 = 8
Holonomic constraints - the lengths of the segments are
equal, say, to a,b, c, which gives three constraints:

|r1 − r2|2 = a2, |r2 − r2|2 = b2, |r3 − r4|2 = c2.

Dimension count: 8-3=5. This is the dimension of the
configuration psace for the snake.
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Hunting - nonholonomic constraints

Wheels are placed at the end points r1 and r2 of the snake,
as well somwhere at the middle segment, at a point
r = (1− s)r2 + sr3, say.
Nonholonomic constraints:

(r1 − r2)||dr1, & (r4 − r3)||dr4, &

(r2 − r3)||
(

(1− s)dr2 + sdr3

)
.
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Hunting - equations for the nonholonomic system

Holonomic constraints:

(x1 − x2)
2 + (y1 − y2)

2 = a2

(x2 − x3)
2 + (y2 − y3)

2 = b2

(x3 − x4)
2 + (y3 − y4)

2 = c2.

Nonholonomic constraints:
ω1 = (x1 − x2)dy1 − (y1 − y2)dx1

ω2 = (x2 − x3)((1 − s)dy2 + sdy3)− (y2 − y3)((1 − s)dx2 + sdx3)

ω3 = (x4 − x3)dy4 − (y4 − y3)dx4.

Distribution: Anihilator of (ω1, ω2, ω3) restricted from R8 to a
leaf of the foliation given by the holonomic constraints.
Task: solve an equivalence problem for the so defined (2,3,5)
distribution. In particular: calculate the Cartan quartic as a
function of the design parameters (a,b, c, s). Find (a,b, c, s) for
which Cartan quartic is zero.

26/37



Hunting - equations for the nonholonomic system

Holonomic constraints:

(x1 − x2)
2 + (y1 − y2)

2 = a2

(x2 − x3)
2 + (y2 − y3)

2 = b2

(x3 − x4)
2 + (y3 − y4)

2 = c2.

Nonholonomic constraints:
ω1 = (x1 − x2)dy1 − (y1 − y2)dx1

ω2 = (x2 − x3)((1 − s)dy2 + sdy3)− (y2 − y3)((1 − s)dx2 + sdx3)

ω3 = (x4 − x3)dy4 − (y4 − y3)dx4.

Distribution: Anihilator of (ω1, ω2, ω3) restricted from R8 to a
leaf of the foliation given by the holonomic constraints.
Task: solve an equivalence problem for the so defined (2,3,5)
distribution. In particular: calculate the Cartan quartic as a
function of the design parameters (a,b, c, s). Find (a,b, c, s) for
which Cartan quartic is zero.

26/37



Hunting - equations for the nonholonomic system

Holonomic constraints:

(x1 − x2)
2 + (y1 − y2)

2 = a2

(x2 − x3)
2 + (y2 − y3)

2 = b2

(x3 − x4)
2 + (y3 − y4)

2 = c2.

Nonholonomic constraints:
ω1 = (x1 − x2)dy1 − (y1 − y2)dx1

ω2 = (x2 − x3)((1 − s)dy2 + sdy3)− (y2 − y3)((1 − s)dx2 + sdx3)

ω3 = (x4 − x3)dy4 − (y4 − y3)dx4.

Distribution: Anihilator of (ω1, ω2, ω3) restricted from R8 to a
leaf of the foliation given by the holonomic constraints.
Task: solve an equivalence problem for the so defined (2,3,5)
distribution. In particular: calculate the Cartan quartic as a
function of the design parameters (a,b, c, s). Find (a,b, c, s) for
which Cartan quartic is zero.

26/37



Hunting - equations for the nonholonomic system

Holonomic constraints:

(x1 − x2)
2 + (y1 − y2)

2 = a2

(x2 − x3)
2 + (y2 − y3)

2 = b2

(x3 − x4)
2 + (y3 − y4)

2 = c2.

Nonholonomic constraints:
ω1 = (x1 − x2)dy1 − (y1 − y2)dx1

ω2 = (x2 − x3)((1 − s)dy2 + sdy3)− (y2 − y3)((1 − s)dx2 + sdx3)

ω3 = (x4 − x3)dy4 − (y4 − y3)dx4.

Distribution: Anihilator of (ω1, ω2, ω3) restricted from R8 to a
leaf of the foliation given by the holonomic constraints.
Task: solve an equivalence problem for the so defined (2,3,5)
distribution. In particular: calculate the Cartan quartic as a
function of the design parameters (a,b, c, s). Find (a,b, c, s) for
which Cartan quartic is zero.

26/37



Hunting - equations for the nonholonomic system

Holonomic constraints:

(x1 − x2)
2 + (y1 − y2)

2 = a2

(x2 − x3)
2 + (y2 − y3)

2 = b2

(x3 − x4)
2 + (y3 − y4)

2 = c2.

Nonholonomic constraints:
ω1 = (x1 − x2)dy1 − (y1 − y2)dx1

ω2 = (x2 − x3)((1 − s)dy2 + sdy3)− (y2 − y3)((1 − s)dx2 + sdx3)

ω3 = (x4 − x3)dy4 − (y4 − y3)dx4.

Distribution: Anihilator of (ω1, ω2, ω3) restricted from R8 to a
leaf of the foliation given by the holonomic constraints.
Task: solve an equivalence problem for the so defined (2,3,5)
distribution. In particular: calculate the Cartan quartic as a
function of the design parameters (a,b, c, s). Find (a,b, c, s) for
which Cartan quartic is zero.

26/37



Hunting - equations for the nonholonomic system

Holonomic constraints:

(x1 − x2)
2 + (y1 − y2)

2 = a2

(x2 − x3)
2 + (y2 − y3)

2 = b2

(x3 − x4)
2 + (y3 − y4)

2 = c2.

Nonholonomic constraints:
ω1 = (x1 − x2)dy1 − (y1 − y2)dx1

ω2 = (x2 − x3)((1 − s)dy2 + sdy3)− (y2 − y3)((1 − s)dx2 + sdx3)

ω3 = (x4 − x3)dy4 − (y4 − y3)dx4.

Distribution: Anihilator of (ω1, ω2, ω3) restricted from R8 to a
leaf of the foliation given by the holonomic constraints.
Task: solve an equivalence problem for the so defined (2,3,5)
distribution. In particular: calculate the Cartan quartic as a
function of the design parameters (a,b, c, s). Find (a,b, c, s) for
which Cartan quartic is zero.

26/37



Hunting - techniques to catch a G2 snake

A 5-manifold M with a (2,3,5) distribution D on defines an
exceptional parabolic geometry of type (G2,P) where P
is a 9-dimensional parabolic subgroup of split real form of
the exceptional Lie group G2 corresponding to a cross at
the first root of the Dynkin diagram.
Such geometry can be described by g2 Cartan connection
Ω on the corresponding 14-dimensional Cartan bundle
P → G → M.
The curvature of this connection R = dΩ + Ω∧Ω vanishes
if and only if the distribution D on M has symmetry Lie
algebra isomorphic to g2.
The curvature of Ω, in general, has 24-independent
components, but 19 of them are expressible in terms of
five fundamental ones (call them (A1,A2,A3,A4,A5)) as
derivatives of the Ais.
The Ais can be collected to a tensorial object called
Cartan quartic, whose vanishing is neccessary and
sufficient for the full curvature R to vanish.27/37
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So one way to look for a G2 snake is to calculate the
Cartan quartic.
Well... beyond my calculational skills.
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Hunting - techniques to catch a G2 snake

It follows that (2,3,5) distributions are locally in one to one
correspondence with 5-dimensional conformal manifolds
(M, [g]) with conformal metrics of signature (3,2), whose
conformal holonomy is reduced from SO(4,3) to split
G2 ⊂ SO(4,3).
There exists an algorithm of calculating [g] for a given
(2,3,5) distribution D.
It therefore ‘suffices’ to take the tri-segment snake
distribution D, as expressed in terms of (ω1, ω2, ω3), to
calculate the associated conformal class [g], to calculate
its Weyl tensor, and to equate it to zero.
Well... beyond my calculational skills.
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Hunting - techniques to catch a G2 snake

START TO THINK!
Perhaps there is a reacher geometry than just M equipped
with (2,3,5) distribution D, given to us by the tri-segment
snake....
???? Well...
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Hunting - techniques to catch a G2 snake

Note that M - the configuration space of a snake is
naturally embedded in R8.
So we have M ⊂ R8 and we have a 2-distribution D
tangent to the submanifold M. Smells like a CR structure,
doesn’t it?
Question: Is there a constant linear map JD : R8 → R8,
such that J2

D = −id , and such that JD(TM) ∩ TM = D?
Answer (a big surprise for me!): Such a constant JD
exists if and only if s = 1/2, i.e. when the wheel at
snake’s middle segment is located precisely in the
center! Moreover, if s = 1/2 such JD is unique.
If s = 1/2 the holomorphic coordinates related to this
unique JD, in the corresponding C4, are related to snake’s
coordinates in R8 via: z1 = x1 + i(y2 − y1), z2 = x2 + iy2,
z3 = x3 − iy3, z4 = x4 + i(y4 − y3). Note that these are not
standard holomorphic coordinates zi = xi + iyi .
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Hunting - using CR geometry

New point of view: A tri-segment snake with s = 1/2 is a
5-dimensional CR manifold of real codimension three and
complex dimension one embedded in C4.
New approach: Consider only tri-segment snakes with
s = 1/2 and find lengths (a,b, c) for which the resulting
(3,1)-CR-snake is the simplest.
Need theory of real codimension 3, complex dimension 1,
CR manifolds.
Since I did not find such theory in the literature, I had to
made it myself.
I solved the local equivalence problem for such CR
manifolds. Although it is not a parabolic geometry, Cartan
equivaence method quickly leads to a construction of the
full system of its local differential invariants.
The corresponding G-structure leads to an EDS that
closes at a 7-dimensional Cartan bundle over M.
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I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



I have no time to describe details here. It is enough to say
that, if I calculate these invariants for the CR manifold of an
(a,b, c) tri-segment snake, they turn out to be non zero
whatever (a,b, c) are.
:((((
...
Question: did I, by the above mentioned statement, prove
that if s = 1/2 then there is no choice of (a,b, c) such that
the velocity distribution of the (a,b, c) snake has symmetry
g2?
Answer: Actually not, because i restricted the class of
diffeomorphisms from preserving D only, to preserving
both D and the complex structure JD on it. It is still possible
that using the larger class of diffeomorphisms I can bring
CR-non-flat snake to G2 flat snake.
:)

33/37



Hunting - using CR geometry

New idea: for the s = 1/2 snake adapt the coordinates to
the corresponding CR geometry; Then use Cartan
equivalence method for the corresponding CR geometry to
bring the coframe defining the (2,3,5) distribution to the
CR simplest form; Then use the resulting G2 freedom to
calculate the conformal metric [g] associated with the
distribution;
Calculations should significantly simplify!
They do! After six weeks of constant struggle I was
eventually able to calculate the conformal class [g]
corresponding to the snake velocity distribution! I was also
able to calculate the Cartan quartic as a function of
(a,b, c). And...
The Cartan quartic is NON ZERO regardless of (a,b, c).
:((((( ... or even worse! (if you know what I mean...).
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eventually able to calculate the conformal class [g]
corresponding to the snake velocity distribution! I was also
able to calculate the Cartan quartic as a function of
(a,b, c). And...
The Cartan quartic is NON ZERO regardless of (a,b, c).
:((((( ... or even worse! (if you know what I mean...).
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Hunt over?

Concluding: I have proven that a tri-segment snake with
s = 1/2 can not be a G2 snake for neither choice of the
parameters (a,b, c).
There is still a possibility that a G2 snake is hidden in the
remaining domain s 6= 1/2.
Frankly?...I doubt it! But I have no any proof of this.
Thus, one can still hunt...But one must be aware that a G2
snake may be as mythical animal as an unicorn or yeti...
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Future?

Together with Gil Bor we are now trying to assign snakes
to every parabolic geometry with symbol algebra having
step p ≥ 2.
What we definitely can do up to now is to design a ‘snake’
or, better to say, ‘planar robot’, whose configuration
space M has a given dimension n and whose velocity
distribution D has rank r . In particular we now know that
given r and n there can be many ‘topologically
nonequivalent snakes’ with M of dimension n and D of
dimension r . This is simply governed by Euler’s formula
relating numbers of vertices, edges and faces of a
planar figure.
What is more difficult is to adjust the parameters of the so
designed snake to get the proper symbol algebra.
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Happy birthday Helga!

I dedicate this talk to Helga Baum.
I did not know what I could say here about conformal or CR
geometry that she would not know.
I tried hard to force the snakes to be as conformal or CR as
they can only be.
But they were really staborn.
In particular they did not want to be spinorial/twistorial.

THANK YOU!
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