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Abstract. We optimise the number of steps t for the t-step equaly tempered musical system so that its
twelve (or seven) keys reproduce the all 12 (or 7 white) keys of the the two famous natural musical scales,
namely the 12-step Pythagorean scale and the 12-step just intonation.

1. The 12-scale Pythagorean and equally tempered systems

The well known Pythagorean tuning system assigns the following multipliers to each step of its 12-step
scale:
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The analogous multipliers for the 12-step just intonation scale are:
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Cells in the above tables represent 12 keys of a piano keyboard spanning an octave. The frequencies of pure
tones played by a given key expressed in Herzes are given by the frequency in Herzes played by the first key,
multiplied by the multiplier from the cell correponding to this key. For example if, the key corresponding
to the cell with multiplier 27

16
plays a pure tone of 432Hz, then the first key plays a pure tone of frequency

f0 = 256Hz, so that 432Hz = 27
16

× f0 = 27
16

× 256Hz. The frequencies of the keys in other octaves of the
piano are determined in the same way, but now the frequencies of the keys in the octave with a number
n = −3,−2,−1, 0, 1, 2, 3 are multiplied by the frequency 2n × f0 = 2n × 256Hz.

The main reason for changing the mathematically beautiful Pythagorian tuning (with frequency multi-
pliers f = 3p2q) into mathematically irregular frequency patern in the just intonation, is that some major
chords played in the just intonation sound more harmonious than in the Pythagorean tuning. For example,
playing together a key with frequency multiplier 1 and frequency multiplier 81

64
makes the sound of the su-

perposed music a bit rough. This is due to the overtones. A hit in any piano key with a given frequency ν,
produces secondary sounds of the piano string, called overtones, with ferquencies 2ν, 3ν, 4ν, 5ν, and so on.
And, in particular the 5th overtone of the sound with multiplier 1, and the fourth overtone of the sound with
multiplier 81

64
, produced by a simultaneous hiting of the keys 1 and 81

64
, makes the overtones with multipliers

5 × 1 = 5 and 4 × 81
64

≃ 5.0625 to interfere, producing annoying beats. Here the physics of the real world
triumphs over the mathematical beauty, and humans decided to change the perfect Pythagorean multiplier
81
64

to the just intonation multiplier 5
4
; simply 5× 1 = 4× 5

4
. The other changes on the just intonation scale,

with respect to the Pythagorean scale, are due to similar reasons.
Both, the Pythagorean scale and the just intonation, suffer however from another problem. They are

incompatibile with transpositions: a melody played starting at one key, in general, can not be played starting
with another key; usually, starting with another key, there will be lack of keys in the scale to repeat the
melody. For this reason musicians invented an equally tempered musical tuning system, in which the ratio
between two multipliers of any two neigbouring keys is the same. In the 12-scale equally tempered system
this ratio is 2

1
12 and for it the corresponding frequency multipliers are:
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To avoid multiplications when passing from one key to the other, musicians, musicologists and tuners
apply the logarithmic function for all of these multipliers. As a result they measure musical distances in
a linear scale. They divide each of the 12 equally tempered intervals into 100 equally distant units, called
cents, so that the entire scale spanning the octave has 1200 cents. In this way the first key in the equally
tempered scale has 0 cents, the second 100 cents, the third 200 cents, and so on, until the thirteenth step
has 1200 cents.

In terms of the cents the above 3 tables read respectively as follows:

• Pythagorean:

0 90.225 203.91 294.135 407.82 498.045 611.73 701.955 792.18 905.865 996.09 1109.78 1200

• Just intonation:

0 111.731 203.91 315.641 386.314 498.045 609.776 701.955 813.686 884.359 996.09 1088.27 1200

• Equal temperament:

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

The exact formula, relating the multiplier f, being a number from the interval f ∈ [1, 2], to the number c(f)
of cents corresponding to it, is

c(f) = 1200 log2 f.

The use of the log2 in it is very useful, because the logarithm function transforms multiplication of the
multiplicities, needed to pass from one interval to the other, into the addition of the corresponding cents.
The more intuitive nature of the addition than of the multiplication explains the advantage of using cents
in the description of relations between sounds rathe than the multipliers, or frequencies.

The cents description of musical relations is perhaps as old as the dicovery of logarithms (see e.g. [1]).
However, it turns out that mathematics serves yet another, related, but much more geometric description of
the tuning intervals measure. This enables musicians to speak about tunings in a purely visual way. This
description is in terms of the complex numbers. Although discovered at least as early as in the XVths century,
they started to be really popular in the word of muscologists only in XIX-XX century; so musicians do not
use them much. But it is a pity, since they particularly fit to the musical equivalence modulo an octave, i.e.
a (perhaps psychological or cultural) phenomenon that we perceive sounds musically distanced by an octave,
as the same.

In the complex plane, there is an embedded distinguished geometrical figure, the unit circle, which is the
set of all points of the plane at distance one from the origin. In complex numbers terms, this circle is the
set of all complex numbers z, whose modulus |z| is equal to 1. To be more precise we say the following:

Instead of representing the tones of the octave in terms of the multipliers x, as in the first set of the tables
above, or in terms of the cents c(x) as in the second set of tables, it is much more convenient to represent
these tones as the points on the unit circle S = {C ∋ z s.t. z = 1}. Even if one does not know anything about
complex numbers, the formula for this representation is very simple. It transforms a multiplier f ∈ [1, 2] of
any frequency to an angle

ϕ(f) = 2π log2 f

in radians. If one wants this angle in degrees, the formula is

ϕ(f) = 360◦ log2 f.
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The point on the unit circle corresponding to the multiplier x has then the Cartesian coordinates(
x(f), y(f)

)
=

(
cosϕ(f), sinϕ(f)

)
.

It correspond to a complex number
z(f) = eiϕ(f)

from the unit circle S. Note that the appearence of 2π log2 in ϕ(f) and of the 2π-periodic trigonometric
functions cos and sin in the formula for the tone point (x(f), y(f)), maps all the tones from the same pitch
class to a single point in the circle, which is the mathematical manifestation of the musical equivalence
modulo an octave. Indeed, if we have a multiplier f and another multiplier fk in the same pitch class, i.e. if
f and fk are related by fk = 2kf, with k an integer, then(

x(fk), y(fk)
)
=

(
x(f), y(f)

)
,

since e.g.

cos(2π log2 fk) = cos(2π log2(2
kf)) = cos(2π log2 f+ 2π log2 2

k) =

cos(2π log2 f+ 2πk log2 2) = cos(2π log2 f+ 2kπ) = cos(2π log2 f).

One can easily verify that the angles in radians attributed to each multiplier given in the three tables above,
are as follows:

• Pythagorean:

0 0.472417 1.06767 1.54009 2.13534 2.60776 3.20301 3.67543 4.14784 4.7431 5.21552 5.81077 2π

• Just intonation:

0 0.585024 1.06767 1.65269 2.02273 2.60776 3.19278 3.67543 4.26045 4.63049 5.21552 5.69816 2π

• Equal temperament:
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0 0.523599 1.0472 1.5708 2.0944 2.61799 3.14159 3.66519 4.18879 4.71239 5.23599 5.75959 2π

Having these angles we can represent each of the three scales pictorially. Look at the picture below:

.

Figure 1

It depicts three dodecaphonic scales on one image. The green points/lines represent the 12 steps of the
Pythagorean scale, the blue points/lines represent the 12 steps of the just intonation, and the red points/lines
represent the 12 steps of the equally tempered 12 step scale. Here the base step/tone, the unison, is the same
for all three scales, and corresponds to the red point/line at the extreme right of the light red circle. The
other steps of each of the scales are represented by other point/lines, successively clockwise from the unison.

Except red point/line of the unison, the points/lines of other steps are grouped in two or three, always
including the red point/line. If there are three points/lines with a given red point/line, it means that the
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three scales have slightly different multipliers at this step. If there are two point lines, as e.g close to the red
point/line at hours 1, 5, 8 and 10, it means that at each of these steps, respectively at the minor second, the
perfect fourth, the minor sixth and the minor seventh, the Pythagorean and just intonation tones coincide.

Note that the equal temperament scale has the property that its steps, as represented on the light red
circle, are situated at the vertices of the regular dodecagon, which alsso is ploted in light red at the picture.
The Pythagorean and just intonation steps are not that regularly distributed.

2. Quantitative comparison

2.1. Aligning with ’C’. Looking at the picture comparing the three 12 step scales we see that the equally
tempered scale does not exactly fit to the Pythagorean or just intonation scales. It is handy to have a
quantitative measure of these differences. This leads to the following definition.

Definition 2.1. Let K = {1, 2, . . . , ℓ} and J = {1, 2, . . . , n} be two sets of indices, the first one from 1 to ℓ,
and the second one from 1 to n.

Let {c1, c2, . . . , cℓ} be a set of increasing cent values c1 = 0 ≤ ck ≤ 1200, k ∈ K, of sounds in a given
ℓ-step scale, and let {C1 = 0, C2, . . . , Cn} be the set of cent values Cj = 1200 j−1

n
, j ∈ J, of sounds in the

n-step equally tempered scale.
The fitting index δ(c, n) between the equally tempered scale {C1, C2, . . . , Cn} and the ℓ-step scale {c1, c2, . . . , cℓ}

is:
δ(c, n) = 1

ℓ

∑
k∈K

min
j∈J

|ck − Cj|.

In words: the fitting index between these two scales is the cent difference per key of those ℓ steps from
the n-step equally tempered scale, which are closest to ℓ different steps of a given ℓ-step scale.

Examples

• We calculate the fitting index between the 12-step equally tempered scale C12 and the 7-step
Pythagorean scale c7 consisting of the white keys of the Pythagorian tuned piano. We have:
K = {1, 2, . . . , 7}, J = {1, 2, . . . , 12},
c7 = {0, 203.91, 407.82, 498.045, 701.955, 905.865, 1109.78} and C12 = {Cj = 100(j − 1), j ∈ J}. This
gives

δ(c7, 12) =

|0−0|+|203.91−200|+|407.82−400|+|498.045−500|+|701.955−700|+|905.865−900|+|1109.78−1100|
7

=

4.469.

• In the same way we calculate the fitting index between the 12-step equally tempered scale C12 and
the 12-step Pythagorean scale c12. We obtain

δ(c12, 12) = 5.865.

• Another example is the fitting index between the 12-step equally tempered scale C12 and the 7-step
just intonation scale c̃7 consisting of the white keys of the just intonation tuned piano. This index
is:

δ(c̃7, 12) = 6.983.

• We close these set of example by giving the fitting index between the 12-step equally tempered scale
C12 and the 12-step just intonation scale c̃12. This is:

δ(c̃12, 12) = 8.635.

Comparing these numbers with the pictorial presentation of these scales given in Figure 1, we see that the
smaller the fitting index, the better is the fit between the two scales describing it. In particular, the 12-step
equally tempered scale fits better to the 7-scale Pithagorian scale c7 (index 4.469) than the 7-scale just
intonation scale c̃7 (index 6.983). It further follows that among all 4 scales, c7, c̃7, c12, c̃12, the one that fits
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best to the 12-step equally tempered scale is the 7-step Pythagorian scale of 7 wihite Pithagorian keys on
the piano.

After these examples we are ready to formulate the main problem we solve in this note:

Find the smallest n for the n-step equal temperament to have the fitting index with
a) 7-step scale of white keys in Pythagorean tuning
b) 12-step Pythagorean tuning
c) 7-step scale of white keys in just intonations
d) 12-step just intonation

smaller than the fitting index between the 12-step equal temperament and the respective scales
a), b), c) and d).

We have the following Theorems, which we have proven by inspection.

Theorem 2.2. For 12 ≤ n ≤ 60 the values of the fitting index δ between the n-step equal temperament and
the 7-step scale of white keys in the Pythagorean tuning are given in the following table.

n δ n δ n δ n δ n δ

11 – 21 13.921 31 9.580 41 1.106 51 5.596
12 4.469 22 13.546 32 9.039 42 7.046 52 5.513
13 21.456 23 13.540 33 9.272 43 6.750 53 0.156
14 18.174 24 4.469 34 8.408 44 6.116 54 5.232
15 16.584 25 11.961 35 9.280 45 6.502 55 5.038
16 18.416 26 9.350 36 4.469 46 5.469 56 4.543
17 8.977 27 8.965 37 7.936 47 7.196 57 5.070
18 17.931 28 10.569 38 6.574 48 4.469 58 3.4132
19 15.210 29 3.413 39 6.630 49 5.855 59 5.663
20 15.403 30 10.311 40 6.896 50 5.130 60 4.469

Theorem 2.3. For 12 ≤ n ≤ 60 the values of the fitting index δ between the n-step equal temperament and
the 7-step scale of white keys in the just intonation are given in the following table.

n δ n δ n δ n δ n δ

11 – 21 14.371 31 4.553 41 2.773 51 5.890
12 6.983 22 6.759 32 9.318 42 6.596 52 5.737
13 23.933 23 11.893 33 9.189 43 4.325 53 0.642
14 22.922 24 6.983 34 3.641 44 6.577 54 5.130
15 17.422 25 12.343 35 8.459 45 7.010 55 4.905
16 19.812 26 11.790 36 6.983 46 3.506 56 4.532
17 15.974 27 10.920 37 8.346 47 6.818 57 5.005
18 17.092 28 10.848 38 7.282 48 5.746 58 3.763
19 7.282 29 6.810 39 7.990 49 6.208 59 5.755
20 15.746 30 9.473 40 8.045 50 5.435 60 3.823

From these two tables we chose these ns for which the fitting index is smaller than the fitting index for
the n = 12 step scale, and we do it in a way such that for each chosen n0s the next chosen n has the fitting
index smaller than the fitting index attroibuted to n0. These correspond to the δs of the green collor in the
tables.

We see that if we consider fits between the white keys in the just intonation scale and the equally tempered
n < 61 step scale, the fitting indices distinguished by this method correspond to n = 22, n = 31, n = 34,
n = 41 and n = 53.

For these distinguished ns we plot the comparison of the key-values of the corresponding n-step equally
tempered system and the 12-step just intonation system. The relevant pictures are below:
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Figure 2. The left picture is for n = 12, and the right picture is for n = 22. The red lines
correspond to the equally tempered intervals, the blue lines correspond to the white keys in the
just intonation, and the green lines correspond to the black keys in the just intonation.

Figure 3. The n = 31 and n = 34 cases.

Figure 4. The n = 41 and n = 53 cases. The n = 53 equal temperament fits perfectly to the just
inonation. Further imporovement of the fit makes no sense. And... the number n = 53 of piano
keys is already too much.

In the above tables we distinguished in blue the number n = 19, because Roger Penrose in [2] proposes
equally tempered 19-step scale as ‘the best’ extension of the just intonation scale. For comparison, we plot
below his n = 19 case, and our proposed n = 31:

Figure 5

Visibly the n = 31-step scale fits better to the just intonation than the n = 19 scale.
And... it sounds better! I checked it with an electronic piano and the equal temperament simulation

program Pianoteq8 PRO.
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2.2. Aligning issue with just intonation. Notice that in the previous graphs, I aligned the note ’C’ of
the Pithagorian or just intonation scales with the first pitch (the unison) in the equal temperament. Later,
I notice that the result is sligntly different from Roger Penrose’s [2], where I guess, he aligned the unison of
the equal temperament with the note ’A’ in the just temperament. This rose the following questions:

(1) Does the fixing index (7-step scale of white keys) change when aligning the unison with a different-
than-C note from the Pythagorean/just intonation scales?

(2) Which choice of a tone from the Pythagorean/Just intonation scales for the alignment with the
unison ‘C’ is the best for minimizing the fitting index?

For (1), the answer is ’YES’. I plot the fixing index with different alignments in the following.

Figure 6. Fixing index of the just intonation fitted by n equal temperament

And according to calculation, it seems that the above mentioned scales, n = 19, 22, 29, 31, 34, 41 are good,
but not for every possible alignment. For example, the fixing number corresponds to n = 19 and aligned
with ’F♯’ produce a huge number 24.3168. And n = 53 is surpricingly good for all alignment.

Also, according to the calculation, most of the anti-peaks are created by aligning with black keys. The
following is the same graph except that the black key alignments are removed.

Figure 7. Fixing index of the just intonation fitted by n equal temperament

Now, for our question (2), from the calculated data, we conclude the following:

Theorem 2.4. For 12 ≤ n ≤ 60, for each alignment, better fitting index δ (compared to n = 12) are achieved
by the following scales in the table. In it, n(L) menas that the column is for the alingment with the L key of
the just intonation.
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n(C) δ n(D) δ n(E) δ n(F) δ n(G) δ

12 6.98269 12 9.21698 12 8.93788 12 6.70341 12 7.82055
22 6.75871 28 9.19478 19 6.22933 29 6.59708 19 6.20816
29 6.81041 29 8.51701 22 7.40093 31 6.54917 29 7.45038
31 4.55256 30 8.35624 29 8.79611 34 5.87299 31 5.5164
34 3.64081 32 8.42947 31 4.66442 37 6.6952 34 3.65284
41 2.7734 33 7.31728 32 7.70143 40 6.52018 36 7.55495
42 6.59539 34 5.90907 33 7.23364 41 2.70426 38 6.20816
43 4.32489 35 7.97029 34 3.3663 43 4.90686 39 6.68517
44 6.57715 36 8.1272 36 8.67227 44 6.13057 40 7.20696
46 3.50617 37 6.37476 37 8.7572 45 5.77839 41 2.98084
47 6.81841 38 7.58361 38 6.22933 46 5.21533 42 7.79835
48 5.74625 39 6.35079 39 6.66674 47 5.87356 43 6.15942
49 6.20808 40 7.17482 40 7.5182 48 6.36447 44 7.41501
50 5.43482 41 3.32657 41 3.60568 49 5.02964 45 6.89553
51 5.88961 42 6.03682 42 7.60469 50 6.33696 46 2.48068
52 5.73712 43 8.28206 43 4.95117 51 5.89668 47 5.97222
53 0.642428 44 6.78687 44 5.93493 52 5.53117 48 5.12802
54 5.12979 45 5.76471 45 6.27286 53 0.691148 49 6.24486
55 4.90477 46 2.76394 46 2.85179 54 5.32066 50 5.62447
56 4.53237 47 6.71974 47 7.29483 55 4.57213 51 5.87758
57 5.00504 48 4.84873 48 6.24535 56 5.19896 52 5.53117
58 3.76319 49 5.06642 49 6.6343 57 4.14583 53 0.613196
59 5.75497 50 6.52661 50 5.10429 58 4.82981 54 5.70204
60 3.82302 51 5.86059 51 5.60059 59 4.33934 55 5.65018

52 5.73712 52 5.51275 60 5.15553 56 5.37022
53 0.603451 53 0.804602 57 5.09102
54-57 >4 54-57 >4 58 3.12321
58 2.90989 58 3.87985 59 4.41365
59 5.64438 59 5.77317 60 2.98516
60 2.70588 60 3.60784
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n(A) δ n(B) δ
12 10.3343 12 8.10002
19 7.21816 22 7.13591
25-28 >8 31 5.18081
29 9.86274 34 4.47638
30 8.29214 35-39 >7
31 7.1085 40 7.73357
32 9.20786 41 3.39824
33 8.81162 42 6.23047
34 4.50043 43 4.31012
35 7.21806 44 6.95435
36 9.24452 45 6.28654
37 6.4651 46 4.56095
38 7.21816 47 5.44646
39 6.36921 48 6.86357
40 6.86357 49 5.3823
41 3.95141 50 5.98071
42 6.78904 51 5.61262
43 7.07381 52 5.75555
44 6.59123 53 0.853322
45 7.50452 54 5.21838
46 2.45139 55 4.52758
47-52 >5 56 5.18786
53 0.77537 57 4.08102
54-57 >5 58 4.94647
58 3.2398 59 4.39551
59 4.3212 60 4.94035
60 2.76998

It turns out that [2] was right, n = 19 is good when aligning with ’A’. But we also found n = 19 is not
that good when aligning with ’C’. And n = 19, 22, 29, 31 are good for some alignments, n = 34, 41, 53 are
good for all white key alignments.

2.3. Other possibilities. To sum up, how good is n will be affected by the following,

• the way we measure the fixing index
• the tuning system
• alignment of the first pitch

Finally, I present the fixing indices calculated by 60 randomly generated white key weights for Just
Intontation.
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Figure 8. fixing index aligned with ’C’ with random key weight
An interpretation of the graph is that the ’envelope’ means that some of the notes in Just Intonation are

far from the approximation and some are close (deviation is large); And for a valley, it means all of them
are approximated well.

And this also shows that n = 19, 22, 29, 31, 34, 41, 53 are good.
So, Figure 5,8 together with the table in Theorem 2.4 show that indeed n = 31 behaves better than

n = 19, although it has much more keys.

References

[1] Ellis, Alexander J. (1885), "On the Musical Scales of Various Nations", Journal of the Society of Arts: 485–527, retrieved
1 January 2020

[2] Penrose, Roger, “The Heritage of Pythagoras: Nineteen to the Dozen”, in David Greer, Ian Rumbold, and Jonathan
King (eds), Musicology And Sister Disciplines Past,Present,Future: Proceedings of the 16th International Congress
of the International Musicological Society London, 1997 (Oxford, 2000; online edn, Oxford Academic, 31 Oct. 2023),
https://doi.org/10.1093/oso/9780198167341.003.0003..

Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotników 32/46, 02-668 Warszawa, Poland
Email address: nurowski@cft.edu.pl

Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guang-
dong Province, China, Postal Code:515063


	1. The 12-scale Pythagorean and equally tempered systems
	2. Quantitative comparison
	2.1. Aligning with 'C'
	2.2. Aligning issue with just intonation
	2.3. Other possibilities

	References

