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Abstract In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in
dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex
Lie algebra f4. Cartan’s formula is written in the standard Cartesian coordinates in R15. In the present
paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution
D whose symbol algebra n(D) is constant and 2-step graded, n(D) = n−2⊕n−1.

The formula is given in terms of a solution to a certain system of linear algebraic equations determined
by two representations (ρ,n−1) and (τ,n−2) of a Lie algebra n00 contained in the 0th order Tanaka
prolongation n0 of n(D).

Numerous examples are provided, with particular emphasis put on the distributions with symmetries
being real forms of simple exceptional Lie algebras f4 and e6.
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1. Introduction: the notion of a contactification

A contact structure (M,D) on a (2n+1) dimensional real manifold M is usually defined
in terms of a 1-form λ on M such that

dλ∧dλ∧·· ·∧dλ︸ ︷︷ ︸
n times

∧λ �= 0

at each point x ∈M . Given such a 1-form, the contact structure (M,D) on M is the rank

s= 2n vector distribution

D = {X ∈ TM s.t. X−|λ= 0}.

Note that any λ′ = aλ, with a being a nonvanishing function on M, defines the same

contact structure (M,D). We also note that given a contact structure (M,D), we

additionally have a family of 2-forms on M

ω′ = aω+μ∧λ, with ω = dλ,

where a �= 0 is a function, and μ is a 1-form on M. This, in particular, means that given

a contact structure (M,D), we have a rank s = 2n (bracket generating) distribution D,

and a line of a closed 2-form ω in the distribution D, with

dω = 0 & ω∧ω∧·· ·∧ω︸ ︷︷ ︸
n times

�= 0.

This can be compared with the notion of a symplectic structure (N,[ω]) on a s = 2n

dimensional real manifold N. Such a structure is defined in terms of a line ω′ = hω of a

nowhere vanishing 2-form ω on N, such that

dω = 0 & ω∧ω∧·· ·∧ω︸ ︷︷ ︸
n times

�= 0.

Here, contrary to the contact case, we have a line of a closed 2-form ω in the tangent

space TN rather than in the proper vector subbundle D � TN .
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By the Poincaré lemma, locally, in an open set O⊂N , the form ω defines a 1-form Λ on
N such dΛ= ω. Therefore, given a symplectic structure (N,[ω]), we can locally contactify

it by considering a (2n+1) dimensional manifold

U = R×O π→O,

with a 1-form

λ= du+π∗(Λ)

on U ; here, the real variable u is a coordinate along the R factor in U = R×O. As a

result, the structure (M,D) =
(
U, ker(λ)

)
is a contact structure, called a contact structure

associated with the symplectic structure (N,[ω]).
We introduce the notion of a contactification as a generalisation of the above

considerations.

Definition 1.1. Let N be an s-dimensional manifold and let dD⊥ := Span(ω1,ω2, . . . ,ωr)
be a rank r subbundle of

∧2
N . Consider an (s+r)-dimensional fiber bundle F →M

π→N

over N. Let (X1,X2, . . . ,Xr) be a coframe of vertical vectors in M. In particular, we have

π∗(Xi) = 0 for all i= 1,2, . . . ,r.
Let us assume that on M there exist r one-forms λi, i = 1,2, . . . ,r, such that

det(Xi−|λj) �= 0 on M, and that dλi =
∑r

j=1 a
i
jπ

∗(ωj)+
∑r

j=1μ
i
j ∧λj for all i= 1,2, . . . r,

with some 1-forms μi
j and some functions aij on M satisfying det(aij) �= 0. Consider the

corresponding rank s distribution D = {TM �X | X−|λi = 0,i= 1,2, . . . r} on M.
Then the pair (M,D) is called a contactification of the pair (N,dD⊥).

Definition 1.2. A real Lie algebra g spanned over R by the vector fields Y on M of the

contactification (M,D) satisfying

LY λ
i∧λ1∧·· ·∧λr = 0, ∀i= 1,2, . . . ,r (1.1)

is called the Lie algebra of infinitesimal symmetries of the contactification (M,D). By

definition, it is the same as the Lie algebra of infinitesimal symmetries of the distribution
D on M. The vector fields Y on (M,D) satisfying (1.1) are called infinitesimal symmetries

of (M,D), or of D, for short.

Below, we give a nontrivial example of the notions included in Definitions 1.1 and 1.2.

Example 1.3. Consider N = R8 with Cartesian coordinates (x1,x2,x3,x4,x5,x6,x7,x8)

and a space dD⊥ = Span(ω1,ω2,ω3,ω4,ω5,ω6,ω7) ⊂
∧2

N , which is spanned by the
following seven 2-forms on N :

ω1 = dx1∧dx8+dx2∧dx5+dx3∧dx7+dx4∧dx6

ω2 = −dx1∧dx5+dx2∧dx8+dx3∧dx6−dx4∧dx7

ω3 = −dx1∧dx7−dx2∧dx6+dx3∧dx8+dx4∧dx5
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ω4 = dx1∧dx2+dx3∧dx4+dx5∧dx8+dx6∧dx7

ω5 = −dx1∧dx6+dx2∧dx7−dx3∧dx5+dx4∧dx8

ω6 = dx1∧dx4+dx2∧dx3−dx5∧dx7+dx6∧dx8

ω7 = dx1∧dx3−dx2∧dx4+dx5∧dx6+dx7∧dx8.

As the bundle N, take M =R7×R8 →N with coordinates (x1, . . . ,x8,x9 . . . ,x15), and take
seven 1-forms

λ1 = dx9+x1dx8+x2dx5+x3dx7+x4dx6

λ2 = dx10−x1dx5+x2dx8+x3dx6−x4dx7

λ3 = dx11−x1dx7−x2dx6+x3dx8+x4dx5

λ4 = dx12+x1dx2+x3dx4+x5dx8+x6dx7)

λ5 = dx13−x1dx6+x2dx7−x3dx5+x4dx8

λ6 = dx14+x1dx4+x2dx3−x5dx7+x6dx8

λ7 = dx15+x1dx3−x2dx4+x5dx6+x7dx8.

This defines a rank 8 distribution D= {TM �X | X−|λi = 0,i= 1,2, . . . 7} on M. The pair(
M,D

)
is a contactification of (N,dD⊥) since Xi = ∂i+8, det(Xi−|λj) = 1, and dλi = ωi

for all i= 1, . . . ,7. In particular, in this example, the rank 8 distribution D gives a 2-step

filtration D−1 ⊂D−2 =TM , where D−1 =D and D−2 = [D−1,D−1] = TM .

This example is essentially taken from Èlie Cartan’s PhD thesis [8] – actually its German
version. We took it as our example inspired by the following quote from Sigurdur Helgason
[13]:

Cartan represented [the simple exceptional Lie group] F4 (...) by the Pfaffian system in R15 (...). Similar
results for E6 in R16, E7 in R27 and E8 in R29 are indicated in [8]. Unfortunately, detailed proofs of
these remarkable representations of the exceptional groups do not seem to be available.

The 15-dimensional contactification (M,D) from our Example 1.3 is obtained in terms

of the seven 1-forms λi, which are equivalent to the seven forms from the Cartan

Pfaffian system in dimension 15 mentioned by Helgason. In particular, it follows that
the distribution structure (M,D) has the simple exceptional Lie group F4, actually its

real form FI in the terminology of [11], as a group of authomorphism.

In this paper, we will explain how one gets this realisation of the exceptional Lie group

F4, a realisation of its real form FII , and realisations of the two (out of 5) real forms EI

and EIV of the complex simple exceptional Lie group E6. For this explanation, we need

some preparations consisting of recalling few notions associated with vector distributions

on manifolds and spinorial representations of the orthogonal groups in space of real
spinors.

Finally, we note that our approach in this paper is purely utilitarian. We answer

the question: How to get the explicit formulas in Cartesian coordinates for Pfaffian
forms(λ1, . . . ,λr), which have simple Lie algebras as symmetries? One can study more

general problems related to this on purely Lie theoretical ground. For example, one can

ask when a 2-step graded nilpotent Lie algebra n� = n−2⊕ n−1 has a given Lie algebra

https://doi.org/10.1017/S1474748024000173 Published online by Cambridge University Press



Exceptional Geometries 5

n00 as a part of its Lie algebra n0 of derivations preserving the strata, or a question as to
when the Tanaka prolongation of such n� with n00 ⊂ n0 is finite, or simple. This is beyond

the scope of our paper. A reader interested in such problems may consult, for example,

[3, 4, 16]. We also mention that since in this paper we only consider distributions D with
2-step filtrations D =D−1 ⊂D−2 =TM and without any additional geometric structure

intentionally imposed on D, the realisations of the real forms of the exceptional simple

Lie group G2 will not appear. These can be found, for example, in [1, 6, 10, 17].

2. Magical equation for a contactification

The purpose of this section is to prove the following crucial lemma about a certain

algebraic equation, which we call a magical equation. It is the boxed equation (2.1) below.

Lemma 2.1. Let (n00,[·,·]0) be a finite dimensional Lie algebra, and let ρ : n00
hom→ End(S)

be its finite dimensional representation in a real vector space S of dimension s. In addition,
let R be an r-dimensional real vector space, and τ : n00 →End(R), be a linear map. Finally,

let ω be a linear map ω :
∧2

S →R, or what is the same, let ω ∈Hom(
∧2

S,R).

Suppose now that the triple (ρ,ω,τ) satisfies the following equation:

ω
(
ρ(A)X,Y

)
+ω

(
X,ρ(A)Y

)
= τ(A)ω(X,Y ), (2.1)

for all A ∈ n00 and all X,Y ∈ S. Then we have the following:

(1) The map τ satisfies(
τ([A,B]0)− [τ(A),τ(B)]End(R)

)
ω = 0 ∀A,B ∈ n00.

(2) If the map τ : n00 → End(R) is a representation of n00, that is, if

τ([A,B]0) = [τ(A),τ(B)]End(R),

then the real vector space g0 :=R⊕S⊕n00 is a graded Lie algebra

g0 = n−2⊕n−1⊕n00,

with the graded components

n−2 =R, n−1 = S, with n00 as the 0 grade,

and with the Lie bracket [·,·] given by

(a) if X,Y ∈ n00, then [X,Y ] = [X,Y ]0,

(b) if A ∈ n00, X ∈ n−1, then [A,X] = ρ(A)X,

(c) if A ∈ n00, X ∈ n−2, then [A,X] = τ(A)X,

(d) [n−1,n−2] = [n−2,n−2] = {0},
(e) and, if X,Y ∈ n−1, then [X,Y ] = ω(X,Y ).

(3) Moreover, in the case (2), the Lie subalgebra

n� = n−2⊕n−1
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of g0 is a 2-step graded Lie algebra, and the algebra n00 is a Lie subalgebra of the
Lie algebra

n0 =
{
Der(n�) �D s.t. Dnj ⊂ nj for j =−1,−2

}
of all derivations of n� preserving its strata n−1 and n−2.

Remark 2.2. Note that, in the respective bases {fμ}sμ=1 in S and {ei}ri=1 in R, the

equation (2.1) is

ρ(A)αμ ωi
αν +ρ(A)αν ωi

μα = τ(A)ij ω
i
μν (2.2)

for all A ∈ n00, all i= 1,2, . . . ,r and all μ,ν = 1,2, . . . ,s. On this basis, the condition (1) is(
τ([A,B]0)− [τ(A),τ(B)]End(R)

)i
j ω

j
μν = 0

for all i= 1,2, . . . ,r, μ,ν = 1,2, . . . s, and A,B ∈ n00.

Proof of the lemma. The proof of part (1) is a pure calculation using the equation
(2.1). We first rewrite it in the shorthand notation as

ρ(A)ω+ωρ(A)T = τ(A)ω, ∀A ∈ n00.

Then we have

τ([A,B]0)ω = ρ([A,B]0)ω+ωρ([A,B]0)
T

= ρ(A)ρ(B)ω−ρ(B)ρ(A)ω+ωρ(B)T ρ(A)T −ωρ(A)T ρ(B)T

= ρ(A)
(
τ(B)ω−ωρ(B)T

)
−ρ(B)

(
τ(A)ω−ωρ(A)T

)
+
(
τ(B)ω−ρ(B)ω

)
ρ(A)T −

(
τ(A)ω−ρ(A)ω

)
ρ(B)T

= ρ(A)
(
τ(B)ω

)
−ρ(B)

(
τ(A)ω

)
+
(
τ(B)ω

)
ρ(A)T −

(
τ(A)ω

)
ρ(B)T

= τ(A)τ(B)ω− τ(B)ωρ(A)T −
(
τ(B)τ(A)ω− τ(A)ωρ(B)T

)
+ τ(B)ωρ(A)T − τ(A)ωρ(B)T = τ(A)τ(B)ω− τ(B)τ(A)ω

= ([τ(A,τ(B)]End(R))ω,

which proves part (1).

The proof of parts (2) and (3) is as follows:
We need to check the Jacobi identity for the bracket [·,·].
We first consider the representation

σ = τ ⊕ρ of n00 in n� = n−2⊕n−1,

defined by

σ(A)(Y ⊕X) = τ(A)Y ⊕ρ(A)X, ∀A ∈ n00, X ∈ n−1, Y ∈ n−2.

We then prove that the representation σ is a strata preserving derivation in n�. This is

implied by the definitions (a)–(e) of the bracket, and the fundamental equation (2.1) as

follows:
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The strata preserving property of σ, σ(n−i)⊂ n−i, i= 1,2, is obvious by the definitions

of ρ and τ . However, we need to check that σ is a derivation – that is, that

σ(A)[X,Y ] = [σ(A)X,Y ]+ [X,σ(A)Y ] (2.3)

for all A∈ n00 and for all X,Y ∈ n�. Because of the strata preserving property of σ, which

we have just established, and because of the point (d) of the definition of the bracket, the
equation (2.3) is satisfied when both X and Y are in n−2, or when X is in n−1 and Y is

n−2. The only thing to be checked is if (2.3) is also valid when both X and Y belong to

n−1. But this just follows directly from (2.1) since if X,Y ∈ n−1, then

σ(A)[X,Y ] = σ(A)ω(X,Y ) = τ(A)ω(X,Y ) =

ω(ρ(A)X,Y )+ω(X,ρ(A)Y ) = [ρ(A)X,Y ]+ [X,ρ(A)Y ] =

[σ(A)X,Y ]+ [X,σ(A)Y ], ∀A ∈ n00.

Now we return to checking the Jacobi identity for the bracket [·,·] in g0:

On elements of the form A,B ∈ n00, Z ∈ n�, by (b)-(c), we have

[[A,B],Z]+ [[Z,A],B]+ [[B,Z],A] =
(
σ([A,B])− [σ(A),σ(B)]

)
Z,

which vanishes due to the representation property of σ. However, on elements A ∈ n00

and Z1,Z2 ∈ n�, we have

[[A,Z1],Z2]+ [[Z2,A],Z1]+ [[Z1,Z2],A] = [σ(A)Z1,Z2]+ [Z1,σ(A)Z2]−σ(A)[Z1,Z2],

which is again zero, on the ground of the derivation property 2.3 of σ. Obviously, the

bracket satisfies the Jacobi identity when it is restricted to n00; it is the Lie bracket [·,·]o
of the Lie algebra n00. Finally, property (2) implies that [[Z1,Z2],Z3] = 0 for all Z1,Z2,Z3

in n�; hence, the Jacobi identity is trivially satisfied for [·,·], when it is restricted to n�.

In the following, we will use the map ω ∈Hom(
∧2

S,R) satisfying the magical equation
(2.1) to construct contactifications with nontrivial symmetry algebras g. The setting will

include Cartan’s contactification with symmetry F4 mentioned in the Helgason’s quote.

For this, however, we need few preparations.

3. Two-step filtered manifolds

A 2-step filtered structure on an (s+r)-dimensional manifold M is a pair (M,D), in which

D is a vector distribution of rank s on M, such that it is bracket generating in the quickest

possible way. This means that its derived distribution D−2 := [D−1,D−1], with D−1 =D,
is such that

D−2 =TM.

It provides the simplest nontrivial filtration

TM =D−2 ⊃D−1

of the tangent bundle TM .
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A (local) authomorphism of a 2-step filtered manifold (M,D) is a (local) diffeomorphism

φ :M →M such that φ∗D⊂D. Since authomorphisms can be composed and have inverses,

they form a group G of (local) authomorphisms of (M,D), also called a group of (local)
symmetries of D. Infinitesimally, the Lie group of authomorphisms defines the Lie algebra

aut(D) of symmetries, which is the real span of all vector fields X on M such that

[X,Y ]⊂D for all Y ∈ D.
Among all the 2-step filtered manifolds (M,D) particularly simple are those which can

be realised on a group manifold of a 2-step nilpotent Lie group. These are related to the

notion of the nilpotent approximation of a pair (M,D). This is defined as follows:
At every point x∈M equipped with a 2-step filtration D−2 ⊃D−1, we have well-defined

vector spaces n−1(x) =D−1(x) and n−2(x) =D−2(x)/D−1(x), which define a vector space

n(x) = n−2(x)⊕n−1(x).

This vector space is naturally a Lie algebra, with a Lie bracket induced form the Lie

bracket of vector fields in TM . Due to the 2-step property of the filtration defined by D,
this Lie algebra is 2-step nilpotent,

[n−1(x),n−1(x)] = n−2(x) & [n−1(x),n−2(x)] = {0}.

This 2-step nilpotent Lie algebra is a local invariant of the structure (M,D), and it is

called a nilpotent approximation of the structure (M,D) at x ∈M .
This enables for defining a class of particularly simple examples of 2-step filtered

structures:

Consider a 2-step nilpotent Lie algebra n= n−2⊕n−1, and let M be a Lie group, whose

Lie algebra is n. The Lie algebra nM of left invariant vector fields on M is isomorphic
to n and mirrors its gradation, nM = nM−2⊕nM−1. Now, taking all linear combinations

with smooth functions coefficients of all vector fields from the graded component nM−1

of nM , one defines a vector distribution D = SpanF(M)(nM ) on M. The so constructed
filtered structure (M,D) is obviously 2-step graded and is the simplest filtered structure

with nilpotent approximation being equal to n everywhere. We call this (M,D) structure

the flat model for all the 2-step filtered structures having the same constant nilpotent
approximation n.

It is remarkable that the largest possible symmetry of all 2-step filtered structures

(M,D) is precisely the symmetry of the flat model. As such, it is algebraically determined

by the nilpotent approximation n. This is the result of Noboru Tanaka [18]. To describe
it, we recall the notion of Tanaka prolongation.

Definition 3.1. The Tanaka prolongation of a 2-step nilpotent Lie algebra n is a graded

Lie algebra g(n) given by a direct sum

g(n) = n⊕n0⊕n1⊕·· ·⊕nj ⊕·· · , (3.1)

with

nk =
{⊕

j<0

nk+j ⊗n∗j �A s.t. A[X,Y ] = [AX,Y ]+ [X,AY ]
}

(3.2)

for each k ≥ 0.
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Furthermore, for each j ≥ 0, the Lie algebra

gj(n) = n⊕n0⊕n1⊕·· ·⊕nj

is called the Tanaka prolongations of n up to jth order.

Setting [A,X] = AX for all A ∈ nk with k ≥ 0 and for all X ∈ n makes the condition

in (3.2) into the Jacobi identity. Moreover, if A ∈ nk and B ∈ nl, k,l ≥ 0, then their
commutator [A,B] ∈ nk+l is defined on elements X ∈ n inductively, according to the

Jacobi identity. By this, we mean that it should satisfy

[A,B]X = [A,BX]− [B,AX],

which is sufficient enough to define [A,B].

Remark 3.2. Note, in particular, that n0 is the Lie algebra of all derivations of n

preserving the two strata n−1 and n−2 of the direct sum n= n−2⊕n−1:

n0 =
{
Der(n) �D s.t. Dnj ⊂ nj for j =−1,−2

}
.

Although the Tanaka prolongation of a nilpotent Lie algebra n is in general infinite, in
this paper, we will be interested in situations when the Tanaka prolongation

g= g(n)

of the 2-step nilpotent part

n= n−2⊕n−1

is finite and symmetric, in the sense

g(n) = n−2⊕n−1⊕n0⊕n1⊕n2,

with

dim(n−k) = dim(nk), k = 1,2.

Such situations are possible, and in them the so defined Lie algebra g(n) is simple. In such
a case, the Tanaka prolongation g(n) is graded, and the subalgebra

p= n0⊕n1⊕n2

in such g(n) is parabolic. Moreover, the Lie algebra

popp = n−2⊕n−1⊕n0

is also a parabolic subalgebra of this simple g(n). It is isomorphic to p, p popp.
Regardless of whether g(n) is finite or not, we have the following general theorem, which

is a specialisation of a remarkable theorem by Noboru Tanaka [18]:

Theorem 3.3. Consider 2-step filtered structures (M,D), with distributions D having

the same constant nilpotent approximation n. Then
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• The most symmetric of all of these distribution structures is the flat model (M,D),
with M being a nilpotent Lie group associated of the nilpotent approximation
algebra n, and with D being the first component D−1 of the natural filtration on
M associated to the 2-step grading in n.

• The Lie algebra of authomorphism aut(D) of the flat model structure is isomorphic
to the Tanaka prolongation g(n) of the nilpotent approximation n, aut(D) g(n).

Remark 3.4. This theorem is of fundamental importance for explanation of the Cartan’s

result about a realisation of F4 in R15. As we will see, Cartan’s R15 is actually a domain

of a chart (U,ϕ) on a certain 2-step nilpotent Lie group M, with a 2-step nilpotent Lie

algebra n, and the equivalent description of F4 in terms of a symmetry group of the
contactification (M,D) from our Example 1.3 is valid because this contactification is just

the flat model for the 2-step filtration (M,D) with the nilpotent approximation n.

Using the information about the Tanaka prolongation of a nilpotent Lie algebra n, we

can enlarge our Lemma 2.1 by changing its point (3) into the following more complete

form:

Lemma 3.5. With all the assumptions of Lemma 2.1, and with points (1) and (2) as in

Lemma 2.1, its point (3) is equivalent to the following:

(3) Moreover, in the case (2), the Lie subalgebra

n� = n−2⊕n−1

of

g0 = n−2⊕n−1⊕n00

is a 2-step graded nilpotent Lie algebra, and the algebra n00 is a Lie subalgebra of the
Tanaka prolongation up to 0th order g0(n�) of the Lie algebra n� = n−2⊕n−1.

Remark 3.6. The term ‘... n00 is a Lie subalgebra of the Tanaka prolongation up to 0th

order g0(n�) of the Lie algebra n� = n−2 ⊕ n−1..’ in the above lemma means that n00,

although nontrivial, is in general only a subalgebra of the

n0 =
{
Der(n�) �D s.t. Dnj ⊂ nj for j =−1,−2

}
, n00 � n0,

which is the full 0 graded component of the Tanaka prolongation of n�. So for applications,
it is reasonable to choose n00 as large as possible.

4. Construction of contactifications with nice symmetries

Consider a Lie algebra (n00,[·,·]0) and its two real representations (ρ,S), (τ,R), in the

respective real s- and r -dimensional vector spaces S and R. Let S = Rs, R= Rr, and let
{fμ}sμ=1 and {ei}ri=1 be respective bases in S and in R. Let {fμ}sμ=1 be a basis in the

vector space S∗ dual to the basis {fμ}sμ=1, fν−| fμ = δν
μ. To be in a situation of Lemma

2.1, we also assume that we have the homomorphism ω ∈ Hom(
∧2

S,R) satisfying the

magical equation (2.1).
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Then the map ω is

ω = 1
2ω

i
μνei⊗fμ∧fν,

and it defines the coefficients ωi
μν , i=1, . . . ,r, μ,ν =1,2, . . . s, which satisfy ωi

μν =−ωi
νμ.

Now, consider an s-dimensional manifold, which is an open set N of Rs, N ⊂ Rs, with

coordinates (xμ)rμ=1. Then we have r two-forms (ωi)ri=1 on N, defined by

ωi = 1
2ω

i
μνdx

μ∧dxν .

This produces an (N,dD⊥) structure on N, with

dD⊥ = Span
R
(ω1, . . . ,ωr).

We contactify it. For this, we take a local M = Rr ×N , with coordinates
(
ui,xμ

)
r
i=1

s
μ=1,

and define the ‘contact forms’ on M by

λi = dui+ωi
μνx

μdxν .

Because of Lemmas 2.1 and 3.5, the distribution D on M defined by this contactification

as in Definition 1.1 equips M with a 2-step filtered structure having D−1 =D. This has

rank s. Now using Lemmas 2.1 and 3.5, and Tanaka’s Theorem 3.3, we get the following
corollary.

Corollary 4.1. Let M = Rr×Rs and let

λi = dui+ωi
μνx

μdxν, i= 1, . . . r,

with ω being a solution of the magical equation 2.1 such that Im(ω) = R. Consider the

distribution structure (M,D) with a rank r distribution

D = {TM �X, s.t. X−| λi = 0, i= 1, . . . ,r}

on M. Then the Lie algebra of authomorphism aut(D) of (M,D) is isomorphic to the
Tanaka prolongation of the 2-step nilpotent Lie algebra n� = R⊕S defined in point (3)

of Lemma 2.1 or 3.5. The Lie algebra g0 = R⊕S⊕ n00 is nontrivially contained in the

Tanaka prolongation up to the 0th order g0(n�) of n�, with {0} �= n00 ⊂ n0, and as such
is a subalgebra of the algebra of aut(D).

5. Majorana spinor representations of so(p,q)

In this section, we will explain how to construct the real spin representations of the

Lie algebras so(p,q), in cases when p = n, q = n− 1, or p = q = n, n = 1,2, . . . n. We
will also give a construction of these representations for so(0,n). We emphasise that we

are only interested in real spin representations. They share a general name of Majorana

representations. Our presentation of this material is adapted from [19].
We will need Pauli matrices

σx =

(
0 1

1 0

)
, ε=−iσy =

(
0 −1

1 0

)
, σz =

(
1 0

0 −1

)
(5.1)
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and the 2×2 identity matrix

I =

(
1 0

0 1

)
. (5.2)

We have the following identities:

σ2
x = σ2

z =−ε2 = I

σxε=−εσx = σz, σzσx =−σxσz =−ε, εσz =−σzε= σx.
(5.3)

Now we quote [19]:

With this notation, restricting to low dimensions p+ q = 4,5,6 and 7, the real representations of

the Clifford algebra C�(0,p+ q) are all in dimension s = 8, and are generated by the p+ q matrices
ρ1, . . . ,ρ(p+q) given by:

ρ1 = σz ⊗ I⊗ ε

ρ2 = σz ⊗ ε⊗σx

ρ3 = σz ⊗ ε⊗σz

ρ4 = σx⊗ ε⊗ I

ρ5 = σx⊗σx⊗ ε

ρ6 = σx⊗σz ⊗ ε

ρ7 = ε⊗ I⊗ I.

(5.4)

The eight matrices θμ =σx⊗ρμ, μ=1, . . . ,7 and θ8 = ε⊗I⊗I⊗I, give the real representation of C�(0,8)
in S = R16. Dropping the first factor in ρ1,ρ2,ρ3 one obtains the matrices generating a representation of
C�(0,3) in S = R4, etc.

Majorana representations of so(n − 1,n) in dimension s = 2n−1 are called Pauli

representations, and Majorana representations of so(n,n) in dimension s= 2n are called

Dirac representations.

To construct them, we need generalisations of the Pauli σ matrices and Dirac γ
matrices. The construction of those is inductive.

It starts with p+ q = 1 with one matrix σ1 = 1, and for every n= 1,2, . . . , it alternates

between p+ q = 2n− 1 of Pauli matrices σμ, μ = 1, . . . ,2n− 1, and p+ q = 2n of Dirac
matrices γμ, μ= 1, . . . ,2n.

Again quoting Trautman [19] we have the following:

(1) In dimension p+ q = 1, put σ1 = 1.

(2) Given 2n−1×2n−1 matrices σμ, μ= 1, . . . ,2n−1, define

γμ =

(
0 σμ

σμ 0

)
for μ= 1, . . . ,2n−1,

and

γ2n =

(
0 −I

I 0

)
,

where I is the identity 2n−1×2n−1 matrix.
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(3) Given 2n×2n matrices γμ, μ=1, . . . ,2n, define σμ = γμ for μ=1, . . . ,2n and σ2n+1 =

γ1 . . . γ2n, so that for n > 0,

σ2n+1 =

(
I 0
0 −I

)
.

In every dimension p+q = 2n−1, n≥ 1, the Pauli matrices σμ, μ= 1, . . . ,2n−1 satisfy

σμσν +σνσμ = 2gμν
(
I⊗·· ·⊗ I

)
︸ ︷︷ ︸

n−1 times

,

where the (2n− 1)× (2n− 1) symmetric matrix (gμν) is diagonal and has the following
diagonal elements:

(gμν) = diag(1,−1, . . . ,−1,1)︸ ︷︷ ︸
(2n−1) times

.

Likewise, in every dimension p+q = 2n, n≥ 1, the Dirac matrices γμ, μ= 1, . . . ,2n satisfy

γμγν +γνγμ = 2gμν
(
I⊗·· ·⊗ I

)
︸ ︷︷ ︸

n times

,

where the (2n)× (2n) symmetric matrix (gμν) is diagonal and has the following diagonal
elements:

(gμν) = diag(1,−1, . . . ,1,−1)︸ ︷︷ ︸
2n times

.

Therefore, for each n= 1,2, . . . , the set {σμ}2n−1
μ=1 of Pauli matrices generates the elements

of a real 2n−1-dimensional representation of the Clifford algebra C�(n−1,n), and the set
{γμ}2nμ=1 of Dirac matrices generates the elements of a real 2n-dimensional representation

of the Clifford algebra C�(n,n).
Then, in turn, these real Clifford algebras representations can be further used to define

the real spin representations of the Lie algebras so(p+ q,0), so(n− 1,n) and so(n,n) as

follows. One obtains all the generators of the spin representation of so(g) by spanning it

by all the elements of the form

• 1
2ρμρν , with 1≤ μ < ν ≤ (p+ q), in the case of so(p+ q,0), p+ q = 3,5,6,7;

• 1
2θμθν , with 1≤ μ < ν ≤ 8, in the case of so(8,0);

• 1
2σμσν , with 1≤ μ < ν ≤ (p+ q) = 2n−1, in the case of so(n−1,n);

• 1
2γμγν , with 1≤ μ < ν ≤ (p+ q) = 2n, in the case of so(n,n).

For further details, consult [19].

We will use all this information in next sections when we create examples.
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6. Application: Obtaining the flat model for (3,6) distributions

Let (ρ,S) be the defining representation of so(3) in S = R3. It can be generated by

ρ(A1) =

⎛
⎝0 0 −1
0 0 0

1 0 0

⎞
⎠, ρ(A2) =

⎛
⎝ 0 1 0
−1 0 0

0 0 0

⎞
⎠, ρ(A1) =

⎛
⎝0 0 0
0 0 −1

0 1 0

⎞
⎠ . (6.1)

And let (τ,R) be an equivalent 3-dimensional representation of so(3) given by

τ(A1) =

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠, τ(A2) =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠, τ(A1) =

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠ . (6.2)

We claim that for these two representations of so(3), in the standard bases in S = R3,

R= R3, the magical equation (2.2) has the following solution:

ω1
μν =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, ω2

μν =

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠, ω3

μν =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ .

Now using this solution (ρ,τ,ω) of the magical equation (2.1), we use the Corollary 4.1

with λi = duu+ωi
μνx

μdxν and obtain the following theorem.

Theorem 6.1. Let M = R6 with coordinates (u1,u2,u3,x1,x2,x3) and consider three 1-

forms

λ1 = du1+x2dx3

λ2 = du2+x1dx3

λ3 = du3+x1dx2

on M. Then the rank 3 distribution D on M defined by D = {TR6 � X |X−| λi = 0,

i = 1,2,3} has its Lie algebra of infinitesimal symmetries autD isomorphic to the

Tanaka prolongation of n� = R⊕S, where (ρ,S = R3) and (τ,R = R3) are the respective
representations (6.1), (6.2) of n00 = so(3).

The symmetry algebra aut(D) is isomorphic to the simple graded Lie algebra so(4,3),

aut(D) = so(4,3),

with the following gradation:

aut(D) = n−2⊕n−1⊕n0⊕n1⊕n2,

with n−2 =R, n−1 = S,

n0 = gl(3,R)⊃ n00

n1 = S∗, n2 = R∗, which is inherited from the distribution structure (M,D). The duality

signs ∗ at R∗ and S∗ above are with respect to the Killing form in so(4,3).

The contactification (M,D) is locally a flat model for the parabolic geometry of type(
Spin(4,3),P

)
related to the following crossed Satake diagram: .
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Proof. Proof is by calculating the Tanaka prolongation of n� = R⊕S, which is gl(3,R),

naturally graded by the Tanaka prolongation algebraic procedure precisely as aut(D) in

the statement of the theorem.

7. Application: Obtaining Biquard’s 7-dimensional flat quaternionic contact

manifold via contactification using spin representations of so(1,2) and

so(3,0)

According to Trautman’s procedure, [19] there is a real representation of C�(0,3) in R4.

There also is an analogous representation of C�(1,2). Both of them are generated by the

σ matrices

σ1 =

⎛
⎜⎜⎝
0 −1 0 0

1 0 0 0
0 0 0 −1

0 0 1 0

⎞
⎟⎟⎠, σ2 =

⎛
⎜⎜⎝
0 0 0 −ε

0 0 −ε 0
0 1 0 0

1 0 0 0

⎞
⎟⎟⎠, σ3 =

⎛
⎜⎜⎝
0 0 −ε 0

0 0 0 ε
1 0 0 0

0 −1 0 0

⎞
⎟⎟⎠,

where

ε= 1 for C�(0,3),

and

ε=−1 for C�(2,1).

One can check that these matrices1 satisfy the (representation of) Clifford algebra

relations:

σμσν +σνσμ = 2gμν
(
I⊗ I)

with all gμν being zero, except g11 =−1, g22 = g33 =−ε.
This leads to the following spinorial representation ρ of so(0,3) or so(1,2):

ρ(A1) =− 1
2σ3, ρ(A2) =

1
2σ2, ρ(A3) =− 1

2εσ1. (7.1)

Here, (A1,A2,A3) constitutes a basis for so(0,3) when ε= 1 and for so(2,1) when ε=−1.

This can be extended to the representation of

n00 = R⊕ so
(
1−ε
2 , 5+ε

2

)
in S = R4 by setting the value of ρ on the generator A4 = Id as

ρ(A4) =
1
2 (I⊗ I). (7.2)

For this representation of R⊕ so
(
1−ε
2 , 5+ε

2

)
, the magical equation (2.1) has a following

solution:

1In Trautman’s quote in the previous section, these matrices where denoted by ρ1, ρ2, ρ3, and
they were only explicitly given for ε= 1.
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ω1
μν =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0

0 1 0 0

⎞
⎟⎟⎠, ω2

μν =

⎛
⎜⎜⎝
0 0 0 −1
0 0 −1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎠,

ω1
μν =

⎛
⎜⎜⎝
0 −ε 0 0
ε 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎠,

with

τ(A1) =

⎛
⎝0 0 0

0 0 ε
0 −1 0

⎞
⎠, τ(A2) =

⎛
⎝ 0 0 −ε

0 0 0
−1 0 0

⎞
⎠, τ(A3) =

⎛
⎝0 −ε 0

ε 0 0
0 0 0

⎞
⎠

τ(A4) =

⎛
⎝1 0 0
0 1 0

0 0 1

⎞
⎠ .

(7.3)

This in particular gives the vectorial representation τ of

n00 = R⊕ so
(
1−ε
2 , 5+ε

2

)
in R= R3.

Now, by using this solution for (ρ,ω,τ) and applying our Corollary 4.1, we have an

(s=4)-dimensional manifold N =R4, equipped with r=3 two-forms ωi = 1
2ωμνdx

μ∧dxν ,
i = 1,2,3, which contactifies to an (s+ r) = 7-dimensional manifold M = R7 having a

distribution structure (M,D) defined as an annihilator of the r = 3 one-forms λi = dui+

ωi
μνx

μdxν , i= 1,2,3. We have the following theorem.

Theorem 7.1. Let M = R7 with coordinates (u1,u2,u3,x1,x2,x3,x4), and consider three
1-forms λ1,λ2,λ3 on M given by

λ1 =du1+x1dx3−x2dx4,

λ2 =du2−x1dx4−x2dx3,

λ3 =du3− εx1dx2−x3dx4,

with ε=±1.

The rank 4 distribution D on M defined as D = {TR7 �X |X−| λ1 =X−| λ2 =X−| λ3 =
0} has its Lie algebra of infinitesimal authomorphism aut(D) isomorphic to the Tanaka

prolongation of n� = R⊕S, where (ρ,S = R4) is the spinorial representation (7.1)-(7.2)

of n00 = R⊕ so
(
1−ε
2 , 5+ε

2

)
, and (τ,R= R3) is the vectorial representation (7.3) of n00.

The symmetry algebra aut(D) is isomorphic to the simple Lie algebra sp
(
1−ε
2 , 5+ε

2

)
,

aut(D) = sp
(
1−ε
2 , 5+ε

2

)
,

having the following natural gradation:

aut(D) = n−2⊕n−1⊕n0⊕n1⊕n2,
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with n−2 =R, n−1 = S,

n0 = n00⊕ so
(
1−ε
2 , 5+ε

2

)
=

R⊕ so
(
1−ε
2 , 5+ε

2

)
⊕ so

(
1−ε
2 , 5+ε

2

)
,

n1 = S∗, n2 = R∗, which is inherited from the distribution structure (M,D). The duality

signs ∗ at R∗ and S∗ above are with respect to the Killing form in sp
(
1−ε
2 , 5+ε

2

)
.

The contactification (M,D) is locally a flat model for the parabolic geometry of type(
Sp

(
1−ε
2 , 5+ε

2

)
,P

)
related to the following crossed satake diagrams:

(1) in the case of ε= 1, and

(2) in the case of ε=−1.

Remark 7.2. When ε = 1, the flat parabolic geometry described in the above theorem

is the lowest dimensional example of the quaternionic contact geometry considered by
Biquard [5] (see also [12]).

8. Application: Obtaining the exceptionals from contactifications of spin

representations; the f4 case

We will now explain the Cartan realisation of the simple exceptional Lie algebra f4 in

dimension R15 mentioned in the introduction.
The Satake diagrams for the real forms of the complex simple exceptional Lie algebra

f4 are as follows:

The first diagram corresponds to the compact real form of f4 and is not interesting for

us.2 The other two diagrams are interesting:

(1) The last, , corresponds to the split real form fI , and

(2) the middle one, , denoted by fII in [11], is also interesting, since similarly

to fI , it defines a parabolic geometry in dimension 15.

Crossing the last node on the right in the diagrams for fI or fII , as in or

, we see that in both algebras there exist parabolic subalgebras pI or pII ,
respectively, of dimension 37, dim(pI) = dim(pII) = 37. In both respective cases, these

choices of parabolics define similar gradations in the corresponding real forms fI , fII , of

the simple exceptional Lie f4:

fA = n−2A⊕n−1A⊕n0A⊕n1A⊕n2A for A= I,II,

with

n−A = n−2A⊕n−1A for A= I,II,

2For the compact realisation, see, for example, [2].
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being 2-step nilpotent and having grading components n−2A and n−1A of respective
dimension rA = 7 and sA = 8,

rA = dim(n−2A) = 7, sA = dim(n−1A) = 8 for A= I,II.

The Lie algebra n0A in the Tanaka prolongation of n−A up to 0th order is

(1) n0I = R⊕ so(4,3) in the case of fI , and

(2) n0II = R⊕ so(0,7) in the case of fII .

Thus, from the analysis performed here, we see that there exist two different 2-step

filtered structures (MI,DI) and (MII,DII), both in dimension 15, with the respective

FI -symmetric, or FII -symmetric flat models, realised on MI = FI/PI or MII = FII/PII .
Here, FI and FII denote the real Lie groups whose Lie algebras are fI and fII , respectively.

Similarly, PI and PII are parabolic subgroups of respective FI and FII , whose Lie algebras

are pI and pII . Recalling that each of the real groups SO(4,3) and SO(0,7) has two real
irreducible representations ρ in dimension s = 8 and τ in dimension r = 7, with the

8-dimensional representation ρ being the spin representation of either SO(4,3) or

SO(0,7), we can now give the explicit realisations of the F4-symmetric structures
(MA,DA) for A= I,II.

8.1. Cartan’s realisation of fI

The plan is to start with the Lie algebra n00 = R⊕ so(4,3), as in the crossed Satake

diagram of fI , and its two representations:

• a representaion (ρ,S = R8), corresponding to the spin representation of SO(4,3)
in (s= 8)-dimensional space n−1 = S of real Pauli spinors, and

• a representation (τ,R = R7), corresponding to the vectorial representation of
SO(4,3) in (r = 7)-dimensional space n−2 =R of vectors in R(4,3).

Having these two representations of n00 =R⊕so(4,3) in the same basis, we will then solve

the equations (2.1) for the map ω ∈ Hom(
∧2

S,R), which will give us the commutators
between elements in n−1. This via Corollary 4.1 will provide the explicit realisation of the

15-dimensional contactification (M,D) with the exception of simple Lie algebra FI as its

symmetry.

Actually, the passage from ρ to τ in the above plan is a bit tricky, since we need to
have these representations expressed in the same basis. To handle this obstacle, we will

start with the spin representation ρ in the space of Pauli spinors S, and then we will use

the fact that the skew representation ρ∧ρ in the space of the bispinors
∧2

S decomposes
as ∧2

S =
∧

21⊕
∧

7 ,

where
∧

21 is the 21-dimensional adjoint representation of SO(4,3) and
∧

7 is its 7-

dimensional vectorial representation τ . In this way, we will have the two representations
(ρ,S) and (τ,R=

∧
7), expressed in the same basis {AI} of R⊕SO(4,3), and we will apply

the Corollary 4.1 to get the desired FI -symmetric contactification in dimension 15. On

doing this, we will use notation from Section 5.
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According to [19], the real 8-dimensional representation of the Clifford algebra C�(4,3)
is generated by the seven 8-dimensional Pauli matrices:

σ1 = σx⊗σx⊗σx

σ2 = σx⊗σx⊗ ε

σ3 = σx⊗σx⊗σz

σ4 = σx⊗ ε⊗ I

σ5 = σx⊗σz ⊗ I

σ6 = ε⊗ I⊗ I

σ7 = σz ⊗ I⊗ I.

Using the identities (5.3), especially the one saying that ε2 =−I, one easily finds that the

seven Pauli matrices σi, i= 1,2, . . . ,7, satisfy the Clifford algebra identity

σiσj +σjσi = 2gij (I⊗ I⊗ I), i,j = 1,2, . . . ,7,

with the coefficients gij forming a diagonal 7×7 matrix(
gij

)
= diag

(
1,−1,1,−1,1,−1,1

)

of signature (4,3). Thus, the 8-dimensional Pauli matrices σi, i = 1, . . . ,7 generate the
Clifford algebra C�(4,3), and in turn, by the general theory, as described in Section 5,

they define the spin representation ρ of so(4,3) in an 8-dimensional real vector space

S = R8 of Pauli(-Majorana) spinors.

8.1.1. The spinorial representation of so(4,3). To be more explicit, let (i,j) be

such that 1≤ i < j ≤ 7, and let I be a function

I(i,j) = 1+ i+ 1
2 (j−3)j (8.1)

on such pairs. Note that the function I is a bijection between the 21 pairs (i,j) and the
set of 21 natural numbers I = 1,2, . . . ,21. Consider the twenty-one 8× 8 real matrices

σiσj with 1 ≤ i < j ≤ 7, and a basis {AI}21I=1 in the Lie algebra so(4,3). Then the spin

representation ρ of so(4,3) is given by

ρ(AI(i,j)) =
1
2σiσj with 1≤ i < j ≤ 7.

Explicitly, we have

ρ(A1) =
1
2I⊗ I⊗σz, ρ(A8) =

1
2I⊗ ε⊗ ε, ρ(A15) =

1
2σz ⊗σz ⊗ I,

ρ(A2) =
1
2I⊗ I⊗ ε, ρ(A9) =

1
2I⊗ ε⊗σz, ρ(A16) =

1
2ε⊗σx⊗σx,

ρ(A3) =
1
2I⊗ I⊗σx, ρ(A10) =

1
2I⊗σx⊗ I, ρ(A17) =

1
2ε⊗σx⊗ ε,

ρ(A4) =
1
2I⊗ I⊗σx, ρ(A11) =

1
2σz ⊗σx⊗σx, ρ(A18) =

1
2ε⊗σx⊗σz,

ρ(A5) =
1
2I⊗σz ⊗ ε, ρ(A12) =

1
2σz ⊗σx⊗ ε, ρ(A19) =

1
2ε⊗ ε⊗ I,

ρ(A6) =
1
2I⊗σz ⊗σz, ρ(A13) =

1
2σz ⊗σx⊗σz, ρ(A20) =

1
2ε⊗σz ⊗ I,

ρ(A7) =
1
2I⊗ ε⊗σx, ρ(A14) =

1
2σz ⊗ ε⊗ I, ρ(A21) =

1
2σx⊗ I⊗ I.

(8.2)
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The spin representation ρ of V0 = R⊕ so(4,3) needs one generator more. Let us call it

ρ(A22). We have

ρ(A22) =
1
2I⊗ I⊗ I.

We determine the structure constants cKIJ of R⊕ so(4,3) in the basis AI from

[ ρ(AI), ρ(AJ ) ] = cKIJ ρ(AK). (8.3)

8.1.2. Obtaining the vectorial representation of so(4,3). Now, we take the space∧2
S and consider the skew symmetric representation

a

ρ= ρ∧ρ

in it. We will write it in the standard basis fμ, μ= 1, . . . ,8 in S =R8. We have ρ(AI)fμ =

ρI
ν
μfν . Now, the components of the 28-dimensional representation

a

ρ= ρ∧ρ1 are

a

ρI
μν

αβ = ρI
μ
αδ

ν
β + δμαρI

ν
β −ρI

ν
αδ

μ
β − δναρI

μ
β ,

and we have

(a

ρ(AI)w
)
μν =

a

ρI
μν

αβw
αβ, ∀wαβ = w[αβ].

The Casimir operator for this representation is

C = 10KIJ a

ρ(AI)
a

ρ(AJ ),

where KIJ is the inverse of the Killing form matrix KIJ = cLIMcMJL in the basis AI .
Since for the Killing form to be nondegenerate we must restrict to the semisimple part

of R⊕ so(4,3), here the indices I,J,K,L,M = 1,2. . . ,21, and as always are summed over

the repeated indices. One can check that in this basis of so(4,3), the Killing form matrix

is diagonal and reads

(
KIJ

)
= 10diag

(
1,−1,1,1,−1,1,−1,1,−1,1,1,−1,1,−1,1,−1,1,−1,1,−1,1

)
.

The Casimir C defines the decomposition of the 28-dimensional reducible representation
a

ρ= ρ1∧ρ1 onto

∧2
S =

∧
21⊕

∧
7 ,

where the 7-dimensional irreducible representation space
∧

7 is the eigenspace of the

Casimir operator consisting of eigen-bispinors with eigenvalue equal to 6,

C
(∧

7

)
= 6

∧
7 .
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Explicitly, in the same basis AI , I =1,2, . . . ,21 as before, this 7-dimensional representation
(τ,R=

∧
7) of the so(4,3) Lie algebra is given by

τ(A1) = E66−E22,

τ(A2) =
1
2 (E23−E32+E25−E52+E36−E63+E56−E65),

τ(A3) =
1
2 (E23+E32+E25+E52+E36+E63+E56+E65),

τ(A4) =
1
2 (E23+E32−E25−E52−E36−E63+E56+E65),

τ(A5) =
1
2 (E23−E32−E25+E52−E36+E63+E56−E65),

τ(A6) = E33−E55,

τ(A7) =
1
2 (E12−E21−E16+E61−E27+E72+E67−E76),

τ(A8) =
1
2 (−E12−E21−E16−E61−E27−E72−E67−E76),

τ(A9) =
1
2 (E13−E31+E15−E51−E37+E73−E57+E75),

τ(A10) =
1
2 (E13+E31−E15−E51+E37+E73−E57−E75),

τ(A11) =
1
2 (−E12−E21+E16+E61+E27+E72−E67−E76),

τ(A12) =
1
2 (E12−E21+E16−E61+E27−E72+E67−E76),

τ(A13) =
1
2 (−E13−E31−E15−E51+E37+E73+E57+E75),

τ(A14) =
1
2 (−E13+E31+E15−E51−E37+E73+E57−E75),

τ(A15) = E11−E77,

τ(A16) =
1
2 (2E24−E42+E46−2E64),

τ(A17) =
1
2 (2E24+E42+E46+2E64),

τ(A18) =
1
2 (2E34−E43−E45+2E54),

τ(A19) =
1
2 (−2E34−E43+E45+2E54),

τ(A20) =
1
2 (−2E14+E41+E47−2E74),

τ(A21) =
1
2 (2E14+E41−E47−2E74),

τ(A22) = E11+E22+E33+E44+E55+E66+E77,

(8.4)

where Eij , i,j = 1,2, . . . ,7 denote 7×7 matrices with zeroes everywhere except the value

1 in the entry (i,j) seating at the crossing of the ith row and the j th column.

One can check that

[ τ(AI), τ(AJ ) ] = cKIJ τ(AK),

with the same structure constants as in (8.3).

8.1.3. A contactification with fI symmetry. So now we are in the situation of
having two representations (ρ,S) and (τ,R =

∧
7) od n00 = R⊕ so(4,3), and we can try

to solve the equation (2.1) for the map ω ∈ Hom(
∧2

S,R). Of course, if we started with

some arbitrary ρ and τ , this equation would not have solutions other than 0, but here
we expect to have solution since we know it from the Cartan’s PhD thesis [8] and the

announcement in Helgason’s paper [13]. And indeed, there is a solution for a nonzero ω,

which when written in the basis {fμ} in S and {ei} in R is such that it gives the seven
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2-forms ωi = 1
2ω

i
μνdx

μ∧dxν , i= 1, . . . ,7, in N = R8 given by

ω1 = dx1∧dx2−dx7∧dx8,

ω2 = dx2∧dx4−dx6∧dx8,

ω3 = dx1∧dx4−dx5∧dx8,

ω4 = 1
2

(
dx1∧dx6−dx2∧dx5−dx3∧dx8+dx4∧dx7

)
,

ω5 = dx2∧dx3−dx6∧dx7,

ω6 = dx1∧dx3−dx5∧dx7,

ω7 = dx3∧dx4−dx5∧dx6.

(8.5)

These, via the contactification and the theory summarised in Corollary 4.1, lead to the
following theorem.

Theorem 8.1. Let M = R15 with coordinates (u1, . . . ,u7,x1, . . . ,x8), and consider seven

1-forms λi, . . . ,λ7 on M given by

λ1 = du1+x1dx2−x7dx8,

λ2 = du2+x2dx4−x6dx8,

λ3 = du3+x1dx4−x5dx8,

λ4 = du4+ 1
2

(
x1dx6−x2dx5−x3dx8+x4dx7

)
,

λ5 = du5+x2dx3−x6dx7,

λ6 = du6+x1dx3−x5dx7,

λ7 = du7+x3dx4−x5dx6.

The rank 8 distribution D on M defined as D = {TR15 � X |X−| λ1 = · · · = X−| λ7 =

0} has its Lie algebra of infinitesimal authomorphism aut(D) isomorphic to the Tanaka

prolongation of n� = R⊕ S, where (ρ,S = R8) is the spinorial representation (8.2) of
n00 = R⊕ so

(
4,3) and (τ,R= R7) is the vectorial representation (8.4) of n00.

The symmetry algebra aut(D) is isomorphic to the simple Lie algebra fI ,

aut(D) = fI,

having the following natural gradation:

aut(D) = n−2⊕n−1⊕n0⊕n1⊕n2,

with n−2 =R, n−1 = S,

n0 = n00 = R⊕ so(4,3),

n1 = S∗, n2 = R∗, which is inherited from the distribution structure (M,D). The duality

signs ∗ at R∗ and S∗ above are with respect to the Killing form in fI .

The contactification (M,D) is locally a flat model for the parabolic geometry of type
(FI,PI) related to the following crossed Satake diagram of fI .

Remark 8.2. Please note that this is an example of an application of the magical

equation (2.1) in which the starting algebra n00 was big enough, so that its Tanaka
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prolongation n0 counterpart is precisely equal to n00. This was actually expected from
the construction based on the crossed Satake diagram, , which shows that n0
of this parabolic geometry is precisely our n00 = R⊕ so(4,3).

Remark 8.3. One sees that the distribution D in R15 with fI symmetry presented

in Theorem 8.1 looks different that the distribution from our Example 1.3. It follows,

however, that both these distributions are locally equivalent, and both have the same
simple exceptional Lie algebra fI as an algebra of their authomorphisms.

8.1.4. Contactification for fI : more algebra about so(4,3). In our construction

of the fI symmetric distribution D in Theorem 8.1, the crucial role was played by the

7-dimensional span of 2-forms ωi, i= 1,2, . . . ,7. If we were given these seven 2-forms, we

would produce the fI symmetric distribution D by the procedure of contactification.
It turns out that in S = R8, there is a particular 4-form3

Φ= 1
4!Φμνρσdx

μ∧dxν ∧dxρ∧dxσ

that is R⊕ so(4,3) invariant

ρI
α
μΦανρσ +ρI

α
νΦμαρσ +ρI

α
ρΦμνασ +ρI

α
σΦμνρα = SIΦμνρσ.

It may be represented by

Φ = hijω
i∧ωj,

where ωi are given by (8.5) and

(
hij

)
= 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0
0 −1 0 0 0 0 0

1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

or in words4: hij , i,j, = 1,2, . . . ,7, are all zero except h17 = h71 = −h26 = −h62 = h35 =
h53 = h44 = 1.

The form Φ in full beauty reads

2
3Φ = 2

(
dx1∧dx2∧dx3∧dx4+dx5∧dx6∧dx7∧dx8

)
−

dx1∧dx2∧dx5∧dx6+dx1∧dx3∧dx6∧dx8−
dx1∧dx4∧dx6∧dx7−dx2∧dx3∧dx5∧dx8+

dx2∧dx4∧dx5∧dx7−dx3∧dx4∧dx7∧dx8.

(8.6)

3Compare this and other 4-forms appearing in the sequel with forms introduced in [7].
4Note that since (hij) is a symmetric matrix of signature (4,3), this fact alone shows that the

span of seven 2-forms ωi is a 7-dimensional representation space of SO(4,3). Actually, this
fact easily leads to the construction of the double cover Z2 → Spin(4,3)→ SO(4,3).
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Remark 8.4. It is remarkable that this 4-form alone encaptures all the features of the
fI symmetric contactification we discussed in the entire Section 8.1. By this, we mean

following:

(1) Consider N = R8 with coordinates (xμ), μ= 1,2, . . . ,8 and the 4-form

Φ = 1
4!Φμνρσdx

μ∧dxν ∧dxρ∧dxσ

given by (8.6).

(2) Consider an equation

Aα
μΦανρσ +Aα

νΦμαρσ +Aα
ρΦμνασ +Aα

σΦμνρα = SΦμνρσ

for the real 7×7 matrix A= (Aμ
ν).

(3) For simplicity, solve it in two steps:
• First with S = 0. You obtain 21-dimensional solution space, which will be the

spin representation ρ of so(4,3). It is given ρ(A) =A.
• Then prove that the only solution with S �= 0 corresponds to S = 4, and that,

modulo the addition of linear combinations of solutions with S = 0, it is given
by A= Id8×8. Extend your possible As with S = 0 to As including A= Id8×8.

(4) In this way, you will show that the stabiliser in gl(8,R) of the 4-form Φ is the Lie

algebra R⊕ so(4,3) in the spin representation ρ of Pauli spinors; ρ(A) =A.

(5) Then search for a 7-dimensional space of 2-forms spanned say by the 2-forms ωi =
1
2ω

i
μνdx

μ∧dxν satisfying

Aα
μ ωi

αν + Aα
ν ωi

μα = sij ω
j
μν

for all As from the spin representation ρ(A)=A of R⊕so(4,3). Here, sij are auxiliary

constants5.

(6) This space is uniquely defined by these equations, and after solving them, you will

get 7 linearly independent 2-forms (ω1, . . . ,ω7) in N = R8.

(7) Contactifying the resulting structure
(
N,Span(ω1, . . . ,ω7)

)
, as we did, for example,

in Theorem 8.1, you will get fI symmetric distribution D in R7 →
(
M = R15

)
→(

N = R8
)
.

8.2. Realisation of fII

It seems that Cartan was only interested in the explicit realisation of fI . The realisation of
fII can be obtained in the same spirit as we have described in Section 8.1. Here, without

much of the explanations since they parallel Section 8.1, we only display the main steps

leading to this realisation.
We start with the representation of the Clifford algebra C�(0,7) generated by the seven

ρ-matrices from (5.4). They satisfy

5Note, however, that although you look for ωi
μν with some constants sij , these constants have

geometric meaning: comparing with our magical equation (2.2), we see that the 7×7 matrices
(sij) constitute matrices of the defining representation τ of R⊕ so(4,3).
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ρiρj +ρjρi =−2δijI8×8, i,j = 1, . . . ,7.

They induce the 8-dimensional representation

ρ : R⊕ so(0,7)→ End(S)

of n00 = R⊕ so(0,7) in the space S = R8 of real Pauli spinors, generated by the 22 real

8×8 matrices:

ρ(AI(i,j)) =
1
2ρiρj, 1≤ i < j ≤ 7,

ρ(A22) =
1
2 (I⊗ I⊗ I),

with the index I = I(i,j) given by (8.1) and with I,σx,ε,σz given by (5.1)–(5.2). Explicitly,

in terms of matrices I,σx,ε,σz, the generators of this spinorial representation of so(0,7)

are

ρ(A1) =− 1
2I⊗ ε⊗σz, ρ(A8) =

1
2ε⊗σz ⊗σz, ρ(A15) =− 1

2I⊗ ε⊗ I,

ρ(A2) =
1
2I⊗ ε⊗σx, ρ(A9) =− 1

2ε⊗σz ⊗σx, ρ(A16) =− 1
2σx⊗ I⊗ ε,

ρ(A3) =− 1
2I⊗ I⊗ ε, ρ(A10) =− 1

2I⊗σz ⊗ ε, ρ(A17) =− 1
2σx⊗ ε⊗σx,

ρ(A4) =− 1
2ε⊗ ε⊗ ε, ρ(A11) =

1
2ε⊗σz ⊗ I, ρ(A18) =− 1

2σx⊗ ε⊗σz,

ρ(A5) =
1
2ε⊗ I⊗σx, ρ(A12) =− 1

2ε⊗σx⊗σz, ρ(A19) =
1
2σz ⊗ ε⊗ I,

ρ(A6) =
1
2ε⊗ I⊗σz, ρ(A13) =

1
2ε⊗σx⊗σx, ρ(A20) =

1
2σz ⊗σx⊗ ε,

ρ(A7) =
1
2ε⊗σx⊗ I, ρ(A14) =

1
2I⊗σx⊗ ε, ρ(A21) =

1
2σz ⊗σz ⊗ ε.

(8.7)

We also write down the corresponding generators of the vectorial representation τ ,

which is the 7-dimensional irreducible component
∧

7 of the representation ρ∧ρ, which

decomposes as
∧2

S =
∧

21⊕
∧

7. These generators read

τ(A1) = E31−E13, τ(A8) = E37−E73, τ(A15) = E75−E57,

τ(A2) = E12−E21, τ(A9) = E72−E27, τ(A16) = E14−E41,

τ(A3) = E32−E23, τ(A10) = E76−E67, τ(A17) = E34−E43,
τ(A4) = E61−E16, τ(A11) = E51−E15, τ(A18) = E42−E24,

τ(A5) = E36−E63, τ(A12) = E53−E35, τ(A19) = E46−E64,

τ(A6) = E62−E26, τ(A13) = E25−E52, τ(A20) = E47−E74,
τ(A7) = E17−E71, τ(A14) = E65−E56, τ(A21) = E54−E45,

(8.8)

where Eij are 7× 7 matrices with all zero entries, except at the ith-j th entry, where 1

resides.
We are again in a position ready for application of our Lemma 2.1. Given the

representations (ρ,S =R8) and (τ,R=
∧

7) of so(0,7), we solve the magical equation (2.1)

for ω= 1
2ω

i
μνei⊗fμ∧fν . In this way, we obtain the seven 2-forms ωi =− 1

2ω
i
μνdx

μ∧dxν
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on N = R8, with coordinates (xμ)8μ=1, which read as follows:

ω1 =−dx1∧dx2−dx3∧dx4+dx5∧dx6+dx7∧dx8,

ω2 = dx1∧dx3−dx2∧dx4−dx5∧dx7+dx6∧dx8,

ω3 =−dx1∧dx4−dx2∧dx3+dx5∧dx8+dx6∧dx7,

ω4 = dx1∧dx5+dx2∧dx6+dx3∧dx7+dx4∧dx8,

ω5 =−dx1∧dx6+dx2∧dx5+dx3∧dx8−dx4∧dx7,

ω6 = dx1∧dx7+dx2∧dx8−dx3∧dx5−dx4∧dx6,

ω7 = dx1∧dx8−dx2∧dx7+dx3∧dx6−dx4∧dx5.

(8.9)

These, via the contactification, lead to the following theorem.

Theorem 8.5. Let M = R15 with coordinates (u1, . . . ,u7,x1, . . . ,x8), and consider seven
1-forms λi, . . . ,λ7 on M given by

λ1 = du1−x1dx2−x3dx4+x5dx6+x7dx8,

λ2 = du2+x1dx3−x2dx4−x5dx7+x6dx8,

λ3 = du3−x1dx4−x2dx3+x5dx8+x6dx7,

λ4 = du4+x1dx5+x2dx6+x3dx7+x4dx8,

λ5 = du5−x1dx6+x2dx5+x3dx8−x4dx7,

λ6 = du6+x1dx7+x2dx8−x3dx5−x4dx6,

λ7 = du7+x1dx8−x2dx7+x3dx6−x4dx5.

The rank 8 distribution D on M defined as D = {TR15 � X |X−| λ1 = · · · =X−| λ7 = 0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka

prolongation of n� = R⊕ S, where (ρ,S = R8) is the spinorial representation (8.7) of
n00 = R⊕ so

(
0,7), and (τ,R= R7) is the vectorial representation (8.8) of n00.

The symmetry algebra aut(D) is isomorphic to the simple Lie algebra fII ,

aut(D) = fII,

having the following natural gradation

aut(D) = n−2⊕n−1⊕n0⊕n1⊕n2,

with n−2 =R, n−1 = S,

n0 = n00 = R⊕ so(0,7),

n1 = S∗, n2 = R∗, which is inherited from the distribution structure (M,D). The duality

signs ∗ at R∗ and S∗ above are with respect to the Killing form in fII .

The contactification (M,D) is locally a flat model for the parabolic geometry of type

(FII,PII) related to the following crossed Satake diagram of fII .

Remark 8.6. In this way, we realised the real form fII of the simple exceptional complex

Lie algebra f4 in M =R15 as a symmetry algebra of the Pfaffian system (λ1, . . . ,λ7). This

realisation does not appear in Cartan’s theses.
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Remark 8.7. Our present case of fII also admits description in terms of a certain R⊕
so(0,7) invariant 4-form Φ in S = R8, analogous to the 4-form Φ introduced in Section

8.1.4, when we discussed fI . Skipping the details, we only mention that now Φ may be

represented by

Φ = hijω
i∧ωj,

where ωi are given by (8.9) and

(
hij

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0

0 −1 0 0 0 0 0
0 0 −1 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0
0 0 0 0 0 −1 0

0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Explicitly, the form Φ reads

− 1
6Φ = dx1∧dx2∧dx3∧dx4−dx1∧dx2∧dx5∧dx6−

dx1∧dx2∧dx7∧dx8−dx1∧dx3∧dx5∧dx7+

dx1∧dx3∧dx6∧dx8−dx1∧dx4∧dx5∧dx8−
dx1∧dx4∧dx6∧dx7−dx2∧dx3∧dx5∧dx8−
dx2∧dx3∧dx6∧dx7+dx2∧dx4∧dx5∧dx7−
dx2∧dx4∧dx6∧dx8−dx3∧dx4∧dx5∧dx6−
dx3∧dx4∧dx7∧dx8+dx5∧dx6∧dx7∧dx8.

(8.10)

This 4-form alone encaptures all the features of the fII symmetric contactification we

discussed in the entire Section 8.2. In particular, analogous statements as in Remark 8.4,
with now so(4,3) replaced by so(0,7), apply to the present 4-form Φ.

9. Spinorial representations in dimension 8

Dimension eight is quite exceptional, as, for example, 8 is the highest possible dimension
for the existence of Euclidean Hurwitz algebras, gifting us with the algebra of octonions.

From the perspective of our paper, which meanders through the realm of simple Lie

algebras, eight is very special: among all the complex simple Lie algebras, the Dynkin
diagram of d4 = so(8,C) which is defined in dimension eight, is the most symmetric:

.

Visibly it has a threefold symmetry S3.
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The Lie algebra so(8,C) has six real forms. These are: so(8,0), so(7,1), so(6,2), so∗(8),
so(5,3) and so(4,4), with the following respective Satake diagrams:

.

We see that among these Satake diagrams, the only ones that share the S3 symmetry of

the Dynkin diagram of the complex algebra d4 are those of the compact real form so(8,0)
and of the split real form so(4,4).

This S3 symmetry of these two diagrams indicates that the lowest dimensional real

representations of so(4,4) and so(8,0) may have additional features when compared with
spinorial representations of other so(p,q)s. In particular, for both so(4,4) and so(8,0), we

have the following:

• Their Dirac representation (ρ,S) in the real vector space S =R16 is reducible over
R and is split into two real Weyl representations (ρ+,S+) and (ρ−,S−) in the
respective vector spaces of Weyl spinors S+ = R8 and S− = R8, which have the
same real dimension eight,

ρ= ρ+⊕ρ− in S = S+⊕S−, dimRS± = 8.

• The real Weyl representations (ρ±,S±) are faithful, irreducible and nonequivalent.
• The defining representations (τ,R) of so(4,4) and so(8,0), as the algebra of

endomorphisms in the space R = R8 of vectors preserving the bilinear form of
respective signatures (4,4) and (8,0) has the same dimension eight as the two
Weyl representations (ρ±,S±).

• The real defining representations (τ,R) are irreducible for both so(4,4) and so(8,0).
• All three real 8-dimensional irreducible representations (ρ+,S+), (ρ−,S−) and

(τ,R) of, respectively, both so(4,4) and so(8,0) are pairwise nonequivalent.

Thus, the Lie algebras so(4,4) and so(8,0) have three real, irreducible and nonequivalent

representations (ρ+,ρ−,τ) in the vector space R8 of the defining dimension p+q = 8. For
all so(p,q) Lie algebras, this is the only dimension p+ q that such situation with the

irreducible representations occurs.

Below, we provide the explicit description of the triality representations (ρ+,ρ−,τ)
separately for so(4,4) and so(8,0).

9.1. Triality representations of so(4,4)

We recall from Section 5 that the Lie algebra so(4,4) admits a representation ρ in the
16-dimensional real vector space S = R16 of Dirac spinors. This is obtained by using the

Dirac γ matrices generating the representation of the Clifford algebra C�(4,4). In terms

of the 2-dimensional Pauli matrices (σx,ε,σz,I), these look as follows:
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γ1 = σx⊗σx⊗σx⊗σx

γ2 = σx⊗σx⊗σx⊗ ε

γ3 = σx⊗σx⊗σx⊗σz

γ4 = σx⊗σx⊗ ε⊗ I

γ5 = σx⊗σx⊗σz ⊗ I

γ6 = σx⊗ ε⊗ I⊗ I

γ7 = σx⊗σz ⊗ I⊗ I

γ8 = ε⊗ I⊗ I⊗ I.

(9.1)

They satisfy the Dirac identity

γiγj +γjγi = 2gij(I⊗ I⊗ I⊗ I), i,j = 1, . . . ,8, (9.2)

with (
gij

)
= diag(1,−1,1,−1,1,−1,1,−1).

The 28 generators of so(4,4) in the Majorana-Dirac spinor representation ρ in the space

of Dirac spinors S = R16 are given by

ρ(AI(i,j)) =
1
2γiγj, 1≤ i < j ≤ 8,

where we again have used the function I = I(i,j) defined in (8.1). Note that since now i < j
can run from 1 to 8, the function has a range from 1 to 28. We add to these generators

the scaling generator, ρ(A29),

ρ(A29) =
1
2I⊗ I⊗ I⊗ I.

This extends the Dirac representation ρ of the Lie algebra so(4,4) to the representation

of the homothety Lie algebra co(4,4) = R⊕ so(4,4).
In terms of the 2-dimensional Pauli matrices, these generators look like

ρ(A1) =
1
2I⊗ I⊗ I⊗σz, ρ(A15) =

1
2I⊗σz ⊗σz ⊗ I,

ρ(A2) =
1
2I⊗ I⊗ I⊗ ε, ρ(A16) =

1
2I⊗ ε⊗σx⊗σx,

ρ(A3) =
1
2I⊗ I⊗ I⊗σx, ρ(A17) =

1
2I⊗ ε⊗σx⊗ ε,

ρ(A4) =
1
2I⊗ I⊗σz ⊗σx, ρ(A18) =

1
2I⊗ ε⊗σx⊗σz,

ρ(A5) =
1
2I⊗ I⊗σz ⊗ ε, ρ(A19) =

1
2I⊗ ε⊗ ε⊗ I,

ρ(A6) =
1
2I⊗ I⊗σz ⊗σz, ρ(A20) =

1
2I⊗ ε⊗σz ⊗ I,

ρ(A7) =
1
2I⊗ I⊗ ε⊗σx, ρ(A21) =

1
2I⊗σx⊗ I⊗ I,

ρ(A8) =
1
2I⊗ I⊗ ε⊗ ε, ρ(A22) =

1
2σz ⊗σx⊗σx⊗σx,

ρ(A9) =
1
2I⊗ I⊗ ε⊗σz, ρ(A23) =

1
2σz ⊗σx⊗σx⊗ ε,

ρ(A10) =
1
2I⊗ I⊗σx⊗ I, ρ(A24) =

1
2σz ⊗σx⊗σx⊗σz,

ρ(A11) =
1
2I⊗σz ⊗σx⊗σx, ρ(A25) =

1
2σz ⊗σx⊗ ε⊗ I,

ρ(A12) =
1
2I⊗σz ⊗σx⊗ ε, ρ(A26) =

1
2σz ⊗σx⊗σz ⊗ I,

ρ(A13) =
1
2I⊗σz ⊗σx⊗σz, ρ(A27) =

1
2σz ⊗ ε⊗ I⊗ I,

ρ(A14) =
1
2I⊗σz ⊗ ε⊗ I, ρ(A28) =

1
2σz ⊗σz ⊗ I⊗ I.

(9.3)

https://doi.org/10.1017/S1474748024000173 Published online by Cambridge University Press



30 P. Nurowski

Looking at the first factor in all of these generators, we observe that it is either I or σz,
(i.e., it is diagonal). This means that this 16-dimensional representation of R⊕so(4,4) is

reducible. It splits onto two real 8-dimensional Weyl representations

ρ= ρ+⊕ρ− in S = S+⊕S−, dimRS± = 8

in the spaces S± of (Majorana)-Weyl spinors.

On generators of so(4,4), these two 8-dimensional representations ρ± are given by

ρ±(A1) =
1
2I⊗ I⊗σz, ρ±(A15) =

1
2σz ⊗σz ⊗ I,

ρ±(A2) =
1
2I⊗ I⊗ ε, ρ±(A16) =

1
2ε⊗σx⊗σx,

ρ±(A3) =
1
2I⊗ I⊗σx, ρ±(A17) =

1
2ε⊗σx⊗ ε,

ρ±(A4) =
1
2I⊗σz ⊗σx, ρ±(A18) =

1
2ε⊗σx⊗σz,

ρ±(A5) =
1
2I⊗σz ⊗ ε, ρ±(A19) =

1
2ε⊗ ε⊗ I,

ρ±(A6) =
1
2I⊗σz ⊗σz, ρ±(A20) =

1
2ε⊗σz ⊗ I,

ρ±(A7) =
1
2I⊗ ε⊗σx, ρ±(A21) =

1
2σx⊗ I⊗ I,

ρ±(A8) =
1
2I⊗ ε⊗ ε, ρ±(A22) =± 1

2σx⊗σx⊗σx,
ρ±(A9) =

1
2I⊗ ε⊗σz, ρ±(A23) =± 1

2σx⊗σx⊗ ε,

ρ±(A10) =
1
2I⊗σx⊗ I, ρ±(A24) =± 1

2σx⊗σx⊗σz,

ρ±(A11) =
1
2σz ⊗σx⊗σx, ρ±(A25) =± 1

2σx⊗ ε⊗ I,
ρ±(A12) =

1
2σz ⊗σx⊗ ε, ρ±(A26) =± 1

2σx⊗σz ⊗ I,

ρ±(A13) =
1
2σz ⊗σx⊗σz, ρ±(A27) =± 1

2ε⊗ I⊗ I,

ρ±(A14) =
1
2σz ⊗ ε⊗ I, ρ±(A28) =± 1

2σz ⊗ I⊗ I.

(9.4)

We extend them to R⊕ so(4,4) by adding

ρ±(A29) =
1
2I⊗ I⊗ I.

It follows that the Weyl representations (ρ±,S±) of so(4,4) are irreducible and nonequiv-

alent.
They can be used to find yet another real 8-dimensional representation of so(4,4). For

this, one considers the tensor product representation

ρ+⊗ρ−.

This 64-dimensional real representation of so(4,4) is reducible. It decomposes as

ρ+⊗ρ− = α⊕ τ in S+⊗S− = T56⊕R, with dimR(R) = 8, dimR(T56) = 56,

having irreducible components (α,T56) and (τ,R) of respective dimensions 56 and 8.
Explicitly, on generators of R⊕ so(4,4), the 8-dimensional representation τ reads

τ(A1) = E66−E22,

τ(A2) =
1
2
(E23−E32+E25−E52+E36−E63+E56−E65),

τ(A3) =
1
2
(E23+E32+E25+E52+E36+E63+E56+E65),
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τ(A4) =
1
2
(E23+E32−E25−E52−E36−E63+E56+E65),

τ(A5) =
1
2
(E23−E32−E25+E52−E36+E63+E56−E65),

τ(A6) = E33−E55,

τ(A7) =
1
2
(E12−E21−E16+E61−E27+E72+E67−E76),

τ(A8) =
1
2
(−E12−E21−E16−E61−E27−E72−E67−E76),

τ(A9) =
1
2
(E13−E31+E15−E51−E37+E73−E57+E75),

τ(A10) =
1
2
(E13+E31−E15−E51+E37+E73−E57−E75),

τ(A11) =
1
2
(−E12−E21+E16+E61+E27+E72−E67−E76),

τ(A12) =
1
2
(E12−E21+E16−E61+E27−E72+E67−E76),

τ(A13) =
1
2
(−E13−E31−E15−E51+E37+E73+E57+E75),

τ(A14) =
1
2
(−E13+E31+E15−E51−E37+E73+E57−E75),

τ(A15) = E11−E77,

τ(A16) =
1
2
(E24−E42+E28−E82+E46−E64−E68+E86),

τ(A17) =
1
2
(E24+E42+E28+E82+E46+E64+E68+E86),

τ(A18) =
1
2
(E34−E43+E38−E83−E45+E54+E58−E85),

τ(A19) =
1
2
(−E34−E43−E38−E83+E45+E54+E58+E85),

τ(A20) =
1
2
(−E14+E41−E18+E81+E47−E74−E78+E87),

τ(A21) =
1
2
(E14+E41+E18+E81−E47−E74−E78−E87),

τ(A22) =
1
2
(−E24−E42+E28+E82+E46+E64−E68−E86),

τ(A23) =
1
2
(−E24+E42+E28−E82+E46−E64+E68−E86),

τ(A24) =
1
2
(−E34−E43+E38+E83−E45−E54+E58+E85),

τ(A25) =
1
2
(E34−E43−E38+E83+E45−E54+E58−E85),

τ(A26) =
1
2
(E14+E41−E18−E81+E47+E74−E78−E87),

τ(A27) =
1
2
(−E14+E41+E18−E81−E47+E74−E78+E87),

τ(A28) =−E44+E88,

τ(A29) = E11+E22+E33+E44+E55+E66+E77+E88,

(9.5)

where Eij , i,j = 1,2, . . . ,8 denote 8×8 matrices with zeroes everywhere except the value
1 in the entry (i,j) seating at the crossing of the ith row and the j th column.

The three real, irreducible, pairwise nonequivalent representations (ρ+,ρ−,τ) of so(4,4),
given by the formulas (9.4) and (9.5), constitute the set of the triality representations for

so(4,4).

9.2. Triality representations of so(8,0)

To get the real representation (ρ,S) of so(8,0) in the space S = R16 of Dirac spinors, we
need the real Dirac γ matrices satisfying the Dirac identity (9.2), but now with

gij = δij,

where δij is the Kronecker delta in 8 dimensions.

Thus, we need to modify the Dirac matrices γi from (9.1) to have the proper signature

of the metric. This is done in two steps [19]. First, one puts the imaginary unit i in front
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of some of the Dirac matrices γi generating the Clifford algebra C�(4,4) to get the proper

signature of (gij). Although this produces few complex generators, in step two, one uses

them with the others and modifies them in an algorithmic fashion so that they become
all real and still satisfy the Dirac identity with the proper signature of (gij). Explicitly,

it is done as follows:

By placing the imaginary unit i in front of γ2, γ4, γ6 and γ8 in (9.1), we obtain 8
matrices

γ̃2j−1 = γ2j−1, γ̃2j = iγ2j, j = 1,2,3,4,

with γi, i,1, . . . ,8, in (9.1). These constitute generators of the complex 16-dimensional

representation of the Clifford algebra C�(8,0). We will also need the representation of this
Clifford algebra, which is complex conjugate of γ̃. This is generated by

γ̃2j−1 = γ2j−1, γ̃2j =−γ2j, j = 1,2,3,4.

The Clifford algebra representations generated by the Dirac matrices γ̃ and γ̃ are real

equivalent – that is, there exists a real 16×16 matrix B such that

Bγ̃i = γ̃iB, ∀i= 1, . . . ,8.

It can be chosen so that
B2 = Id,

where Id = I⊗ I⊗ I⊗ I.

Explicitly,

B = σz ⊗ ε⊗σz ⊗ ε.

Using this matrix, we define a new set of eight γ matrices6 by

γi = (iB+Id) γ̃i (iB+Id)−1, ∀i= 1, . . . ,8.

One can check that these 8 matrices are all real and that they satisfy the desired Dirac

identity:

γiγj +γjγi = 2δij(I⊗ I⊗ I⊗ I), i,j = 1, . . . ,8.

Explicitly, we have
γ1 = σx⊗σx⊗σx⊗σx

γ2 =−ε⊗σz ⊗ ε⊗ I

γ3 = σx⊗σx⊗σx⊗σz

γ4 = ε⊗σz ⊗σx⊗ ε

γ5 = σx⊗σx⊗σz ⊗ I

γ6 =−ε⊗ I⊗σz ⊗ ε

γ7 = σx⊗σz ⊗ I⊗ I

γ8 = σx⊗ ε⊗σz ⊗ ε.

6The γ-matrices used below should be considered as new symbols and should not be confused
with the so(4,4) γ-matrices in formulas defining γ̃-matrices at the beginning of this section.
One should forget about the definition of γ̃s in the formula below.
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The 28 generators of so(8,0) in the Majorana-Dirac spinor representation ρ in the space

of Dirac spinors S = R16 are given by

ρ(AI(i,j)) =
1
2γiγj, 1≤ i < j ≤ 8,

where again we have used the function I = I(i,j) defined in (8.1). Note that since now

i < j can run from 1 to 8, the function has a range from 1 to 28. We add to this the

scaling generator, ρ(A29), extending the Lie algebra so(4,4) to coa(4,4), given by

ρ(A29) =
1
2I⊗ I⊗ I⊗ I.

In terms of the 2-dimensional Pauli matrices, these generators look like

ρ(A1) =− 1
2σz ⊗ ε⊗σz ⊗σx, ρ(A15) =− 1

2σz ⊗σx⊗ I⊗ ε,
ρ(A2) =

1
2I⊗ I⊗ I⊗ ε, ρ(A16) =

1
2I⊗ ε⊗σx⊗σx,

ρ(A3) =
1
2σz ⊗ ε⊗σz ⊗σz, ρ(A17) =

1
2σz ⊗ I⊗ ε⊗ I,

ρ(A4) =
1
2σz ⊗ ε⊗ I⊗σz, ρ(A18) =

1
2I⊗ ε⊗σx⊗σz,

ρ(A5) =− 1
2I⊗ I⊗σz ⊗ ε, ρ(A19) =− 1

2σz ⊗ I⊗σx⊗ ε,
ρ(A6) =− 1

2σz ⊗ ε⊗ I⊗σx, ρ(A20) =
1
2I⊗ ε⊗σz ⊗ I,

ρ(A7) =
1
2I⊗ I⊗ ε⊗σx, ρ(A21) =

1
2σz ⊗σz ⊗σz ⊗ ε,

ρ(A8) =− 1
2σz ⊗ ε⊗σx⊗ I, ρ(A22) =

1
2I⊗σz ⊗ ε⊗σz,

ρ(A9) =
1
2I⊗ I⊗ ε⊗σz, ρ(A23) =− 1

2σz ⊗σx⊗σx⊗ ε,

ρ(A10) =
1
2σz ⊗ ε⊗ ε⊗ ε, ρ(A24) =− 1

2I⊗σz ⊗ ε⊗σx,

ρ(A11) =− 1
2σz ⊗σx⊗ ε⊗σz, ρ(A25) =− 1

2σz ⊗σx⊗ ε⊗ I,
ρ(A12) =− 1

2I⊗σz ⊗σx⊗ ε, ρ(A26) =
1
2I⊗σz ⊗ I⊗ ε,

ρ(A13) =
1
2σz ⊗σx⊗ ε⊗σx, ρ(A27) =− 1

2σz ⊗ ε⊗ I⊗ I,

ρ(A14) =− 1
2I⊗σz ⊗ ε⊗ I, ρ(A28) =− 1

2I⊗σx⊗σz ⊗ ε.

(9.6)

Similarly, as in the case of so(4,4), this 16-dimensional representation of R⊕ so(4,4) is

reducible, again due to the appearance of I and σz only as the first factors in the above

formulas. It splits onto two real 8-dimensional Weyl representations

ρ= ρ+⊕ρ− in S = S+⊕S−, dimRS± = 8.

On generators of so(8,0), these two 8-dimensional representations ρ±, are given by

ρ±(A1) =∓ 1
2ε⊗σz ⊗σx, ρ±(A15) =∓ 1

2σx⊗ I⊗ ε,

ρ±(A2) =
1
2I⊗ I⊗ ε, ρ±(A16) =

1
2ε⊗σx⊗σx,

ρ±(A3) =± 1
2ε⊗σz ⊗σz, ρ±(A17) =± 1

2I⊗ ε⊗ I,
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ρ±(A4) =± 1
2ε⊗ I⊗σz, ρ±(A18) =

1
2ε⊗σx⊗σz,

ρ±(A5) =− 1
2I⊗σz ⊗ ε, ρ±(A19) =∓ 1

2I⊗σx⊗ ε,

ρ±(A6) =∓ 1
2ε⊗ I⊗σx, ρ±(A20) =

1
2ε⊗σz ⊗ I,

ρ±(A7) =
1
2I⊗ ε⊗σx, ρ±(A21) =± 1

2σz ⊗σz ⊗ ε,
ρ±(A8) =∓ 1

2ε⊗σx⊗ I, ρ±(A22) =
1
2σz ⊗ ε⊗σz,

ρ±(A9) =
1
2I⊗ ε⊗σz, ρ±(A23) =∓ 1

2σx⊗σx⊗ ε,

ρ±(A10) =± 1
2ε⊗ ε⊗ ε, ρ±(A24) =− 1

2σz ⊗ ε⊗σx,

ρ±(A11) =∓ 1
2σx⊗ ε⊗σz, ρ±(A25) =∓ 1

2σx⊗ ε⊗ I,
ρ±(A12) =− 1

2σz ⊗σx⊗ ε, ρ±(A26) =
1
2σz ⊗ I⊗ ε,

ρ±(A13) =± 1
2σx⊗ ε⊗σx, ρ±(A27) =∓ 1

2ε⊗ I⊗ I,

ρ±(A14) =− 1
2σz ⊗ ε⊗ I, ρ±(A28) =− 1

2σx⊗σz ⊗ ε.

(9.7)

We extend them em to R⊕ so(8,0) by adding

ρ±(A29) =
1
2I⊗ I⊗ I.

It follows that the Weyl representations (ρ±,S±) of so(4,4) are irreducible and nonequiv-
alent.

We use them to find the defining representation (τ,R) of so(8,0) in the vector space

R = R8 of vectors. We again consider the tensor product representation ρ+ ⊗ ρ−. It

decomposes as

ρ+⊗ρ− = α⊕ τ in S+⊗S− = T56⊕R, with dimR(R) = 8, dimR(T56) = 56,

having irreducible components (α,T56) and (τ,R) of respective dimensions 56 and 8.
Explicitly, on generators AI of R⊕ so(8,0), the 8-dimensional representation τ reads

τ(A1) = E38−E83, τ(A8) = E35−E53, τ(A15) = E52−E25, τ(A22) = E68−E86,
τ(A2) = E78−E87, τ(A9) = E75−E57, τ(A16) = E18−E81, τ(A23) = E36−E63,
τ(A3) = E37−E73, τ(A10) = E54−E45, τ(A17) = E31−E13, τ(A24) = E76−E67,
τ(A4) = E84−E48, τ(A11) = E28−E82, τ(A18) = E71−E17, τ(A25) = E64−E46,
τ(A5) = E43−E34, τ(A12) = E32−E23, τ(A19) = E14−E41, τ(A26) = E56−E65,
τ(A6) = E47−E74, τ(A13) = E72−E27, τ(A20) = E51−E15, τ(A27) = E26−E62,
τ(A7) = E58−E85, τ(A14) = E24−E42, τ(A21) = E21−E12, τ(A28) = E16−E61,

(9.8)

where Eij , i,j = 1,2, . . . ,8 denote 8×8 matrices with zeroes everywhere except the value

1 in the entry (i,j) seating at the crossing of the ith row and the j th column.

The three real, irreducible, pairwise nonequivalent representations (ρ+,ρ−,τ) of so(8,0)
given by the formulas (9.7) and (9.8) constitute the set of the triality representations for

so(8,0).

10. Application: 2-step graded realisations of real forms of the exceptional

Lie algebra e6

The simple exceptional complex Lie algebra e6 has the following noncompact real forms:

(1) eI , with Satake diagram ,
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(2) eII , with Satake diagram ,

(3) eIII , with Satake diagram , and

(4) eIV , with Satake diagram .

Èlie Cartan in his theses [8, 9] mentioned realisation of the real form eI in N =R16. In the

modern language, Cartan’s realisation is such that eI is the algebra of authomorphisms of

the flat model of a parabolic geometry of type (EI,P ), where the choice of parabolic

subgroup in the real form EI of the exceptional Lie group E6 is indicated by the

following decoration of the Satake diagram for eI : . The structure on the 16-

dimensional manifold N =EI/P , whose symmetry is EI , is a Majorana-Weyl RSpin(5,5)

structure (i.e., the reduction of the structure group of the tangent bundle TN to the

RSpin(5,5) ⊂ GL(16,R) in the irreducible 16-dimensional representation of Majorana-
Weyl spinors [19]). This geometry, as 1-step graded, is quite different from 2-step graded

geometries considered in our paper. We also mention that if we wanted to have a realisation

of, say eII or eIII , in the spirit of Cartan’s realisation of eI (i.e., if we crossed one lateral
node in the Satake diagram of eII or eIII), we would be forced to cross the complex

conjugated lateral root, resulting in the Satake diagrams or ,
which would give realisations of the respective eII and eIII in dimension twenty four. This

we did in [14], providing realisations of eII and eIII as Lie algebras of CR-authomorphisms

of certain 24-dimensional CR manifolds of CR dimension 16, and CR (real) codimension

8. The important point of these realisations of these two real forms of e6 was that these
geometries were 2-step graded, as in the case of Cartan’s realisation of fI , and they could

have been also thought as realisations in terms of the symmetry algebras of the structure

(M,D), where M is a certain 24-dimensional real manifold and D is a real rank 16-
distribution on M with [D,D] = TM . Thus, these two geometries described by us in [14]

are 2-step graded geometries of distributions – very much like Cartan’s realisation of fI .

In this section, we give the remaining similar realisations of the yet untreated cases of
eII and eIII .

10.1. Realisations of eI and eIV : generalities

To get realisations of eI and eIV in dimension 24, we decorate the Satake diagrams of

these two Lie algebras as follows: and . These choices of a
parabolic subalgebra in the respective eI and eIV produces the following gradation in

these algebras:

eA = n�2A⊕n�1A⊕n0A⊕n1A⊕n2A for A= I,IV ,
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with

n�A = n�2A⊕n�1A for A= I,IV ,

being 2-step nilpotent and having grading components n−2A and n�1A of respective

dimension rA = 8 and sA = 16,

rA = dim(n�2A) = 8, sA = dim(n�1A) = 16 for A= I,IV.

The Lie algebra n0A in the Tanaka prolongation of n�A up to 0th order is

(1) n0I = 2R⊕ so(4,4) = R⊕ co(4,4) in the case of eI , and

(2) n0IV = 2R⊕ so(8,0) = R⊕ co(8,0) in the case of eIV .

The last two statements, (1) and (2), get clear when one looks at the Satake diagrams we

have just decorated. If we strip off the crossed nodes from these diagrams, we get

and , clearly the simple part of n0As above.

Because of the grading property [niA,njA] ⊂ n(i+j)A in the Lie algebras eA, restricting

to subalgebras n�A, we see that we have representations (ρA,n�1A) and (τA,n�2A) given
by the adjoint action of co(4,4) or co(8,0) which naturally seat in n0A, respectively.

There is no surprise that the representations (ρA,n�1A) are the Dirac spinor repre-

sentations (9.3) and (9.6) of the respective co(4,4) and co(8,0) parts of n0As in the 16-
dimensional real vector spaces n�1A. As such, these representations are reducible, and

they split each n0A, A = I,IV onto two irreducible representations (ρA±,n�1A±) in real

8-dimensional spaces n�1A± of Weyl spinors. This shows that the 2-step nilpotent Lie

algebra n�A is, for each A = I,IV , a natural representation space for the action of the
three triality representations (ρ+,ρ−,τ). We have

n�A = n�2A⊕n�1A =

n�2A⊕n�1A+⊕n�1A−,

and the 8-dimensional real irreducible representations (τA,ρA+,ρA−) of co(4,4) or co(8,0)

acting in the respective n�2A, n�1A+ and n�1A−.
We summarise the considerations from this section in the following theorem,

Theorem 10.1. (Natural realisation of the triality representations)

(1) The so(4,4) triality: The real form eI of the simple exceptional Lie algebra e6, when

graded according to the following decoration of its Satake diagram ,

has the n� part as a real 24-dimensional vector space, naturally split onto the three

real 8-dimensional components n�2, n�1+ and n�1−,

n� = n�2⊕n�1+⊕n�1−.
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This decomposition is so(4,4) invariant and consists of components n�2, n�1+ and

n�1−, on which the triality representation

τ ⊕ρ+⊕ρ−

of so(4,4) acts irreducibly.

(2) The so(8,0) triality: Likewise, the real form eIV of the simple exceptional Lie
algebra e6, when graded according to the following decoration of its Satake diagram

, has the n� part as a real 24-dimensional vector space, naturally split

onto the three real 8-dimensional components n�2, n�1+ and n�1−,

n� = n�2⊕n�1+⊕n�1−.

This decomposition is so(8,0) invariant and consists of components n�2, n�1+ and

n�1−, on which the triality representation

τ ⊕ρ+⊕ρ−

of so(8,0) acts irreducibly.

10.2. An explicit realisation of eI in dimension 24

Taking as (ρ,S) the Dirac spinors representation (9.3) of co(4,4) in dimension 16, and

as (τ,R) the vectorial representation (9.5) of co(4,4) in dimension 8, we again are in the
situation of a missing ω ∈Hom(

∧2
S,R) from the triple (ρ,τ,ω) described by the magical

equation (2.1). Solving this equation for ω, we obtain ωi
μν , i = 1, . . . ,8, μ,ν = 1, . . . ,16,

which leads to the eight 2-forms ωi = 1
2ω

i
μνdx

μ∧dxν on a 16-dimensional manifold N =

R16, which read

ω1 = −dx1∧dx10+dx2∧dx9+dx7∧dx16−dx8∧dx15

ω2 = −dx2∧dx12+dx4∧dx10+dx6∧dx16−dx8∧dx14

ω3 = −dx1∧dx12+dx4∧dx9+dx5∧dx16−dx8∧dx13

ω4 = −dx5∧dx10+dx6∧dx9+dx7∧dx12−dx8∧dx11

ω5 = −dx2∧dx11+dx3∧dx10+dx6∧dx15−dx7∧dx14

ω6 = −dx1∧dx11+dx3∧dx9+dx5∧dx15−dx7∧dx13

ω7 = −dx3∧dx12+dx4∧dx11+dx5∧dx14−dx6∧dx13

ω8 = −dx1∧dx14+dx2∧dx13+dx3∧dx16−dx4∧dx15.

(10.1)

The manifold N = R16 with these 2-forms, after contactification, gives the following

Theorem.
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Theorem 10.2. Let M =R24 with coordinates (u1, . . . ,u8,x1, . . . ,x16), and consider eight

1-forms λ1, . . . ,λ8 on M given by

λ1 = du1−x1dx10+x2dx9+x7dx16−x8dx15

λ2 = du2−x2dx12+x4dx10+x6dx16−x8dx14

λ3 = du3−x1dx12+x4dx9+x5dx16−x8dx13

λ4 = du4−x5dx10+x6dx9+x7dx12−x8dx11

λ5 = du5−x2dx11+x3dx10+x6dx15−x7dx14

λ6 = du6−x1dx11+x3dx9+x5dx15−x7dx13

λ7 = du7−x3dx12+x4dx11+x5dx14−x6dx13

λ8 = du8−x1dx14+x2dx13+x3dx16−x4dx15.

The rank 16 distribution D on M defined as D = {TR24 �X |X−| λ1 = · · ·=X−| λ8 = 0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka

prolongation of n� = R⊕S, where (ρ,S = R16) is the Dirac spinors representation (9.3)
of n00 = co(4,4), and (τ,R= R8) is the vectorial representation (9.5) of n00.

The symmetry algebra aut(D) is isomorphic to the simple exceptional Lie algebra eI ,

aut(D) = eI,

having the following natural gradation

aut(D) = n−2⊕n−1⊕n0⊕n1⊕n2,

with n−2 =R, n−1 = S = S+⊕S−,

n0 = R⊕ co(4,4)⊃ n00,

n1 = S∗, n2 = R∗, and with the spaces S± being the carrier spaces for the Weyl spinors

representations ρ± of co(4,4). The gradation in eI is inherited from the distribution

structure (M,D). The duality signs ∗ at R∗ and S∗ above are with respect to the Killing
form in eI .

The contactification (M,D) is locally the flat model for the parabolic geometry of type

(EI,PI) related to the following crossed Satake diagram: .

Remark 10.3. Also the eI case, considered in this section, admits a description in terms

of an R⊕ so(4,4) invariant 4-form Φ in S = R16. Now Φ may be represented by

Φ = hijω
i∧ωj,
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where ωi are given by (10.1) and

(
hij

)
= 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Explicitly, the form Φ reads

Φ = 2dx1∧dx2∧dx11∧dx12−2dx1∧dx3∧dx10∧dx12+

2dx1∧dx4∧dx10∧dx11+2dx1∧dx5∧dx10∧dx14−
dx1∧dx6∧dx9∧dx14−dx1∧dx6∧dx10∧dx13−
dx1∧dx6∧dx11∧dx16+dx1∧dx6∧dx12∧dx15−
2dx1∧dx7∧dx12∧dx14+2dx1∧dx8∧dx11∧dx14+

2dx2∧dx3∧dx9∧dx12−2dx2∧dx4∧dx9∧dx11−
dx2∧dx5∧dx9∧dx14−dx2∧dx5∧dx10∧dx13+

dx2∧dx5∧dx11∧dx16−dx2∧dx5∧dx12∧dx15+

2dx2∧dx6∧dx9∧dx13+2dx2∧dx7∧dx12∧dx13−
2dx2∧dx8∧dx11∧dx13+2dx3∧dx4∧dx9∧dx10−
2dx3∧dx5∧dx10∧dx16+2dx3∧dx6∧dx9∧dx16+

2dx3∧dx7∧dx12∧dx16−dx3∧dx8∧dx9∧dx14+

dx3∧dx8∧dx10∧dx13−dx3∧dx8∧dx11∧dx16−
dx3∧dx8∧dx12∧dx15+2dx4∧dx5∧dx10∧dx15−
2dx4∧dx6∧dx9∧dx15+dx4∧dx7∧dx9∧dx14−
dx4∧dx7∧dx10∧dx13−dx4∧dx7∧dx11∧dx16−
dx4∧dx7∧dx12∧dx15+2dx4∧dx8∧dx11∧dx15+

2dx5∧dx6∧dx15∧dx16−2dx5∧dx7∧dx14∧dx16+

2dx5∧dx8∧dx14∧dx15+2dx6∧dx7∧dx13∧dx16−
2dx6∧dx8∧dx13∧dx15+2dx7∧dx8∧dx13∧dx14.

(10.2)

This 4-form is such that its stabiliser in gl(16,R) is n0 = R⊕ co(4,4). When restricted to
n00 = co(4,4) this stabiliser is given precisely in the Mayorana Dirac spinor representation

ρ= ρ+⊕ρ−

as in (9.3)–(9.4).
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10.3. An explicit realisation of eIV in dimension 24

Similarly, as in the previous section, we take as (ρ,S) the Dirac spinors representation

(9.6) of co(8.0) in dimension 16, and as (τ,R) the vectorial representation (9.8) of co(8,0)

in dimension 8, and we search for ω ∈ Hom(
∧2

S,R), solving the magical equation (2.1).

We obtain ωi
μν , i = 1, . . . ,8, μ,ν = 1, . . . ,16, which provides us with the eight 2-forms

ωi = 1
2ω

i
μνdx

μ∧dxν on a 16-dimensional manifold N = R16, which read

ω1 = dx1∧dx9+dx2∧dx10+dx3∧dx11+dx4∧dx12−
dx5∧dx13−dx6∧dx14−dx7∧dx15−dx8∧dx16

ω2 = −dx1∧dx10+dx2∧dx9+dx3∧dx12−dx4∧dx11−
dx5∧dx14+dx6∧dx13+dx7∧dx16−dx8∧dx15

ω3 = −dx1∧dx11−dx2∧dx12+dx3∧dx9+dx4∧dx10+

dx5∧dx15+dx6∧dx16−dx7∧dx13−dx8∧dx14

ω4 = −dx1∧dx12+dx2∧dx11−dx3∧dx10+dx4∧dx9+

dx5∧dx16−dx6∧dx15+dx7∧dx14−dx8∧dx13

ω5 = dx1∧dx13+dx2∧dx14−dx3∧dx15−dx4∧dx16+

dx5∧dx9+dx6∧dx10−dx7∧dx11−dx8∧dx12

ω6 = dx1∧dx14−dx2∧dx13−dx3∧dx16+dx4∧dx15−
dx5∧dx10+dx6∧dx9+dx7∧dx12−dx8∧dx11

ω7 = dx1∧dx15−dx2∧dx16+dx3∧dx13−dx4∧dx14+

dx5∧dx11−dx6∧dx12+dx7∧dx9−dx8∧dx10

ω8 = −dx1∧dx16−dx2∧dx15−dx3∧dx14−dx4∧dx13−
dx5∧dx12−dx6∧dx11−dx7∧dx10−dx8∧dx9.

(10.3)

Contactifying, we have the following theorem:

Theorem 10.4. Let M =R24 with coordinates (u1, . . . ,u8,x1, . . . ,x16), and consider eight

1-forms λ1, . . . ,λ8 on M given by

λ1 = du1+x1dx9+x2dx10+x3dx11+x4dx12−x5dx13−x6dx14−x7dx15−x8dx16

λ2 = du2−x1dx10+x2dx9+x3dx12−x4dx11−x5dx14+x6dx13+x7dx16−x8dx15

λ3 = du3−x1dx11−x2dx12+x3dx9+x4dx10+x5dx15+x6dx16−x7dx13−x8dx14

λ4 = du4−x1dx12+x2dx11−x3dx10+x4dx9+x5dx16−x6dx15+x7dx14−x8dx13

λ5 = du5+x1dx13+x2dx14−x3dx15−x4dx16+x5dx9+x6dx10−x7dx11−x8dx12

λ6 = du6+x1dx14−x2dx13−x3dx16+x4dx15−x5dx10+x6dx9+x7dx12−x8dx11

λ7 = du7+x1dx15−x2dx16+x3dx13−x4dx14+x5dx11−x6dx12+x7dx9−x8dx10

λ8 = du8−x1dx16−x2dx15−x3dx14−x4dx13−x5dx12−x6dx11−x7dx10−x8dx9.

The rank 16 distribution D on M defined as D= {TR24 �X |X−| λ1 = · · ·=X−| λ8 = 0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka

https://doi.org/10.1017/S1474748024000173 Published online by Cambridge University Press



Exceptional Geometries 41

prolongation of n� = R⊕S, where (ρ,S = R16) is the Dirac spinors representation (9.3)

of n00 = co(8,0), and (τ,R= R8) is the vectorial representation (9.5) of n00.
The symmetry algebra aut(D) is isomorphic to the simple exceptional Lie algebra eIV ,

aut(D) = eIV ,

having the following natural gradation:

aut(D) = n−2⊕n−1⊕n0⊕n1⊕n2,

with n−2 =R, n−1 = S = S+⊕S−,

n0 = R⊕ co(8,0)⊃ n00,

n1 = S∗, n2 = R∗, and with the spaces S± being the Carrier spaces for the Weyl spinors

representations ρ± of co(8,0). The gradation in eiV is inherited from the distribution

structure (M,D). The duality signs ∗ at R∗ and S∗ above are with respect to the Killing
form in eIV .

The contactification (M,D) is locally the flat model for the parabolic geometry of type

(EIV ,PIV ) related to the following crossed Satake diagram: .

Remark 10.5. Again, we have a description of the relevant representations in terms of
an R⊕ co(8,0) invariant 4-form Φ in S = R16. Now Φ may be represented by

Φ = hijω
i∧ωj,

where ωi are given by (10.3) and

(
hij

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This 4-form is such that its stabiliser in gl(16,R) is n0 = R⊕ co(8,0). When restricted to

n00 = co(8,0), this stabiliser is given precisely in the Mayorana Dirac spinor representation

ρ= ρ+⊕ρ−

as in (9.6)–(9.7).

11. Application: one more realisation of e6 and a realisation of b6

Between the 24-dimensional realisations of e6 mentioned in this paper, and Cartan’s

16-dimensional realisation of e6 associated with the grading , there are 21-

dimensional realisations of this algebra e6 associated with the following Dynkin diagram
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crossing: . These define contact e6 geometries and are described in [11] p.

425–426.

11.1. Realisation of eI in dimension 25

Here, we will briefly discuss yet another realisation, now in dimension 25, corresponding

to the following Dynkin diagram crossing: of e6. This is, for example,

mentioned in [15]. Looking at the Satake diagrams of real forms of e6, we see that this

realisation is only possible for the real form eI .
So we again use our Corollary 4.1 with now n00 = sl(2,R) ⊕ sl(5,R) and with

representations (ρ,S) and (τ,R), as indicated in [15] Section 5.3, S = R2⊗
∧2

R5, R =∧2
R2⊗

∧4
R5.

To be more explicit, we obtain this representations as follows:

• We start with the defining representations τ2 of sl(2,R) in R2 and τ5 of sl(5,R) in
R5, and we define the representation

ρ= τ2⊗
(
τ5∧ τ5

)
of sl(2,R)⊕ sl(5,R) in S = R2⊗

∧2
R5 = R20.

The representation (ρ,S) is an irreducible real 20-dimensional representation of

n00 = sl(2,R)⊕ sl(5,R).

• Then we decompose the 190-dimensional representation ρ∧ρ onto the irreducibles:

ρ∧ρ= α⊕ τ ⊕β in
∧

50⊕R⊕
∧

135 ,

with (α,
∧

50) being 50-dimensional, (τ,R) being 5-dimensional and (β,
∧

135) being
135-dimensional.

• We take the 20-dimensional representation (ρ,S) and the 5-dimensional represen-
tation (τ,R) of n00 = sl(2,R)⊕ sl(5,R) as above, and we apply our Corollary 4.1.

We obtain the following theorem.

Theorem 11.1. Let M = R25 with coordinates (u1, . . . ,u5,x1, . . . ,x20), and consider five
1-forms λ1, . . . ,λ5 on M given by

λ1 = du1−x3dx20+x5dx19−x6dx18−x8dx16+x9dx15−x10dx13

λ2 = du2−x2dx20+x4dx19−x6dx17−x7dx16+x9dx14−x10dx12

λ3 = du3−x1dx20+x4dx18−x5dx17−x7dx15+x8dx14−x10dx11

λ4 = du4−x1dx19+x2dx18−x3dx17−x7dx13+x8dx12−x9dx11

λ5 = du5−x1dx16+x2dx15−x3dx14−x4dx13+x5dx12−x6dx11.

The rank 20 distribution D on M defined as D = {TR25 �X |X−| λ1 = · · ·=X−| λ5 = 0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka
prolongation of n� = R⊕ S, where (ρ,S = R20) is the 20-dimensional irreducible rep-

resentation of n00 = sl(2,R)⊕ sl(5,R), and (τ,R = R5) is the 5-dimensional irreducible

subrepresentation τ ∈ (ρ∧ρ) of n00.
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The symmetry algebra aut(D) is isomorphic to the simple exceptional Lie algebra eI ,

aut(D) = eI,

having the following natural gradation:

aut(D) = n−2⊕n−1⊕n0⊕n1⊕n2,

with n−2 =R, n−1 = S,

n0 = R⊕ sl(2,R)⊕ sl(5,R)⊃ n00,

n1 = S∗, n2 =R∗. The gradation in eI is inherited from the distribution structure (M,D).

The duality signs ∗ at R∗ and S∗ above are with respect to the Killing form in eI .

The contactification (M,D) is locally the flat model for the parabolic geometry of type

(EI,PI∗) related to the following crossed Satake diagram: .

11.2. A realisation of so(7,6) in dimension 21

We know from[11] that the crossed Satake diagram corresponds to the

eI -symmetric contact geometry in dimension 21. It corresponds to the grading

eI = n−2⊕n−1⊕n0⊕n1⊕n2,

with dim(n±1) = 20, dim(n±2) = 1 and n0 = gl(6,R).

Interestingly, dimension n= 78 is the dimension not only of the exceptional simple Lie

algebra e6, but also for the simple Lie algebras b6 and c6. For example, if we take the
crossed Satake diagram , we describe the following gradation

so(7,6) = n−2⊕n−1⊕n0⊕n1⊕n2,

with dim(n±1) = 6, dim(n±2) = 15 and n0 = gl(6,R), in the simple Lie algebra so(7,6).

Here, taking (ρ,S) as the defining representation ρ(A) =A of GL(6,R) in S =R6, taking

the representation (τ,R) to be τ = ρ∧ρ in R=
∧2

R6 = R15, and applying our Corollary
4.1, we get the following theorem.7

Theorem 11.2. Let M =R21 with coordinates (u1, . . . ,u15,x1, . . . ,x6), and consider fifteen
1-forms λ1, . . . ,λ5 on M given by

λI(i,j) = duI(i,j)−xidxj,

with

I(i,j) = 1+ i+ 1
2 (j−3)j, 1≤ i < j ≤ 6.

The rank 6 distribution D on M defined as D = {TR21 �X |X−| λ1 = · · · =X−| λ15 = 0}
has its Lie algebra of infinitesimal authomorphisms aut(D) isomorphic to the Tanaka

prolongation of n� =R⊕S, where (ρ,S =R6) is the 6-dimensional defining representation

7We invoke it, just to show that we do not only use spin representations in this paper.
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of n00 = gl(6,R), and (τ,R =
∧2

R6) is the 15-dimensional irreducible subrepresentation

τ = ρ∧ρ of n00.
The symmetry algebra aut(D) is isomorphic to the simple exceptional Lie algebra

so(7,6),

aut(D) = so(7,6),

having the following natural gradation:

aut(D) = n−2⊕n−1⊕n0⊕n1⊕n2,

with n−2 =R, n−1 = S,

n0 = gl(6,R) = n00,

n1 = S∗, n2 = R∗. The gradation in so(7,6) is inherited from the distribution structure

(M,D). The duality signs ∗ at R∗ and S∗ above are with respect to the Killing form in

so(7,6).
The contactification (M,D) is locally the flat model for the parabolic geometry of type

(so(7,6),P ) related to the following crossed Satake diagram: .
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