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Abstract

The classication of CR hypersurfaces M2n+1 ⊂ C
n+1 up to biholomorphic equiv-

alences, notably the homogeneous ones, is a vast problem, especially in dimension

5, i.e. for n = 2, even with the assistance of all existing mostly sophisticated math-

ematical tools: Lie-theoretic algebras of differential invariants; Exterior differential

systems; Cartan connections; Parabolic geometries; Poincaré-Moser normal forms.

As understood by e.g. Lie, Tresse, Segre, Cartan, such classication problems are

tightly linked with point equivalences of completely integrable systems of partial dif-

ferential equations in n  1 independent variables and 1 dependent variable, over C

or R, so that those PDE systems that are associated to CR structures can rightly be

called ‘para-CR structures’. In particular, the 3-dimensional case, i.e. n = 1, is linked

with the well understood geometry of second order ODEs yxx = F(x,y,yx). The

present survey article: (1) focuses considerations on the study of (para-)CR structures

in dimensions 3 and 5; (2) sketches relationships with afnely homogeneous sub-

manifolds and their tubications; (3) provides several concrete classication lists of

various Lie symmetry algebras; (4) describes recent achievements due to Loboda and

to Doubrov-Medvedev-The about nondegenerate homogeneous (para-)CR structures

in 5D; (5) concludes by reviewing the recent classication arXiv:2003.08166, due to

the two authors, of degenerate homogeneous para-CR structures in 5D, which is based

on Cartan’s method of equivalence and which is coherent with the CR classication

due to Fels-Kaup.
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To Nessim, in Memoriam, in Admiration, in Friendship. Le’Haı̈m, Nessim!

H. Poincaré, en étudiant en 1907 le problème de la représentation analytique, ou pseudo-conforme, de deux domaines

de l’espace de deux variables complexesx,y, amontré qu’une hypersurface analytique de cet espace admet une innité

d’invariants différentiels par rapport au groupe inni des transformations analytiques x  = f(x,y), y  = g(x,y).

La détermination effective de ces invariants est en relation, comme l’a montré B. Segre en 1931, avec celle, effectuée

par A. Tresse, des invariants d’une équation différentielle
d2y

dx2
= ω



x,y,
dy
dx



par rapport au même groupe inni.

Les deux problèmes ne sont cependant pas identiques. Dans un mémoire paru dans le dernier fascicule des Annali

di Matematica, j’ai résolu directement le problème de Poincaré en lui appliquant une méthode générale remontant à

1908. Élie Cartan, [8, p. 1305]

1 Introduction

In [76], Nurowski-Sparling explored in depth the close relationships between the

geometry associated with second order ordinary differential equations denedmodulo

point transformations of variables, and the geometry of three-dimensional Cauchy-

Riemann (CR) structures. The goal of this expository article is to explain how certain

degenerate ve-dimensional CR structures give rise, analogously, to certain closely

tied pairs of PDEs, and then, tond all the concerned homogeneous geometries. On the

way to this end, some detailed surveymaterial will be offered to the readers. Sections 9

and 10 present original/new results.

Already in 1907, Poincaré [81] observed by a simple counting argument (quoted

in [13, p. 2]) that there are more local real hypersurfaces M3 ⊂ C
2 than there are

(local) biholomorphisms of C2. Thus, a classication problem was born.

2 Lie, Tresse, Segre, Cartan

Later, Beniamino Segre in 1931 [86, 87], inspired by Poincaré, observed that, to

every real analytic hypersurface M3 ⊂ C
2 which is not locally biholomorphically

equivalent to a hyperplane, one can associate an invariant 2-parameters family of

characteristic surfaces, which are complex curves — called after Webster [92] Segre

varieties. Precisely, if 0 = ρ(z,w, z,w) is a real analytic (implicit) equation ofM, with

ρ = ρ real, of class Cω, satisfying dρ = 0 on {ρ = 0}, so that ρw = 0 after switching

z ↔ w if necessary, then Segre varieties are obtained as zero-sets {ρ(z,w,a,b) = 0}

by polarizing ρ and setting constant the antiholomorphic variables. Such curves can

be graphed as w = Θ(z,a,b).

In turn, Segre observed that by solving these two parameters (a,b) from w = Θ

andwz = Θz, and by replacing them inwzz = Θzz(z,a,b), one can obtain a second
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Homogeneous CR and Para-CR Structures Page 3 of 50 27

order holomorphic ODE d2w
dz2

= Φ


z,w, dwdz



, with (z,w) ∈ C
2, provided that the

expression of E.E. Levi [52]:

L(ρ) := ρwρw ρzz + ρzρz ρww − ρzρw ρwz − ρwρz ρzw = 0,

is nowhere vanishing. The relative invariancy of L(ρ) under biholomorphisms can be

seen from a closed formula ( [33, p. 217]). When L(ρ)(p) = 0 at some point p ∈ M,

one says thatM is Levi nondegenerate at p.

We believe that such analogy links between second order ODEs yxx = F(x,y,yx)

and real hypersurfaces M3 ⊂ C
2 were most probably already known to Lie, cf. [25,

chap. 23], long before having been reawoken by Segre.

In any case, Segre’s note gave impetus to Élie Cartan, who undertook to study and

completely settle Poincaré’s classication problem. From the works of Lie and Tresse

on second order ODEs, Cartan immediately deduced that an arbitrary hypersurface

M3 ⊂ C
2, either is locally biholomorphic to the hypersphere

y−y
2i = xx having

8-dimensional Lie group consisting of fractional linear transformations:



z 

w 



=



a11 a12
a21 a22



z

w



+



b1
b2



c1z+c2w+d
,

⎛

⎝

a11 a12 b1
a21 a22 b2
c1 c2 d

⎞

⎠ ∈ SU2,1(C),

or has local group of biholomorphisms of (real) dimension 3. Hypersurfaces locally

biholomorphic to the model
y−y
2i = xx are called spherical.

Thus, on the quest for homogeneous models, Cartan could assume that 3 =

dim hol(M), and usingBianchi’s (short) classication of real 3-dimensional (abstract)

real Lie algebras, see e.g. [88, p. 107], he could determine a complete list, which we

quote ‘en français dans le texte’:

Si une hypersurface admettant un groupe pseudo-conforme transitif n’est pas localement équivalente à l’hypersphère,

elle est globalement équivalente à l’une des hypersurfaces suivantes ou à l’une de leurs variétés de recouvrement:

[7, p. 1284]

1o (E)
y− y

2i
=

x− x

2i

m
, avec

x− x

2i
> 0 (|m| 1, m = 1, 2) ;

2o (F)
y− y

2i
= e

x−x
y−y ;

3o (H)


x− x
2

+


y− y
2

+ 4e
2m arctan x−x

y−y = 0 ;

4o (K) 1+ xx− yy = μ


1+ x2 − y2


, avec
x(1+ y)− x(1+ y)

i
> 0 (μ> 1) ;

5o (K ) xx+ yy− 1 = μ


x2 + y2
− 1



, sauespointsréels (|μ|< 1, μ = 0) ;

6o (L) x1x1 + x2x2 + x3x3 = μ


x1x1 + x2x2 + x3x3


 (μ> 1).

Nurowski-Tafel [77], motivated by algebraically special solutions to Einstein’s

eld equations, rederived this classication using the fact that every Lie algebra of

dimension  3 contains a 3-dimensional Lie subalgebra. Cartan also gave global

classication lists in C
2, which we do not comment, because our focus is on local

classications. Let us nevertheless mention that in [43], Isaev explicitly determined
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all covers of Cartan’s locally or globally homogeneous strongly pseudoconvex 3-

dimensional hypersurfaces. To the best of our knowledge, such a task has not yet been

endeavoured for 5-dimensional CR manifolds.

In [7, Chap. III] and in [10], Cartan applied his method of equivalence to set up a

second, independent, alternative proof of the classication. It is this method, developed

by the second-named author in several areas of group-theoretical differential geometry,

that will be employed in the core of the paper for certain degenerateve-variables para-

CR structures. Another method, based on Fels-Olver’s recurrence formulæ [29], is

upcoming.

Cartan’s classication of homogeneous M3 ⊂ C
2 can be decomposed in two

collections, the rst — (E), (F), (H) — consisting of tubes M3 = C1 × iR2 over

certain afnely homogeneous curves C1 ⊂ R
2  (x,u), shown with their afne

symmetries as:

(1) u = xs, with x > 0, s ∈ [−1, 0)∪ (1, 2)∪ (2,∞), having symmetry x ∂x+ su∂u;

(2) u = x log x, with x > 0, having symmetry x∂x + (x+ u)∂u;

(3) logarithmic spirals r = eaϕ, witha  0, where (r,ϕ) are polar coordinates on the

(x,u)-plane, with−∞ < ϕ < ∞, having symmetry (−u+ax) ∂x+(x+au) ∂u.

Indeed, with (z,w) = (x+ iy,u+ iv), every such curve C1 ⊂ R
2 gives rise to an

associated tube hypersurface C1 × iR2, homogeneous under Hol(C2) since 2 Im ∂z

and 2 Im ∂w obviously belong to hol(M), of course together with:

(1) 2Re


z ∂z + sw ∂w



, (2) 2Re


z∂z + (z+w) ∂w


,

(3) 2Re


(−w+ az) ∂z + (z+ aw) ∂w


.

It is a matter of elementary computations to verify that there are no further symmetries,

so that dim hol(M) = 3, hence all such tubes are also simply homogeneous.

The second collection of other three items — (K), (K’), (L) — are not locally

biholomorphic to tubes, and can be described as [43, 76]:

(5)

[z : w : ζ] ∈ P2

C
: |z|2 + |w|2 + |ζ|2 = α |z2 + w2 + ζ2|


, with α > 1, having

holomorphic symmetries


z ,w , ζ 


t

= A


z,w, ζ


t

with A ∈ SO3(R);

(6) |z|2 + |w|2 − 1 = α |z2 +w2
− 1|minus {x2 +u2 = 1}, with−1 < α < 1, α = 0,

having holomorphic symmetries:



z 

w 



=



a11 a12
a21 a22



z

w



+



b1
b2



c1z+c2w+d
,

⎛

⎝

a11 a12 b1
a21 a22 b2
c1 c2 d

⎞

⎠ ∈ SO2,1(R)I

(7) 1+|z|2−|w|2 = α |1+z2−w2|, with Im z(1+w) > 0,α > 1, having holomorphic

symmetries:



z 

w 



=



a22 b2
c2 d



z

w



+



a21
c1



a12z+b1w+a11
,

⎛

⎝

a11 a12 b1
a21 a22 b2
c1 c2 d

⎞

⎠ ∈ SOc
2,1(R).
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3 Anely Homogeneous CurvesC1 ⊂ R
2C1 ⊂ R
2C1 ⊂ R
2

It turns out that Cartan’s CR models are quite tied with the classication of afnely

homogeneous curves C1 ⊂ R
2 — and of surfaces S2 ⊂ R

3 as well, see below.

Indeed, according to [11, Sec. 16], a graphed curve u = F(x) has, under A2(R),

the relative differential invariant I2 := Fxx. Obviously, I2 ≡ 0 iff the curve is afnely

equivalent to u = 0. In the branch I2 = 0, the next relative differential invariant is

I4 := 1
3

3FxxFxxxx−5F2
xxx

F2
xx

. It is classical that I4 ≡ 0 iff the curve is up to A2(R) the

parabola u = x2. Assuming therefore I4 = 0, denoting its sign by , which is an

invariant, there comes the rst true differential invariant:

I5 :=
1√
3

9 F2xxFxxxxx − 45 Fxx Fxxx Fxxxx + 40 F3xxx

([3 Fxx Fxxxx − 5 F3xxx])
3/2

,

sometimes called theMonge invariant. It is classical that I5 ≡ 0 iffu = F(x) is afnely

equivalent to a (nondegenerate) conic. When I5 = 0, it is not difcult to show that I5
and its invariant derivatives generate the whole algebra of differential invariants [11,

79]. Furthermore, the curve isA2(R)-homogeneous if and only if I5 =: a is constant,

and any constant a ∈ R\{0} works.

I2

= 0

≡ 0

u = 0

I4

u = x2

= 0

≡ 0

I5

= 0

≡ 0

u = 


1+ x2−

= ±1 Two 1-parameter families

u= x2

2 + x4

4! + ax5 + · · ·

of homogeneous models a =0

A rst version, incorporating information about branches created by differential

invariants, of the complete classication of curves C1 ⊂ R
2 homogeneous under

A2(R) therefore states as:

(1) line u = 0, having symmetries ∂x, x∂x, u∂x, u∂u;

(2) parabola u = x2, having symmetries ∂x + 2x∂u, x∂x + 2u∂u;

(3) ellipse and hyperbola u = 
√
1+ x2 − , with  = ±1, having symmetry

(1+ u)∂x + x∂u;

(4) two, depending on  = ±1, families of mutually inequivalent curves parametrized

by any a ∈ R\{0}, whose power series are:

u = x2

2!
+ x4

4!
+ ax5

5!
+
∞

k=6 Fk(a)
xk

k!
,
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27 Page 6 of 50 J. Merker, P. Nurowski

all coefcients Fk(a) being uniquely determined by means of certain recurrence

formulæ for differential invariants appearing in e.g. [11, 79], for instance F6 =

(± 5
2
− 1)a2 + 5, and so on. For our degenerate para-CR structures, we will come

up with a quite similar rst classication, which, in our views, is the most natural

one, because it respects invariant branching.

As shown e.g. by Eastwood-Ezhov in [23], when one tries to put these families

in closed forms, one is conducted to gather (3) ∪ (4) and to split this union in two

collections of 3 items, depending on  = ±1:

(a+) the curves x2 + u2 = eβ arctan u
x , for all 0  β < ∞, with a = 4 · 3−1/2β(9+

β2)−1/2 covering 0  a < 4 · 3−1/2;

(b+) the curve u = x log x, with a = 4 · 3−1/2;

(c+) the curves u = xs, for all 1 < s < 2, with a = 2 · 3−1/2(s + 1)[(2 − s)(2s −

1)]−1/2 covering 4 · 3−1/2 < a < ∞;

(a−) the curves u = xs for all −1  s < 0, with a = 2 · 3−1/2(s + 1)[(2 − s)(1 −

2s)]−1/2 covering 0  a < 21/23−1/2;

(b−) the curve u = ex, with a = 21/23−1/2;

(c−) the curves u = xs, for all s > 2, with a = 2 ·3−1/2(s+1)[(s−2)(2s−1)]−1/2,

covering nally 21/23−1/2 < a < ∞.

By reorganizing all this, the rst classication can be replaced by the more elegant

and compact, closed, second version of the classication, in which one recognizes

much of Cartan’s classication for tubes M3 = C1 × iR2:

(1’) u = xs for s ∈ [−1, 0) ∪ [1,∞);

(2’) u = ex;

(3’) u = x log x;

(4’) x2 + u2 = eβ arctan u
x , with β ∈ [0,∞).

However, in such a second classication, used in [54], the natural structuration

of models by branches of differential invariants has been lost and mixed, since for

instance s = −1 in (1’) is the hyperbola while β = 0 in (4’) is the ellipse; also (2’)

and (3’) should join (1’) for s = −1, 1 to be in the main branch; etc.

Lastly, in Cartan’s items (E), (F), (H) — or (1), (2), (3) —, one recognizes all items

of this second classication (1’), (2’), (3’), (4’), except that the two spherical tube

u = x2 and u = ex must be excluded, because according to Loboda [54], a tube

u = F(x) in C2 is spherical if and only if:

0 ≡ F3xxFxxxxxx − 7 F2xxFxxxFxxxxx + 25 FxxF
2
xxxFxxxx − 4 F2xxF

2
xxxx − 15 F4xxx.

4 Lie-Tresse Classication of Second Order ODEs

Although, according to Lie, Segre, Nurowski-Sparling, and others, there is a quite

direct way from second order ODEs to 3-dimensional CRmanifolds, cf. also Doubrov-

Medvedev-The [21, App. D], Cartan’s classication of homogeneousM3 ⊂ C
2 under
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biholomorphisms was done after the classication of second order ODEs under point

transformations. Doubrov-Komrakov recently posted a complete memoir [18] on

second order ODEs, from ancient notes.

At rst, in 1883 ( [53], cf. [62]), Lie showed that a second order ODE:

yxx = F(x,y,yx),

is equivalent to the at one y 
x x  = 0 by a point transformation (x,y) → (x ,y )

if and only if I1 = I2 = 0, where, in terms of the total differentiation operator

D := ∂x + y ∂y + F ∂p, setting p := yx:

I1 := Fpppp, I2 := D2Fpp − 4DFyp −DFppFp + 4FpFyp

−3FppFy + 6Fyy.

In his systematic study [91], Tresse used higher order differential invariants to classify

second order ODEs under point transformations.

Generally, equivalence classes of second order ODEs can be fully characterized

by a number of (relative) invariants, generated by I1 and I2 and all their invariant

derivatives. These invariants appear in a certain {e}-structure bundle P8 −→ J1 over

the rst jet space J1  (x,y,p), see e.g. [78, Thm. 12.19], which is quite similar to

the CR {e}-structure [7, 74, 76]

In his celebrated paper [6] on projective connections, Cartan used the class of

second order ODEs for which the invariant I1 vanishes as an example of a geometry

that naturally gives rise to a Cartan normal projective connection. In fact, there is a

dual second order ODE ( [76]), say y 
x x  = F (x ,y ,y 

x ), whose relative invariants

I 1 ∝ I2 and I

2 ∝ I1 are switched, up to a nonzero factor.

On the other hand, it is a matter of direct elementary computations to derive from

Lie’s list [26, Thm. 6, p. 71] of nite-dimensional continuous group actions onR2 all

possible homogeneous second order ODEs. Because the Lie-Tresse classication of

second order ODEs is strongly linked with our results, we show the list of mutually

inequivalent (up to discrete switch) homogeneous non-at second order ODEs over

R, taken from Doubrov-Komrakov [18, p. 31].

• yxx = yαx where α = 0, 1, 2, 3 (up to α ←→ 3 − α), with symmetries ∂x, ∂y,

x ∂x + α−2
α−1 y ∂y.

• yxx =


1+ y2x
3/2

e−α arctanyx , where α = 0 (up to α ←→ −α), with symme-

tries ∂x, ∂y, (−y+ α x) ∂x + (x+ αy) ∂y.

• yxx = e−yx , with symmetries ∂x, ∂y, x ∂x + (x+ y) ∂y.

• 2xyxx = ±y3x − yx, with symmetries ∂y, x ∂x + y ∂y, 2xy ∂x + y2 ∂y.

• xyxx = yx


1 − y2x


+ α


1 − y2x




3/2
, where α = 0 (up to α ←→ −α), with

symmetries ∂y, x ∂x + y ∂y, 2xy ∂x + (x2 + y2) ∂y.

• xyxx = yx


1 + y2x


+ α


1 + y2x
3/2

, where α = 0 (up to α ←→ −α), with

symmetries ∂y, x ∂x + y ∂y, 2xy ∂x + (−x2 + y2) ∂y.
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27 Page 8 of 50 J. Merker, P. Nurowski

• (1 + x2 + y2)yxx = 2


1 + y2x


(xyx − y) + α


1 + y2x
3/2

, where α = 0 (up

to α ←→ −α), having symmetries:

−y ∂x + x ∂y, (1+ x2 − y2) ∂x + 2 xy ∂y, 2 xy ∂x + (1− x2 + y2) ∂y.

Over C, there are less inequivalent ODEs, cf. [78, p. 476].

5 Levi Nondegenerate CR and Para-CR Structures

Now, what about higher dimensional CR manifolds? The formal analogies between

various CR structures and various systems of PDEs, emphasized e.g. in [42, 63],

will hence be a guide in our future explorations. Earlier on, after the Chern-Moser

celebrated article [16] on equivalence classes of Levi nondegenerate CR structures

of hypersurface type of any dimension 2n+ 1  3, Chern in [15], much inspired by

Hachtroudi’s Ph.D. [39], defended in 1937 in Paris under the direction of É. Cartan,

studied completely integrable systems of second order PDEs of the form yxi1xi2 =

Fi1,i2


xj,y,yxk



, with 1  i1, i2, j,k  n, in dimension n  2, for which reduction

to a normal Cartan projective connection is very similar to the CR context.

For 5-dimensional hypersurfacesM5 ⊂ C
3 with nondegenerate Levi form, that is,

when Chern-Moser tensors are available, there nowadays exist almost complete far-

reaching classications. At rst, it is known that any Levi nondegenerate hypersurface

M2n+1 ⊂ C
3 has CR symmetry algebra autCR(M) = 2Re hol(M) of dimension

 15, this bound being attained when and only whenM5 is locally biholomorphic to

one of the two hyperquadrics:

Im w = z1z1 ± z2z2,

depending on the signature of its Levi form.

In this context, the dimension drop is 15 ↓ 8, as the next largest possible dimension

8 for hol(M) is achieved by the so-called Winkelmann hypersurface [93]:

Im


w+ z1z2


= |z1|
4. (1)

Locally homogeneous Levi nondegenerate hypersurfaces M5 ⊂ C
3 with isotropy

Lie algebras hol(M,p) for p ∈ M of dimensions  1, hence in the range 6 

dim hol(M)  7, have been extensively classied by Loboda in [55–58], who

handled local equations beyond the standard Moser normal form. In [58], Loboda

also classied all strongly pseudoconvex (positive denite Levi form) hypersurfaces

with 1 = dim hol(M,p). Recently, both in the (+,+) and (−,+) signature cases,

Loboda [59] terminated 0 = dim hol(M,p).

Recently also, Doubrov-Medvedev-The developed an alternative approach, based

on PDE systems yxi1xi2 = Fi1,i2


xj,y,yxk



with 1  i1, i2, j,k  2 under point

transformations (cf. [15, 63]). They almost completely classied the homogeneous

models in [20], and they used Lie-theoretical methods to complete in [21] the classi-

cation of all multiply-transitive hypersurfaces inC3, by providing a new complete list
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of Levi indenite hypersurfaces inC3 with 6-dimensional symmetry algebra hol(M).

They also conrmed Loboda’s classications as a whole, modulo one model.

Now, let us survey more precisely these achievements. Consider therefore a Cω

hypersurfaceM5 ⊂ C
3, graphed asw = Θ



z1, z2, z1, z2,w


with an analytic function

Θ satisfying the condition:

w ≡ Θ


z1, z2, z1, z2, Θ(z1, z2, z1, z2,w)


,

which guarantees thatM is real, namely of real codimension 1. View z1, z2,w as xed

parameters, differentiate oncew = Θ to getwz1 = Θz1 andwz2 = Θz2 , and observe

that z1, z2,w can be eliminated from these 3 equations if and only if the corresponding

Levi (Jacobian) determinant does not vanish:













Θz1 Θz1 Θw

Θz1z1 Θz1z1 Θz1w

Θz2z1 Θz2z1 Θz2w













= 0.

Lastly, replace the solved values for z1, z2,w in all three second derivatives

wzi1zi2
= Θzi1zi2

to obtain a system of second order C-analytic partial differen-

tial equations:

wzi1zi2
= Ξi1,i2



z1, z2,w,wz1 ,wz2



(1 i1, i2  2),

which is completely integrable by construction.

Because of the reality assumption, not all such systems over C are covered by this

process. Hence, it is natural to relax the reality assumption, and to consider more

generally arbitrary submanifolds of solutions:

z = Q(x,y,a,b, c) (withQc = 0),

modulo the innite-dimensional group of local C-analytic transformations separating

variables and parameters:

(x,y, z, a,b, c) −→


x (x,y, z),y (x,y, z), z (x,y, z), a (a,b, c),b (a,b, c),

c (a,b, c)


. (2)

Assuming similarly that the generalized Levi form is nonzero:













Qa Qb Qc

Qxa Qxb Qxc

Qya Qyb Qyc













= 0,

it can be veried [42, 63] that the study of equivalences of submanifolds of solutions

amounts to the study of point equivalences of completely integrable systems of C-

analytic second order systems of PDEs:

zxx=F


x,y, z, zx, zy


, zxy=G


x,y, z, zx, zy


, zyy=H


x,y, z, zx, zy


. (3)
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Then the following lemma, known to Cartan [7] in the case of Levi nondegenerate

hypersurfaces M3 ⊂ C
2, justies the interest [42, 63] of classifying PDE systems

before classifying (real) hypersurfaces, not to mention that most often, classications

over C are simpler than over R.

Lemma 5.1 For a Levi nondegenerate Cω hypersurface {w = Θ(z1, z2, z1, z2,w)} in

C
3, the real Lie algebra of its innitesimal holomorphic automorphisms:

hol(M) :=

L = A1(z1, z2,w)∂z1 +A2(z1, z2,w)∂z2 + B(z1, z2,w)∂w :



L+ L




M
is tangentto M


,

is of dimension  15.

Furthermore, the complex Lie symmetry algebra [78] of its associated C-analytic

PDE system wzi1zi2
= Ξi1,i2 denoted (EM) satises:

sym(EM) = hol(M)⊗R C.

Since Chern-Moser [16] in 1974 (at least), it is well known that the bound

dimR hol(M) = 15 is attained if and only if M is (locally) biholomorphic to one

of the two quadrics:

w−w
2i = z1z1 ± z2z2,

which, in case of (+,+) signature of the Levi form, has holomorphic automorphisms

group given by:

⎛

⎝

z 1
z 2
w 

⎞

⎠ =

⎛

⎜

⎜

⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

z1
z2
w

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

b1
b2
b3

⎞

⎟

⎟

⎠

c1z1+c2z2+c3w+d
,

⎛

⎜

⎜

⎝

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3
c1 c2 c3 d

⎞

⎟

⎟

⎠

∈ SU3,1(C),

with a similar formula in case of (+,−) signature.

Next, abbreviatingp := zx andq := zy,with the two total differentiationoperators:

Dx := ∂x + p ∂z + F ∂p +G ∂q, Dy := ∂y + q ∂z +G ∂p +H ∂q,

complete integrability of a general PDE system (3) as above holds if and only if

[Dx,Dy] = 0, if and only if DxG = DyF and DxH = DyG, if and only if the general

solution is of the already seen form z = Q(x,y,a,b, c).

Then on the rst jet manifold J1  (x,y, z,p,q) of dimension 5, the horizontal and

vertical 2-dimensional distributions:

H := Span

∂p, ∂q


, V := Span


Dx, Dy


,
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are invariant under point diffeomorphisms, and their sum C := H⊕ V , of rank 2+ 2,

constitutes a contact distribution C ⊂ TJ1. Following Hill-Nurowski [42], such PDE

systems (3) are therefore called nondegenerate para-CR structures of type (2, 2, 1).

Since Hachtroudi [39] in 1937 (at least), it is known that every PDE system (3)

satises dimC sym (3) 15, and that equality is attained if and only if (3) is (locally)

point equivalent to the at system:

zxx = 0, zxy = 0, zyy = 0. (4)

In this case, the Lie symmetry group consists of all complex automorphisms of P3(C),

afnely represented as:

⎛

⎝

x 

y 

z 

⎞

⎠ =

⎛

⎜

⎜

⎝

α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x

y

z

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

β1

β2

β3

⎞

⎟

⎟

⎠

γ1z1+γ2z2+γ3w+δ
,

⎛

⎜

⎜

⎝

α11 α12 α13 β1

α21 α22 α23 β2

α31 α32 α33 β3

γ1 γ2 γ3 δ

⎞

⎟

⎟

⎠

∈ SL(4,C).

These second order PDE structures belong to the class of so-called parabolic geome-

tries. In particular, they enjoy a number of important properties derived from the

general theory of parabolic geometries, developed e.g. in the monograph [4] of Čap-

Slovak: existence of a natural Cartan connection; description of all primary relative

differential invariants in terms of the representation theory of (semi-)simple Lie alge-

bras; nite-dimensionality of all symmetry algebras; determination of maximal and

submaximal symmetry algebras thanks to the methods of Kruglikov-The [51], which

exhibit (and explain) a so-called ‘gap phenomenon’ concerning their respective dimen-

sions.

Recently, Doubrov-Medvedev-The [20] classied all multiply-transitive homoge-

neous nondegenerate para-CR structures of type (2, 2, 1), which they call ‘Integrable

Legendrian contact structures’. The term ‘multiply-transitive’ means that the (local)

Lie symmetry algebra is (locally) transitive and has isotropy subalgebras of dimension

 1 at all (local) points.

For second order ODEs yxx = F(x,y,yx), it is known that multiple transitivity

implies atness, i.e. point equivalence to yxx = 0, with symmetries the 8-dimensional

group of projective automorphisms of P2(C):



x 

y 



=



α11 α12

α21 α22



x

y



+



β1

β2



γ1x+γ2y+δ
,

⎛

⎝

α11 α12 β1

α21 α22 β2

γ1 γ2 δ

⎞

⎠ ∈ SL(3,C).

Consequently, the dimension gap is 8 ↓ 3, as was already implicitly asserted by the

classication list (over R or C) shown at the end of Sect. 4.

For second order PDE systems (3), multiple transitivity does not imply atness.

Indeed, Doubrov-Medvedev-The [20] showed that the dimension gap is 15 ↓ 8, with,
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27 Page 12 of 50 J. Merker, P. Nurowski

up to equivalence, a unique submaximal model:

zxx = z2y, zxy = 0, zyy = 0,

which is the PDE system associated to Winkelmann’s homogeneous hypersurface (1),

hence with isotropy algebras of dimension 8− 5 = 3.

As was discovered by Hachtroudi [39] and reproved by Chern [15], the main, fun-

damental, primary (relative) differential invariant of PDE systems (3) can be encoded

as the following relatively invariant binary quartic, in which [r : s] ∈ P
1(C):

Fqq r4 + 2


Fpq −Gqq



r3s+


Fpp − 4Gpq +Hqq



r2s2 + 2


Hpq −Gpp



rs3

+Hpp s4.

Flatness, i.e. equivalence to (4), is known [15, 39] to hold if and only if this quartic

is identically zero, namely:

0 ≡ Fqq ≡ Fpq −Gqq ≡ Fpp − 4Gpq +Hqq ≡ Hpq −Gpp ≡ Hpp.

Doubrov-Medvedev-The [20] classied multiply transitive PDE systems, namely

those having isotropy Lie algebras of dimensions 3, 2, 1, according to the root com-

binatorics of the quartic. The type denominations below are inspired from Cartan’s

classication [5] of homogeneous (2, 3, 5)-distributions (complemented in [17]) and

from the Petrov classication of theWeyl curvature tensor in 4-dimensional Lorentzian

conformal geometry.

Type O: Quartic identically zero;

Type N: A single root of multiplicity 4;

Type D: Two distinct roots, each of multiplicity 2;

Type III: One root of multiplicity 3, another different root of multiplicity 1;

Type II: Three distinct roots, of respective multiplicities 2, 1, 1;

Type I: Four mutually distinct roots.

In the context of general parabolic geometries, Kruglikov-The gave in [51] a

general method for nding the submaximal symmetry dimension, here 8 < 15. These

techniques have been pushed further in [20], to determine all the possible maximal

symmetry dimensions of para-CR structures of type (2, 2, 1) which possess constant

root type (automatic in presence of homogeneity).

Root type O N D III II I

Maximal symmetry dimension 15 8 7 6 5 5
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Leaving the simply transitive case, with dim sym (3) = 5, to further explorations, let

us provide an abbreviated description of the far-reaching classication of Doubrov-

Medvedev-The [20], organized in 3 separate tables, each gathering models of the

concerned root types N, D, III. We give the innitesimal symmetries in the (x,y, z)

space, and we refer to [20] for commutation tables. Equations for different items cor-

respond to inequivalent para-CR structures. Theremay be some additional equivalence

relations on parameters within the same item, see [20].

Item Model Parameters Symmetries Root type N

N.8

uxx = u2
y

uxy = 0

uyy = 0

∂x, ∂y, ∂u, x∂y, x∂u,

x∂x − 2u∂u, y∂y + 2u∂u,

x2∂y − y∂u

N.7-1a

uxx = xκu2
y

uxy = 0

uyy = 0

κ=−1,−2,0,−3

∂y, ∂u, x∂y, x∂u,

y∂y + 2u∂u, x∂x + κy∂y + (κ− 2)u∂u,

xκ+2

κ+2 ∂y −

κ+1
2 y∂u

N.7-1a

uxx = xκu2
y

uxy = 0

uyy = 0

κ = −1,−2, 0,−3

∂y, ∂u, x∂y, x∂u,

y∂y + 2u∂u, x∂x + κy∂y + (κ− 2)u∂u,

xκ+2

κ+2 ∂y −

κ+1
2 y∂u

N.7-1b

uxx = x−1u2
y

uxy = 0

uyy = 0

∂y, ∂u, x∂y, x∂u,

y∂y + 2u∂u, x∂x − y∂y − 3u∂u,

2x log(x)∂y − y∂u

N.7-1c

uxx = exu2
y

uxy = 0

uyy = 0

∂y, ∂u, x∂y, x∂u,

∂x + y∂y +u∂u, y∂y + 2u∂u,

2ex∂y − y∂u

N.7-2

uxx = 1
uy

uxy = 1

uyy = 0

∂y, ∂u, ∂x − ∂u, ∂y + 2x∂u,

2x∂x − ∂y + 2u∂u, x∂y + x2∂u,

x2∂x +u∂y + x(x+ 2u)∂u

N.6-1a

uxx = u
μ
y

uxy = 1

uyy = 0

μ=−1,2,0,1

∂x, ∂y, ∂u,

∂y + 2x∂u, x∂y + x2∂u,

x∂x + (μ+ 1)y∂y + (μ+ 2)u∂u

N.6-1b

uxx = loguy

uxy = 1

uyy = 0

∂x, ∂y, ∂u,

∂y + 2x∂u, x∂y + x2∂u,

x∂x − (x2 − y)∂y + 2u∂u

N.6-1c

uxx = uy loguy

uxy = 1

uyy = 0

∂x, ∂y, ∂u,

∂y + 2x∂u, x∂y + x2∂u,

x∂x − (x
2

2 − 2y)∂y + (3u−

x3

3 )∂u
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Item Model Parameters Symmetries Root type N

N.6-2a

uxx = xκu
μ
y

uxy = 0

uyy = 0

μ=−1,2,0,1

κ=0,−3

∂y, ∂u, x∂y, x∂u,

x∂x + (κ+ 2)y∂y + (κ+ 2)u∂u,

(μ− 1)y∂y +μu∂u

N.6-2b

uxx = xκeuy

uxy = 0

uyy = 0

κ=0,−3

∂y, ∂u, x∂y, x∂u,

x∂x + (κ+ 2)y∂y + (κ+ 2)u∂u,

y∂y + (y+u)∂u

N.6-2c

uxx = exeuy

uxy = 0

uyy = 0

∂y, ∂u, x∂y, x∂u,

∂x + y∂y +u∂u,

y∂y + (y+u)∂u

N.6-2d

uxx = xκ logx

uxy = 0

uyy = 0

κ=−1,−2,0,−3

∂y, ∂u, x∂y, 00 x∂u,

x∂x + (κ+ 2)y∂y + (κ+ 2)u∂u,

y∂y −

xκ+2

(κ+1)(κ+2)
∂u

N.6-2e

uxx = x−2 loguy

uxy = 0

uyy = 0

∂y, ∂u, x∂y, x∂u,

x∂x,

y∂y + logx ∂u

D.7a

uxx = u2
x

uxy = 0

uyy = λu2
y

λ=0,−1

∂x, ∂y, ∂u,

2x∂x − ∂u, 2y∂y −

1
λ
∂u,

x2
∂x − x∂u, y2

∂y −

1
λ
y∂u

D.7b

uxx = u2
x

uxy = 0

uyy = 0

∂x, ∂y, ∂u,

y∂y, y∂u,

2x∂x − ∂u, x2
∂x − x∂u

D.6-1

uxx = u2
x −

1
4
u4

y

uxy = uy(ux −

1
2
u2

y)

uyy = ux −

1
2
u2

y

∂x, ∂y, ∂u,

x∂y − y∂u, 2x∂x + y∂y − ∂u,

x2
∂x + xy∂y − (x+ 1

2
y2)∂u

D.6-2a

uxx = u
μ
x

uxy = 0

uyy = 0

μ=0,1,2

∂x, ∂y, ∂u,

y∂u, y∂y,
μ−1
μ−2x∂x + y∂y +u∂u

D.6-2b

uxx = eux

uxy = 0

uyy = 0

∂x, ∂y, ∂u,

y∂u, y∂y,

x∂x + y∂y + (u− x)∂u

D.6-3a

uxx = λu2
x

(u−uxuy)1/2

u3/2

uxy = 1+ λ(uxuy − 2u)
(u−uxuy)1/2

u3/2

uyy = λu2
y

(u−uxuy)1/2

u3/2

λ=0,± 1
2

∂x, ∂y, x∂x +u∂u, y∂y +u∂u,

x∂x + y2
∂y + 2yu∂u,

x2
∂x +u∂y + 2xu∂u

D.6-3b

uxx = u2
x(1− 2uxuy)1/2

uxy = (uxuy − 1)(1− 2uxuy)1/2

uyy = u2
y(1− 2uxuy)1/2

∂x, ∂y, ∂u,

x∂x − y∂y,

u∂y + x∂u, u∂x + y∂u

D.6-4

uxx = 0

uxy =
1+uxuy

u

uyy = 0

∂x, ∂y,

2x∂x +u∂u, 2y∂y +u∂u,

x2
∂x + xu∂u, y2

∂y + yu∂y

III.6−1

uxx = ux
x−uy

uxy = 0

uyy = 0

∂y, ∂u,

∂x + y∂u, x∂y + x2

2
∂u,

y∂y +u∂u, x∂x +u∂u

III.6−2

uxx = 2uy(2ux −uuy)

uxy = u2
y

uyy = 0

∂x, ∂y, x∂y − ∂u,

y∂y +u∂u, 2x∂x + y∂y −u∂u,

x2
∂x + xy∂y − (y+ xu)∂u

Beyond, by classifying all real forms of these complex Lie algebras, Doubrov-

Medvedev-The deduced a classication of multiply transitive Levi nondegenerate Cω
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hypersurfaces M5 ⊂ C
3, alternative to Loboda’s works. Since our focus is more on

PDE system, we skip the detailed presentation.

Before going to study Levi degenerate para-CR structures, we would like to point

out that, in CR dimension n  2, with the exception of [20, 21], Cartan’s method

has never been pushed beyond reduction to an {e}-structure or to the determination of

submaximal groups, although Cartan himself fully classied all homogeneous mod-

els in CR dimension 1, with his method. Maybe the computational complexity is an

obstacle to handle diffential invariants of high order in CR dimension n  2.

Knowing this, we would like to mention that in the present article, for certain

degenerate para-CR structures of dimension 5, i.e. with n = 2, we do manage to

employ Cartan’s method, notwithstanding its complexity. It would be nice to unify

existing views on classication problems.

6 Degenerate CRManifolds of Dimension 5

Now, to motivate our results, consider embedded real analytic 5-dimensional CRman-

ifolds M5 ⊂ C
3 (hypersurfaces), of CR dimension 2, that are Levi degenerate, i.e.

whose Levi form is of rank < 2. We will also handle abstract CR and even para-CR

structures below. It is well known that the Levi rank equals 0 everywhere iff M is

Levi-at, biholomorphic to the hyperplane Re w  = 0. Levi rank 2 was commented

briey above. The study of constant Levi rank 1 has been initiated recently [31, 45, 60,

61, 71]. One has to exclude the degenerate product situation, where M5 ∼= M3 × C,

up to a local biholomorphism. How?

At rst, it can be veried on any computer that, given a Cω hypersurface M5 ⊂
C
3  (z1, z2,w) having complex graphing equation w = Θ(z1, z2, z1, z2,w), then

through a general biholomorphism:

(z1, z2,w) −→


f1(z1, z2,w), f2(z1, z2,w), g(z1, z2,w)


=:


z 1, z

2,w



which sendsw = Θ to some target hypersurfacew  = Θ (z 1, z

2, z


1, z


2,w

), in terms

of the (1, 0)-tangent vector elds:

Lz1 :=
∂

∂z1
+Θz1

∂

∂w
and Lz2 :=

∂

∂z2
+Θz2

∂

∂w
,

the target Levi 3× 3 determinant is a nonzero multiple of the source one:















Θ 
z 
1

Θ 
z 
2

Θ 
w 

Θ 
z 
1z


1
Θ 
z 
1z


2
Θ 
z 
1w



Θ 
z 
2z


1
Θ 
z 
2z


2
Θ 
z 
2w





























Θz1 Θz2 Θw

Θz1z1 Θz1z2 Θz1w

Θz2z1 Θz2z2 Θz2w













=













f1z1 f1z2 f1w
f2z1 f2z2 f2w
gz1 gz2 gw













3















f
1
z1

f
1
z2

f
1
w

f
2
z1

f
2
z2

f
2
w

gz1 gz2 gw















1

1








Lz1(f
1) Lz2(f

1)

Lz1(f
2) Lz2(f

2)









4
.
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Thus,M having constant Levi rank 1 is an invariant property.

Furthermore, solely when 0 ≡ det Levi(Θ), another determinant, which expresses

2-nondegeneracy satises the following invariant relation with a nowhere vanishing

right-hand side when the Levi rank equals 1:















Θ 
z 
1

Θ 
z 
2

Θ 
w 

Θ 
z 
1z


1

Θ 
z 
1z


2

Θ 
z 
1w



Θ 
z 
1z


1z

 Θ

z 
1z


1z


2
Θ 
z 
1z


1w





























Θz1 Θz2 Θw

Θz1z1 Θz1z2 Θz1w

Θz1z1z1 Θz1z1z2 Θz1z1w













=













f1z1 f1z2 f1w
f2z1 f2z2 f2w
gz1 gz2 gw













3















f
1
z1

f
1
z2

f
1
w

f
2
z1

f
2
z2

f
2
w

gz1 gz2 gw















1



Lz2(f
2)









Θz1 Θw

Θz1z1 Θz1w









− Lz1(f
2)









Θz1 Θw

Θz2z1 Θz2w









3









Lz1(f
1) Lz2(f

1)

Lz1(f
2) Lz2(f

2)









6 







Θz1 Θw

Θz1z1 Θz1w









3
.

It can be proved [72, p. 91] that an M5 ⊂ C
3 having constant Levi rank 1 is locally

biholomorphically equivalent to a product M5 ∼= M3 × C of a Levi nondegenerate

hypersurface M3 ⊂ C
2 times C, if and only if this determinant vanishes identically.

One then says thatM is everywhere 2-degenerate, and certainly, one sets aside such an

exceptional situation, because the equivalence problem reduces to that of anM3 ⊂ C
2.

Thus, throughout, M5 ⊂ C
3 will be assumed everywhere 2-nondegenerate, in the

sense that the above determinant is assumed nowhere vanishing.

The class of 2-nondegenerate constant Levi rank 1 hypersurfacesM5 ⊂ C
3 will be

denoted by:

C2,1.

This class is not empty, since it contains the tube in C
3 over the future light cone in

R
3:

T5
LC := S2LC × iR3 where S2LC :=


x ∈ R

3 : x21 + x22 = x23, x3 > 0

.

In fact, according to [45, 60, 71], T5
LC is a model for such CR structures, having

maximal CR symmetry group isomorphic to SO3,2(R). But it is not represented in

graphed form.

Withw = u+i v, a graphed representationM5
LC

∼= T5
LCwas set up in [37] and [27]:

MLC : w+w =
2 z1z1 + z21z2 + z21z2

1− z2z2
. (5)
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How? Starting withM5 ⊂ C
3, with 0 ∈ M, rigid, graphed as:

u = F(z1, z2, z1, z2),

constant Levi rank 1 means:

Fz1z1 = 0 ≡








Fz1z1 Fz1z2
Fz2z1 Fz2z2









,

while 2-nondegeneracy means:

0 =








Fz1z1 Fz1z2
Fz1z1z1 Fz1z1z2









.

After cleaning the terms up to order 3 included, with weights [z1] = [z2] := 1 and

[w] := 2, any M ∈ C2,1 graphed as:

u = F


z1, z2, z1, z2, v


,

where u = Re w and v = Im w, reads ( [13, 37]):

w+w = 2 z1z1 + z21z2 + z21z2 + Oz1,z2,z1,z2,v(4),

hence is 2-nondegenerate and of Levi rank 1 at the origin. However, higher order

correction terms must be added to insure that the Levi form be of constant rank 1.

Taking the simplest correction terms, one comes toMLC above [13, 37].

The CR geometry ofMLC is as follows. The two natural (1, 0) vector elds tangent

to MLC are:

L1 :=
∂

∂z1
+
2z1 + 2z1z2

1− z2z2



∂

∂w
, L2 :=

∂

∂z2
+
 (z1 + z1z2)

2

(1− z2z2)2



∂

∂w
.

The kernel of the Levi form is generated by the (1, 0) vector eld

K := −

z1 + z1z2

1− z2z2



∂

∂z1
+

∂

∂z2
−

 (z1 + z1z2)
2

(1− z2z2)2



∂

∂w
,

as one has:



L1,K


= −

 1

1− z2z2



L1,


L2,K


= −

 z1 + z1z2

(1− z2z2)2



L1.

As predicted by the involutiveness of the Levi kernel, MLC is necessarily foliated by

complex curves. These are the lines z1 := z0 − z0ζ, z2 := ζ, w := z0z0 + iλ − ζz20,

where z0 ∈ C, λ ∈ R and ζ ∈ C satises |ζ| < 1.

The determination in [37] of hol(MLC) was done in two steps. Firstly, by setting

up the Segre-like PDE system satised by w = w(z1, z2) considered in (5) as a
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holomorphic function of (z1, z2), while z1, z2, w are parameters, which goes by

differentiating:

wz1 =
2z1 + 2z1z2

1− z2z2
, wz1z1 =

2 z2

1− z2z2
,

by solving for (z1, z2), and by replacing, which yields:

wz2 = 1
4
(wz1)

2, wz1z1z1 = 0.

Secondly, with the help of Lie’s prolongation formulas — [25, Chap. 25] or [3, 78] —

, by setting up and solving the linear differential system satised by the coefcients

of a general vector eld X = ξ1 ∂z1 + ξ2 ∂z2 + ϕ ∂w, with ξ1, ξ2, ϕ holomorphic

functions of (z1, z2,w), to be a CR symmetry. Nowadays, such calculations can be

done instantly using the DifferentialGeometry package on Maple.

This gave a 10-dimensional real simple Lie algebra:

g := autCR



MLC



∼= so2,3(R).

Assigning the weights:

[z] := 1 [ζ] := 0, [w] := 2


∂z



:= − 1


∂ζ



:= 0


∂w



:= − 2,

this real Lie algebra g of holomorphic vector elds can be graded as [13, 34, 37]:

g = g
−2 ⊕ g

−1 ⊕


gtrans0 ⊕ giso0


⊕ g1 ⊕ g2,

where:

g
−2 := Span


i ∂w


,

g
−1 := Span


(ζ− 1) ∂z − 2z ∂w, (i+ iζ) ∂z − 2iz ∂w


,

gtrans0 := Span


zζ ∂z + (ζ2 − 1) ∂ζ − z2 ∂w, izζ ∂z + (i+ iζ2) ∂ζ − iz2 ∂w



,

giso0 := Span

z ∂z + 2w ∂w, iz ∂z + 2iζ ∂ζ


,

g1 := Span


z2 − ζw−w) ∂z +


2zζ+ 2z


∂ζ + 2zw ∂w,


− iz2 + iζw− iw


∂z +


− 2izζ+ 2iz


∂ζ − 2izw ∂w


,

g2 := Span

izw ∂z − iz2 ∂ζ + iw2

∂w


.

In the breakthrough [28], Fels-Kaup developed a Lie-theoretical method for the

computation of the Lie algebra hol(M) of innitesimal holomorphic automorphisms

of any M5 ∈ C2,1. Mainly, they classied, up to local CR-equivalence, all locally

homogeneous M5 ∈ C2,1.
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Their starting point was the following simple observation. Suppose that S2 ⊂ R
3

is a surface which is homogeneous under the group A3(R) of afne transformations

of R3. Then the tube M5 := S2 × iR3 in C
3 is clearly homogeneous under a group

of complex-afne transformations, since every real-afne transformation leaving S2

invariant extends to a complex-afne transformation leaving M5 invariant and since

M5 is invariant under all translations along the three imaginary axes.

It is elementary to verify that such a tube M5 does belong to C2,1 if and only if S2

is a parabolic surface, namely a surface whose Hessian is everywhere of rank 1. For

S2 ⊂ R
3 locally graphed as u = F(x,y), parabolicity expresses as:

Fxx = 0 ≡








Fxx Fxy
Fyx Fyy









. (6)

Recently, Chen-Merker [11] studied the algebras of differential invariants of parabolic

surfaces S2 ⊂ R
3 under the group SA3(R) of special afne transformations. Mild

adaptations yield descriptions of such algebras valid for the full afne group, which

we will present and use below.

Then Fels-Kaup raised and settled the crucial questionwhetherA3(R)-inequivalent

surfaces S2  S 2 always conduct to CR-inequivalent tubes S2×iR3 ? S 2×R
3? As

we saw above, the same question existed about curves C1 ≡ C 1 in R
2 under A2(R)

and associated tubes C1 × iR2 ? C 1 × iR2. As such, it was implicitly settled by

Cartan [7, 10], and settled again by Loboda [54], who proved using Moser’s method

that all nonspherical Levi nondegenerate hypersurfaces over the homogeneous curves

(1’), (2’), (3’), (4’) are pairwise holomorphically inequivalent. Fels-Kaup did the same

job about surfaces, as we review now.

To begin with, recall that the complete classication of A3(R)-homogeneous sur-

faces S2 ⊂ R
3 was terminated by Doubrov-Komrakov-Rabinovich [19] after that

Abdalla-Dillen-Vrancken [1] nished the delicate classication of afnely homoge-

neous surfaces in R3 having vanishing Pick invariant. The full classication, re-done

by Eastwood-Ezhov in [23] who employed the power series method, includes the

classication of A3(R)-homogeneous parabolic surfaces, which can be presented as

follows.

(1)

x21 + x22 = x23, x3 > 0


the future light cone, having innitesimal symmetries

x1∂x1
+ x2∂x2

+ x3∂x3
, −x2∂x1

+ x1∂x2
;

(2a)

r(cos t, sin t, eωt) ∈ R

3 : r ∈ R
+ and t ∈ R


withω > 0 arbitrary, graphed as

u =


x2 + y2 eω arctan
y
x , having symmetries x∂x + y∂y +u∂u, −y∂x + x∂y +

ωu∂u;

(2b)

r(1, t, et) ∈ R

3 : r ∈ R
+ and t ∈ R


, graphed as u = xe

y
x , having symmetries

x∂x + y∂y + u∂u, x∂y + u∂u;

(2c)

r(1, et, eθt) ∈ R

3 : r ∈ R
+ and t ∈ R


with θ > 2 arbitrary, graphed as

u = x


y
x

θ
, having symmetries x∂x − (θ− 1)u∂u, y∂y + θu∂u;

(3)

c(t)+ rc (t) ∈ R

3 : r ∈ R
+ and t ∈ R


, where c(t) := (t, t2, t3) parametrizes

the twisted cubic {(t, t2, t3) : t ∈ R} in R
3 and c (t) = (1, 2t, 3t2), graphed
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as u = −2x3 + 3xy − 2(x2 − y)3/2, having symmetries x∂x + 2y∂y + 3u∂u,

∂x + 2x∂y + 3y∂u.

Fels-Kaup [28] established their Theorem I: For every surface S2 in (1), (2a),

(2b), (2c), (3), the corresponding tube manifold M5 := S2 × iR3 is a homogeneous

C2,1 hypersurface of C
3, and any two of them are pairwise locally biholomorphically

inequivalent. Furthermore, they proved that for every S2 in (2a), (2b), (2c), (3), at

every point p ∈ S2 × iR3, the isotropy subalgebra hol(M,p) = {0} is trivial, and the

full Lie algebra hol(M) is 5-dimensional and solvable. Fels-Kaup actually proved a

version of these results in any R
n3.

The hypersurfaces S2 × iR3 occurring here are quite special as they all are tube

manifolds. From Cartan’s list, in the Levi nondegenerate case, many (homogeneous)

examples are knownwhich are not locally CR-equivalent to any tubemanifold, namely

(K), (K ), (L). Therefore, the secondmain Theorem II of Fels-Kaup came as strikingly

unexpected:Every5-dimensional locally homogeneous2-nondegenerate hypersurface

M5 ⊂ C
3 is locally biholomorphic to S2 × iR3, with S2 ⊂ R

3 being one of the

parabolic surfaces (1), (2a), (2b), (2c), (3).

Joint with Cartan’s list, Fels-Kaup therefore deduced a full classication of all Levi

degenerate homogeneous CR-manifolds of dimension  5:

(i) M5 = S2 × iR3 ⊂ C
3, where S2 ⊂ R

3 is one of the surfaces (1), (2a), (2b), (2c),

(3);

(ii) M5 = M3×C, whereM3 is one of the 3-dimensional Levi nondegenerate homo-

geneous CR-manifolds from Cartan’s list;

(iii) M5 = C
2 × R.

Now, an alternative view on the classication under A3(R) of homogeneous

parabolic surfaces {u = F(x,y)} in R
3 satisfying (6) can be presented, by slightly

modifying the results of Chen-Merker in [11] which concerned SA3(R). We use their

notations.

Flat model

Single homogeneous model

M = 20
9

1-parameter family

of homogeneous models
= 0

≡ 0

≡ 0

u = F(x)

W

S

= 0

≡ 0

u = 1
2

x2

1−yDegenerate product

= 0

M

X

Y

The relative differential invariantS ≡ 0vanishes identically if andonly if the surface

S2 ∼= C1 × Ry is afnely equivalent to the product of a curve C1 = {u = F(x)} in

R
2
x,u times Ry. In this degenerate case, the classication of curves under A2(R) has

already been reviewed supra.

AssumingS = 0, the differential invariantW of [11] becomes a relative differential

invariant. In the upper branch W = 0, one normalizes W := 1, and the power series

123



Homogeneous CR and Para-CR Structures Page 21 of 50 27

of u = F(x,y) can be shown to be normalizable to:

u = x2

2
+ x2y

2
+ 1 ·

x3y
6

+ x2y2

2
+M x5

5!
+ 6

x3y2

3!2!
+ x2y3

2
+ Ox,y(6)I

here, the explicit expression of M in terms of J5x,yu is a true differential invariant,

whose numerator has 57 differential monomials.

Next, applying the Fels-Olver [29] recurrence formulas in this context, denoting

I6,0, I5,1, I7,0, I6,1 the invariantized jets inv(ux6), inv(ux5y), inv(ux7), inv(ux6y),

with of courseM := inv(ux5), one receives:

D1M = I6,0 − 12M+
10

3
I5,1,

D2M = I5,1 − 7M+ 80
9
,

D1I6,0 = I7,0 + 4 I6,0 − 42M2 +
45

2
MI5,1 − 3 I25,1,

D2I6,0 = I6,1 − 9 I6,0 + 21M− 8 I5,1,

D1I5,1 = I6,1 +
41

3
I5,1 − I6,0 − 60M,

D2I5,1 = − 40M+ 12 I5,1 +
280
9
.

These relations and the higher order ones show that the algebra of differential invariants

in this branch is generated byM and all its invariant derivatives D
ν1
1 D

ν2
2 M.

Furthermore, when searching for SA3(R)-homogeneous surfaces {u = F(x,y)},

the differential invariants are all by themselves constant, hence all left-hand sides

vanish. Strikingly, these 6 equations forceM to have only one specic value:

M := 20
9
, I6,0 :=

40
9
, I5,1 :=

20
3
, I7,0 := −

280
9
, I6,1 :=

140
3
,

and so on for all unwritten recurrence relations.

Lastly, from a Taylor expansion up to any nite order, by testing whether a general

innitesimal symmetry in sa3(R) is tangent to {u = F(x,y)}, one realizes that forM =
20
9
, one indeed obtains a single homogeneous model, equivalent to the developable

surface generated by the twisted cubic (3) from Fels-Kaup’s list above.

The other branchW ≡ 0 creates, underSA3(R), two differential invariants, denoted

X and Y in [11]. For the full afne group A3(R), one degree of freedom is added, X

becomes relative and when it is nonzero, it can be normalized to be 1, while, when

X ≡ 0 ≡ W, it is easy to show that one comes to the at model u = 1
2

x2

1−y . Denoting

Y := I7,0 = inv(ux7), the recurrence relations are:

D1I7,0 = I8,0 −
35
2
, D2I7,0 = I7,1 − 6Y,

D1I8,0 = I9,0 − 4 Y2, D2I8,0 = I8,1 − 7 I8,0,

and so on, hence Y and its invariant derivatives D
ν1
1 D

ν2
2 Y are generators.
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In search for homogeneous models, denoting instead a := Y which must be con-

stant, one receives:

u = x2 + x2y
2

+ x2y2

2
+ x5

120
+ x2y3

2
+ 4

x5y
120

+ x2y4

2
+ a x7

5040
+ x2y5

2
+ 20

x5y2

240

+ I8,0
x8

8W + 6a x7y
7W + 120

x5y3

5W3W + 720
x2y6

2W6W + O(9).

It is easy to see that this gives a 1-parameter family of homogeneous models,

parametrized by any a ∈ R, which ‘unies’ (2a), (2b), (2c) above. Thus, without

trying to nd closed forms for u = F(x,y), the classication ‘simplies’.

This ‘simplication’, already discussed for the classication of curves C1 ⊂ R
2

will come again later in our results on degenerate para-CR structures.

7 Explicit Reduction to {e}-Structure forM5
∈ C2,1

It was only ve years after Fels-Kaup that three papers [45, 60, 80] achieved the

constructions of 10-dimensional {e}-structure bundles (orCartan connections)P10 −→
M5. We only review Pocchiola’s results [71, 80], following [31].

Consider thereforeM5 ⊂ C
3 belonging to C2,1, graphed as:

u = F


z1, z2, z1, z2, v


.

Two generators of T1,0M and T0,1M are:

Lk :=
∂

∂z1
+Ak ∂

∂v
, Ak :=

− i Fzk
1+ i Fv

(k= 1, 2).

he real 1-form ρ0 := dv − A1 dz1 − A2 dz2 − A
1
dz1 − A

2
dz2 has kernel {ρ0 =

0} = T1,0M⊕ T0,1M. The hypothesis thatM has everywhere degenerate Levi form

writes as:

0 ≡ =









ρ0


i [L1,L1]


ρ0


i [L2,L1]


ρ0


i [L1,L2]


ρ0


i [L2,L2]










.

The hypothesis that the Levi form has constant rank equal to 1 reads as saying that the

eld:

T := i


L1,L1



= i


L1



A
1

− L1



A1




∂

∂v
=: 

∂

∂v
,

satises  = 0 everywhere. TheLevi kernel subbundleK1,0M ⊂ T1,0Mhas generator:

K := kL1 + L2,
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with slant function:

k := −

L2



A
1


−L1



A2


L1



A
1


−L1



A1
 .

According to [71, 80], the hypothesis of 2-nondegeneracy states as:

0 = L1(k).

There is a second fundamental function:

P :=
z1 +A1

v − A1
v


.

For now, introduce the ve 1-forms:

ρ0 =
dv−A1dz1 −A2dz2 −A

1
dz1 −A

2
dz2


,

κ0 = dz1 − kdz2,

ζ0 = dz2,

κ0 = dz1 − kdz2,

ζ0 = dz2,

Pocchiola obtained modications

ρ, κ, ζ,κ, ζ


of these 1-forms


ρ0, κ0, ζ0,κ0, ζ0


,

together with four 1-forms π1, π2, π1, π2 which satisfy structure equations of the

form:

dρ =


π1 + π1


∧ ρ+ iκ∧ κ,

dκ = π2
∧ ρ+ π1

∧ κ+ ζ∧ κ,

dζ =


π1
− π1



∧ ζ+ iπ2
∧ κ +

+Rρ∧ ζ+ i
1

c3
J0 ρ∧ κ+

1

c
W0 κ∧ ζ. (7)

Here, there are four remaining group parameters c, e, c, e, and R is a secondary

invariant:

R := Re


i e
cc W0 +

1
cc



−

i
2
L1



W0



+ i
2



−

1
3

L1



L1(k)


L1(k)
+ 1

3
P


W0



,
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expressed in terms of Pocchiola’s two primary relative invariants:

W0 := −

1
3

K



L1



L1(k)


L1(k)
2

+ 1
3

K



L1(k)


L1



L1(k)


L1(k)
3

+

+ 2
3

L1



L1(k)


L1(k)
+ 2

3

L1



L1(k)


L1(k)
+ i

3
T (k)

L1(k)
,

J0 :=
1
6

L1



L1



L1



L1(k)


L1(k)
−

5
6

L1



L1



L1(k)


L1



L1(k)


L1(k)
2

−

1
6

L1



L1



L1(k)


L1(k)
P+

+ 20
27

L1



L1(k)
3

L1(k)
3

+ 5
18

L1



L1(k)
2

L1(k)
2

P+ 1
6

L1



L1(k)


L1



P


L1(k)
−

1
9

L1



L1(k)


L1(k)
PP−

−

1
6
L1



L1



P


+ 1
3
L1



P


P−

2
27

PPP.

The full {e}-structure obtained by Foo-Merker in [31] for nonrigidM5 ⊂ C
3 shows

that a unique prolongation ofG-structure is needed, introducing one further parameter

t ∈ R, together with a real modied Maurer-Cartan form Λ = dt + · · · and that all

appearing torsion coefcients are secondary invariants.

8 Degenerate Para-CR Structures and Their HomogeneousModels

What precedes motivates the kinds of PDE systems studied in this article and in [69,

70], so let us summarize foundational considerations on such PDE systems, taken

from the detailed elementary presentation [65].

Given a Cω real hypersurface M5 ⊂ C
3 of complex-graphed equation w =

Θ(z1, z2, z1, z2,w) obtained by solving for w a real implicit equation ρ(z1, z2,w,

z1, z2,w) = 0, one can forget about complex conjugation, work over the eldsK = R

orK = C, and consider instead, in coordinates (x,y, z,a,b, c) a so-called submanifold

of solutions M ⊂ K
2+1
x,y,z × K

2+1
a,b,c having implicit equation ρ(x,y, z,a,b, c) = 0,

with symmetrically dx,y,zρ = 0 = da,b,cρ.

One may therefore assume ρz = 0 = ρc, solve for z and for c by means of the

implicit function theorem, and get two equivalent graphed equations:

z = Q(x,y,a,b, c) & c = P(a,b, x,y, z).

In view of the intimate relationship with PDE systems, one may think that (x,y, z)

are the variables, while (a,b, c) are the parameters. Two functional relations must be

identically satised:

z ≡ Q


x,y,a,b, P(a,b, x,y, z)


& P


a,b, x,y, Q(x,y,a,b, c)


≡ c. (8)

with Qc = 0 = Pz by hypothesis, and in fact Qc = 1
Pz

. Two sets of ve intrinsic

coordinates may hence be considered:



x,y,a,b, c


&


a,b, x,y, z


.
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The innite group of biholomorphic transformations of C3 would yield, by com-

plex conjugation, the group of anti-biholomorphic transformations, in the (z1, z2,w)

variables. Also, as explained in [63], for a large class of completely integrable PDE

systems, the natural innite-dimensional group consists of split-diffeomorphisms:

(x,y, z, a,b, c) −→


f(x,y, z),g(x,y, z),h(x,y, z), ϕ(a,b, c),ψ(a,b, c),

χ(a,b, c)


=:


x ,y , z , a ,b , c 


, (9)

which are pairs of uncoupled diffeomorphisms both in the variables space and in the

parameters space.

Through these transformations, both 2-dimensional foliations {a = a0,b = b0, c =

c0} and {x = x0,y = y0, z = z0} are invariant. Their intersections with M =

{z = Q} = {c = P} are spanned by two pairs of vector elds, rstly in coordinates

(x,y,a,b, c):

La :=
∂

∂a
−

Qa

Qc
(x,y,a,b, c)

∂

∂c
, Kx :=

∂

∂x
,

Lb :=
∂

∂b
−

Qb

Qc
(x,y,a,b, c)

∂

∂c
, Ky :=

∂

∂y
,

and secondly in coordinates (a,b, x,y, z):

La :=
∂

∂a
, Kx :=

∂

∂x
−

Px

Pz
(a,b, x,y, z)

∂

∂z
,

Lb :=
∂

∂b
, Ky :=

∂

∂y
−

Py

Pz
(a,b, x,y, z)

∂

∂z
.

However, in general, their sum:

Span

La,Lb


⊕ Span


Kx,Ky



is not Frobenius-integrable, as show the four Lie brackets:



Kx,La



=
−QcQxa +QaQxc

QcQc

∂

∂c
,



Kx,Lb



=
−QcQxb +QbQxc

QcQc

∂

∂c
,



Ky,La



=
−QcQya +QaQyc

QcQc

∂

∂c
,



Ky,Lb



=
−QcQyb +QbQyc

QcQc

∂

∂c
,

with similar formulas involvingP in the other coordinates (a,b, x,y, z). This conducts

to introduce twoLevi forms,rstlywith respect to parameters, having invariantmatrix:

Levipar(Q) :=



−QcQxa+QaQxc

Q2
c

−QcQxb+QbQxc

Q2
c

−QcQya+QaQyc

Q2
c

−QcQyb+QbQyc

Q2
c



,

123



27 Page 26 of 50 J. Merker, P. Nurowski

and secondly with respect to variables, having invariant matrix:

Levivar(P) :=

⎛

⎝

−PzPax+PxPaz

P2
z

−PzPay+PyPaz

P2
z

−PzPbx+PxPbz

P2
z

−PzPby+PyPbz

P2
z

⎞

⎠ .

Lemma 8.1 [65] One has:

Levipar(Q) = −Py
TLevivar(P) ⇐⇒ −Qc

TLevipar(Q) = Levivar(P).

Hint of proof Differentiate (8) up to order 2, perform suitable eliminations, and obtain

for 1  i, j  2, with (a1,a2) := (a,b) and (x1, x2) := (x,y):

−QcQxiaj
+Qaj

Qxic

QcQc
= −Pz



−PzPxiaj
+ Pxi

Pajz

Pz Pz



.

As a corollary:

rank Levipar(Q) = rank Levivar(P).

So one can speak of Levi nondegenerate, or of constant Levi rank 1, submanifolds of

solutions.

As already seen in Sect. 5, from the three equations:

z = Q, zx = Qx, zy = Qy,

one can solve the parameters (a,b, c) preciselywhen the Jacobianmatrix is invertible:

0 =













Qa Qb Qc

Qxa Qxb Qxc

Qya Qyb Qyc













= det Levipar(Q).

But when the Levi matrix is constantly of rank 1 [our current concern], one must

examine ‘higher order Levi forms’, for instance by differentiating up to order 3, which

conducts to:

Freemanpar(Q) :=













Qa Qb Qc

Qxa Qxb Qxc

Qxxa Qxxb Qxxc













, Freemanvar(P) :=













Px Py Pz
Pax Pay Paz

Paax Paay Paaz













.

Indeed, under the assumption of constant Levi rank 1, and more precisely, under

the following assumptions which can be met after a permutation of coordinates:









Qa Qc

Qxa Qxc









= 0 ≡













Qa Qb Qc

Qxa Qxb Qxc

Qya Qyb Qyc













,
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it can be veried as in [35, Prp. 2.2] that through a split-diffeomorphism (9), which

transforms {z = Q(x,y,a,b, c)} into {z  = Q (x ,y ,a ,b , c )}, one has:













Q 
a  Q 

b  Q 
c 

Q 
z a  Q 

z b  Q 
z c 

Q 
z z a  Q


z z b  Q


z z c 

























Qa Qb Qc

Qza Qzb Qzc

Qzza Qzzb Qzzc













=













fx fy fz
gx gy gz
hx hy hz













3













ϕa ϕb ϕc

ψa ψb ψc

χa χb χc













1



Ky(g)









Qa Qc

Qza Qzc









−Kx(g)









Qa Qc

Qya Qyc









3









Kx(f) Ky(f)

Kx(g) Ky(g)









6 







Qa Qc

Qza Qzc









3
,

and this guarantees that the nonvanishing of Freemanpar(Q) is an invariant condition.

Of course, there is a similar formula (by symmetry) satised by P which shows that

the nonvanishing of Freemanvar(P) is also invariant. But we would like to mention

that such formulas would be untrue without the assumption that the Levi determinant

vanishes identically.

When z = Q is a real hypersurface w = Θ(z1, z2, z1, z2,w) in C3, with:

(x,y, z) := (z1, z2,w), (a,b, c) := (z1, z2,w),

so that Q := Θ and P := Θ, it is clear that:

Freemanvar


Θ


= Freemanpar(Θ),

so that one determinant is nonzero if and only if the other is.

However, for general submanifolds of solutions, and even contrary to the ‘equiva-

lence’ between the two Levi determinants expressed by Lemma 8.1, the two Freeman

determinants are totally unrelated. Indeed, taking for instance:

z = Q = c+ xa+ β xxb+ γyaa+ O4(x,y,a,b, c),

⇐⇒ c = P = z− ax− γaay− βbxx+ O4(x,y,a,b, c),

with two uncoupled [free, independent] constants β, γ, we have at the origin:

Freemanpar(Q)




0
=













0 0 1

1 0 0

0 2β 0













= 2β,

Freemanvar(P)




0
=













0 0 1

−1 0 0

0 −2γ 0













= 2γ.
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So the much studied concept of 2-nondegeneracy for CR manifolds [13, 27, 28,

31, 34–37, 45, 60, 61, 63, 69, 71, 80], when generalized to para-CR geometry, splits

into two non-equivalent concepts.

Denition 8.2 [65] A submanifold of solutions

z = Q(x,y,a,b, c)


=


c =

P(a,b, x,y, z)

whose Levi form is everywhere of rank 1 will be called:

• 2-nondegenerate with respect to parameters if 0 =













Qa Qb Qc

Qxa Qxb Qxc

Qxxa Qxxb Qxxc













=:

Δ(Q);

• 2-nondegenerate with respect to variables if 0 =













Px Py Pz
Pax Pay Paz
Paax Paay Paaz













=: (P).

Thus, if we assume constant Levi rank 1 and 2-nondegeneracy with respect to

parameters:









Qa Qc

Qxa Qxc









= 0 ≡













Qa Qb Qc

Qxa Qxb Qxc

Qya Qyb Qyc













and 0 =













Qa Qb Qc

Qxa Qxb Qxc

Qxxa Qxxb Qxxc













,

then quite similarly to what Segre did [86, 87], from the three equations z = Q,

zx = Qx, zxx = Qxx, we can solve, by means of the implicit function theorem, the

three parameters (a,b, c), namely:

⎡

⎢

⎣

z = Q(x,y,a,b, c),

zx = Qx(x,y,a,b, c),

zy = Qy(x,y,a,b, c),

⇐⇒

⎡

⎢

⎣

a = A(x,y, z, zx, zxx),

b = B(x,y, z, zx, zxx),

c = C(x,y, z, zx, zxx),

and replace in other derivatives, so that we obtain a completely integrable system of

two PDEs:

zy = F(x,y, z, zx, zxx) & zxxx = H(x,y, z, zx, zxx). (10)

(0, 1)

(0, 0) (1, 0) (2, 0) (3, 0)
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The transfer of derivations:

∂

∂z
= Az

∂

∂a
+ Bz

∂

∂b
+ Cz

∂

∂c
,

∂

∂zx
= Azx

∂

∂a
+ Bzx

∂

∂b
+ Czx

∂

∂c
,

∂

∂zxx
= Azxx

∂

∂a
+ Bzxx

∂

∂b
+ Czxx

∂

∂c
,

becomes after some elimination work [65]:

∂

∂z
=









Qxb Qxxb

Qxc Qxxc









Δ(Q)

∂

∂a
−









Qxa Qxxa

Qxc Qxxc









Δ(Q)

∂

∂b
+









Qxa Qxxa

Qxb Qxxb









Δ(Q)

∂

∂c
,

∂

∂zx
= −









Qb Qxxb

Qc Qxxc









Δ(Q)

∂

∂a
+









Qa Qxxa

Qc Qxxc









Δ(Q)

∂

∂b
−









Qa Qxxa

Qb Qxxb









Δ(Q)

∂

∂c
,

∂

∂zxx
=









Qb Qxb

Qc Qxc









Δ(Q)

∂

∂a
−









Qa Qxa

Qc Qxc









Δ(Q)

∂

∂b
+









Qa Qxa

Qb Qxb









Δ(Q)

∂

∂c
.

Lemma 8.3 If the submanifold of solutions z = Qhas degenerate Levi formof constant

rank 1 and if it is 2-nondegenerate with respect to parameters, then in its associated

PDE system zy = F, zxxx = H, the function F is independent of zxx:

0 ≡ Fzxx .

Proof. By construction:

F


x,y, z, zx, zxx


:= Qy



x,y, A


x,y, z, zx, zxx


, B


x,y, z, zx, zxx


,

C


x,y, z, zx, zxx




,

whence a differentiation with respect to zxx make re-appear the Levi determinant:

Fzxx = Azxx Qya + Bzxx Qyb + Czxx Qyc

=









Qb Qxb

Qc Qxc









Δ(Q)
Qya −









Qa Qxa

Qc Qxc









Δ(Q)
Qyb +









Qa Qxa

Qb Qxb









Δ(Q)
Qyc

=
1

Δ(Q)













Qa Qb Qc

Qxa Qxb Qxc

Qya Qyb Qyc













≡ 0.
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So we do assume that F is independent of zxx. After a similar work, one gets

Proposition 8.4 [65] The submanifold of solutions {z = Q} is 2-nondegenerate with

respect to variables if and only if:

0 = Fzxzx .

Because it corresponds (exercise) to trivial products {z = Q(x,a, c)}×K
1
y ×K

1
b,

the degenerate branch Fzxzx ≡ 0 will not be studied, and we will constantly assume:

Fzxx ≡ 0 = Fzxzx .

The graphedmodel (5) obtained in [37], rewritten z+c = 2xa+x2b+a2y
1−yb , conducts,

as we already saw, to the model PDE system:

zy = 1
4
(zx)

2 & zxxx = 0.

Introducing the two total differentiation operators pulled-back to the PDE system:

D := ∂x + p ∂z + r ∂p +H ∂r & Δ := ∂y + F ∂z +DF ∂p +D2F ∂r,

the complete integrability expresses as D3F = ΔH, and guarantees [63, § 1] that the

general solution is of the form Q(x,y,a,b, c).

Forgetting about submanifolds of solutions, working now over K = R, we launch

Cartan’smethod by dening a 2-nondegenerate para-CR structure on a real 5-manifold

M  (x,y, z,p, r) associated with the above two PDEs (10) as an equivalence class of

1-formsmodulo point equivalences in terms of an initial coframe of (contact) 1-forms,

together with lifted 1-forms, ‘rotated’ by an initial G-structure:

ω1 := dz− pdx− Fdy,

ω2 := dp− rdx−DFdy,

ω3 := dr−Hdx−D2Fdy,

ω4 := dx,

ω5 := dy,

⎛

⎜

⎜

⎜

⎜

⎝

θ1

θ2

θ3

θ4

θ5

⎞

⎟

⎟

⎟

⎟

⎠

:=

⎛

⎜

⎜

⎜

⎜

⎝

f1 0 0 0 0

f2 ρeφ f4 0 0

f5 f6 f7 0 0

f̄2 0 0 ρe−φ f̄4

f̄5 0 0 f̄6 f̄7

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

ω1

ω2

ω3

ω4

ω5

⎞

⎟

⎟

⎟

⎟

⎠

.

Similarly to the CR case ( [31, 71, 80]), we perform several torsion normalizations,

which lead us to change the initial coframe onM into:

⎛

⎜

⎜

⎜

⎜

⎝

ω1

ω2

ω3

ω4

ω5

⎞

⎟

⎟

⎟

⎟

⎠

−→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0 0

0 1 0 0 0
(2H2

r+9Hp−3DHr)

18
Hr
3

−1 0 0

0 0 0 1 Fp
3FppFpppp−5F2

ppp

18F2
pp

0 0
Fppp

3Fpp

FpppFp−3F2
pp

3Fpp

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎝

ω1

ω2

ω3

ω4

ω5

⎞

⎟

⎟

⎟

⎟

⎠

,
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andwe invariantly reduce theG-structure to only 4 parameters ρ,φ, f2, f̄2, the bar hav-

ing nothing to dowith complex conjugation except some analogy linkwith Pocchiola’s

computations:

⎛

⎜

⎜

⎜

⎜

⎝

θ1

θ2

θ3

θ4

θ5

⎞

⎟

⎟

⎟

⎟

⎠

:=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ2 0 0 0 0

f2 ρeφ 0 0 0
(f2)2

2ρ2
f2eφ

ρ
e2φ 0 0

f̄2 0 0 ρe−φ 0

−

(f̄2)2

2ρ2 0 0 −f̄2e−φ

ρ
e−2φ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎝

ω1

ω2

ω3

ω4

ω5

⎞

⎟

⎟

⎟

⎟

⎠

.

After computational cleaning, we obtain our rst result, which happens to be the

para-CR analog of (7).

Theorem 8.5 On the bundle G9 = M5 × G4 with M5  (x,y, z,p, r) times R4 
(ρ,φ, f2, f2), there exist four 1-forms Ω1, Ω2, Ω3, Ω4 with θ1, θ2, θ3, θ4, θ5, Ω1,

Ω2, Ω3, Ω4 linearly independent at every point which satisfy the following para-CR

invariant exterior differential system:

dθ1 = −θ1 ∧Ω1 + θ2 ∧ θ4,

dθ2 = θ2 ∧ (Ω2 −
1
2
Ω1)− θ1 ∧Ω3 + θ3 ∧ θ4,

dθ3 = 2θ3 ∧Ω2 − θ2 ∧Ω3 +
e3φ

ρ3 I
1 θ1 ∧ θ4 + e−φ

ρ
I3 θ2 ∧ θ3+

1
8ρ3



2eφf̄2I3|5 + ρ(I3|52 + 2I3|4)− 4e−φf2I3


θ1 ∧ θ3,

dθ4 = −θ2 ∧ θ5 − θ4 ∧ ( 1
2
Ω1 +Ω2)− θ1 ∧Ω4,

dθ5 = −2θ5 ∧Ω2 + θ4 ∧Ω4 +
e−3φ

ρ3 I2 θ1 ∧ θ2 − eφ

2ρ
I3|5 θ

4
∧ θ5+

1
8ρ3



2eφf̄2I3|5 + ρ(I3|52 + 2I3|4)− 4e−φf2I3


θ1 ∧ θ5,

(11)

where I1, I2, I3 are explicit relative differential invariants on the baseM:

I1 := −

1
54



9D2Hr − 27DHp − 18DHrHr + 18HpHr + 4H3
r + 54Hz



,

I2 :=
40F3ppp − 45FppFpppFpppp + 9F2ppFppppp

54 F3pp
,

I3 :=
2Fppp + FppHrr

3 Fpp
,

and where (·)|i for i = 1, . . . , 5 denote directional derivatives along the vector elds

Xi dual to θ
i.
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0 =

0 =0 =

I3

I2

I1I2
|5

I3
|5

Flat model

zxxx=0

zy= 1
4z

2
xx

zxxx=z3xx

1-parameter family

Single homogeneous model

0 =

Differential

zy= 1
4z

2
x

contradiction

Differential

of homogeneous models contradiction

≡ 0

≡ 0
0 =

≡ 0

≡ 0

≡ 0

We would like to mention that when I3 ≡ 0, there are striking links with the

geometry of 3rd order ODEs modulo contact transformations, see the recent [70].

Developing the technique of Cartan in e.g. [7, Chap. III], we split the study in

two branches: I3 = 0 and I3 ≡ 0. When I3 = 0, we show that one can normalize ρ,

u1, f̄
2. Then in the obtained structure equations, I3|5 becomes a relative invariant. We

show that I3|5 ≡ 0 conducts to a differential contradiction. When I3|5 = 0, we can

also normalize φ, f2, hence obtaining an {e}-structure on the base M, cf. [71, 80].

At rst, certain 15 scalar constant curvatures appear, and by looking at differential

consequences of d ◦ d = 0, they reduce to only one pair of solutions, with  = ±1,

and we come to Maurer-Cartan type equations:

dθ1 =


− 6θ1 ∧ θ3 + 1
2
θ1 ∧ θ4 − 3

2
θ1 ∧ θ5



+ θ2 ∧ θ4,

dθ2 =


−

1
16
θ1 ∧ θ2 − 2θ2 ∧ θ3 + 1

2
θ2 ∧ θ4 − θ2 ∧ θ5



− θ1 ∧ θ3+

1
32
θ1 ∧ θ4 − 1

8
θ1 ∧ θ5 + θ3 ∧ θ4,

dθ3 =


−

3
16
θ1 ∧ θ3 + 1

2
θ3 ∧ θ4 − 1

2
θ3 ∧ θ5



+ 1
32
θ2 ∧ θ4 − 1

8
θ2 ∧ θ5,

dθ4 =


−

1
8
θ1 ∧ θ4 + 1

4
θ1 ∧ θ5 + 4θ3 ∧ θ4 − 1

2
θ4 ∧ θ5



− θ2 ∧ θ5,

dθ5 =


−

1
16θ

1
∧ θ5 + 2θ3 ∧ θ5 − 1

4θ
4
∧ θ5



.

Next, in the branch I3 ≡ 0, the equations (11) become:

dθ1 =− θ1 ∧Ω1 + θ2 ∧ θ4,

dθ2 =θ2 ∧ (Ω2 −
1
2
Ω1)− θ1 ∧Ω3 + θ3 ∧ θ4,

dθ3 =2θ3 ∧Ω2 − θ2 ∧Ω3 +
e3φ

ρ3 I
1 θ1 ∧ θ4,

dθ4 =− θ2 ∧ θ5 − θ4 ∧ ( 1
2
Ω1 +Ω2)− θ1 ∧Ω4,

dθ5 =− 2θ5 ∧Ω2 + θ4 ∧Ω4 +
e−3φ

ρ3 I2 θ1 ∧ θ2.

Here, I1 and I2 are relative invariants.
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In the sub-branch I2 = 0, we rst normalize ρ, u1, f̄
2. Then I2|5 becomes a relative

invariant. We show that I2|5 ≡ 0 leads to a differential contradiction. When I2|5 = 0,

we can also normalize φ, f2, hence obtaining an {e}-structure on the baseM, cf. [71,

80]. At rst, certain 12 scalar constant curvatures appear, and by looking at differential

consequences of d ◦ d = 0, they reduce to one pair of 1-parameter solutions and

we come to Maurer-Cartan type equations, parametrized by any s ∈ R, again with

 = ±1:

dθ1 =− 


θ1 ∧ θ3 + θ1 ∧ θ5


+ θ2 ∧ θ4,

dθ2 =


sθ1 ∧ θ2 − θ2 ∧ θ5


− sθ1 ∧ θ4 + θ3 ∧ θ4,

dθ3 =


θ1 ∧ θ4 − θ3 ∧ θ5


− θ1 ∧ θ2 − sθ2 ∧ θ4,

dθ4 =


− sθ1 ∧ θ4 + θ3 ∧ θ4


+ sθ1 ∧ θ2 − θ2 ∧ θ5,

dθ5 =


− θ1 ∧ θ4 + θ3 ∧ θ5


+ θ1 ∧ θ2 + sθ2 ∧ θ4.

Lastly, when I2 ≡ 0, we show that I1 ≡ 0 too necessarily, and we show that the

structure equations are those of the model zy = 1
4
(zxx)

2 & zxxx = 0. The diagram

above summarizes these explanations.

By general features ofCartan’smethod, all obtained para-CR structures are pairwise

not equivalent.

To conclude, by setting up the PDEs associated to para-CR submanifolds of solu-

tions inspired fromFels-Kaup’s list, we realize all these homogeneousmodels as stated

in our main

Theorem 8.6 Homogeneous models for 2-nondegenerate PDE ve variables para-CR

structures are classied by the following list of mutually inequivalent models:

(i) zy = 1
4 (zx)

2 & zxxx = 0;

(ii) zy = 1
4
(zx)

2 & zxxx = (zxx)
3;

(iiia) zy = 1
4
(zx)

b & zxxx = (2− b)
(zxx)

2

zx
with zx > 0 for any real b ∈ [1, 2);

(iiib) zy = f(zx) & zxxx = h(zx)


zxx
2
, where the function f is determined by

the implicit equation:



z2x + f(zx)
2


exp


2b arctan
bzx−f(zx)
zx+bf(zx)



= 1+ b2

and where:

h(zx) :=
(b2 − 3)zx − 4bf(zx)



f(zx)− bzx
2

,

for any real b > 0.
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The point automorphism groups for cases (i), (ii), (iiia), (iiib) can be determined

innitesimally. Indeed, a vectoreldwith unknowncoefcientsAi = Ai(x,y, z,p, r),

i = 1, . . . , 5:

X := A1
∂x +A2

∂y +A3
∂z +A4

∂p +A5
∂r,

should act on 1-forms as the matrix (2.4), so that:

0 = LX(ω
1)∧ω1,

0 = LX(ω
2)∧ω1

∧ω2
∧ω3,

0 = LX(ω
3)∧ω1

∧ω2
∧ω3,

0 = LX(ω
4)∧ω1

∧ω4
∧ω5,

0 = LX(ω
5)∧ω1

∧ω4
∧ω5.

(12)

For instance, in case (ii), the rst equation writes:

Lx(ω
1)∧ω1

= dx∧ dy


p


A3
y −

1
4
p2A2

y − pA1
y −

1
4
pA4

−

1
4
pA3

x + 1
16

p3A2
x + 1

4
A1

x





,

+ dx∧ dz


pA3
z −

1
4
p3A2

z − p2A1
z +A3

x −

1
4
p2A2

x − pA1
x −A4



+ dx∧ dp


p


A3
p −

1
4
p2A2

p − pA1
p





+ dx∧ dr


p


A3
r −

1
4
p2A2

r − pA1
r





+ dy∧ dz


1
4
p2A3

z −

1
16

p4A2
z −

1
4
p3A1

z +A3
y −

1
4
p2A2

y − pA1
y −

1
2
A4



+ dy∧ dp


p2


1
4
A3

p −

1
16

p2A2
p −

1
4
pA1

p





+ dy∧ dr


p2


1
4
A3

r −
1
16

p2A2
r −

1
4
pA1

r





+ dz∧ dp


−A3
p + 1

4
p2A2

p + pA1
p



+ dz∧ dr


−A3
r +

1
4
p2A2

r + pA1
r



.

Solving this linear system of partial differential equations, we get
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Corollary 8.7 The Lie algebra of innitesimal point automorphisms of the at model

(i) is simple, isomorphic to so3,2(R), with the 10 generators:

X1 := xy ∂x + y2 ∂y − x2 ∂z − (py+ 2 x) ∂p − (2 ry+ 2) ∂r,

X2 := − (x2 − yz) ∂x − 2 xy ∂y − 2 xz ∂z −



1
2
p2y+ 2 z



∂p

−



pry− 2 rx+ 2p


∂r,

X3 := y ∂x − 2 x ∂z − 2 ∂p,

X4 := xz ∂x − x2 ∂y + z2 ∂z −



1
2
p2x− pz



∂p +


1
2
p2 − prx



∂r,

X5 := z ∂x − 2 x ∂y −

1
2
p2 ∂p − pr ∂r,

X6 := x ∂x + 2 z ∂z + p ∂p,

X7 := ∂x,

X8 := y ∂y − z ∂z − p ∂p − r ∂r,

X9 := ∂y,

X10 := ∂z,

having commutator table:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 0 0 0 −X2 0 −X3 −X1 −X6−

2X8

0

X2 ∗ 0 2X1 0 2X4 −X2 2X6 + 2X8 0 −X5 −X3

X3 ∗ ∗ 0 X2 −2X8 X3 2X10 −X3 −X7 0

X4 ∗ ∗ ∗ 0 0 −2X4 −X5 X4 0 −X6

X5 ∗ ∗ ∗ ∗ 0 −X5 2X9 X5 0 −X7

X6 ∗ ∗ ∗ ∗ ∗ 0 −X7 0 0 −2X10

X7 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0

X8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −X9 X10

X9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

X10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

In the CR context, observe that if S2 ⊂ R
3 is an afnely homogeneous parabolic

surface, then the tube M5 := S2 × iR3 has transitive holomorphic symmetry algebra

hol(M), with an Abelian ideal a := Span {i∂z1 , i∂z2 , i∂w}. Conversely, for an M5 ∈
C2,1, it is not difcult to show that if hol(M) ⊃ a contains an Abelian ideal a with

rankC a = 3, then M5 ∼= S2 × iR3 is biholomorphically equivalent to the tube over

an afnely homogeneous parabolic surface S2 ⊂ R
3.

In the para-CR context, all the Lie algebras in cases (i), (ii), (iiia), (iiib) have a

3-dimensional abelian ideal.
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Corollary 8.8 The Lie algebras of innitesimal point automorphisms of the homoge-

neous models (ii), (iiia), (iiib) are all 5-dimensional and solvable, and are given in

the (x,y, z,p, r)-space by the following generators together with their Lie brackets:

X1 := x ∂x + 1
2 y ∂y + 3

2 z ∂z + 1
2 p ∂p −

1
2 r ∂r,

X2 := y ∂x − 2x ∂z − 2 ∂p,

(ii) X3 := ∂x,

X4 := ∂y,

X5 := ∂z,

X1 X2 X3 X4 X5

X1 0 −

1
2X2 −X3 −

1
2X4 −

3
2X5

X2 ∗ 0 2X5 −X3 0

X3 ∗ ∗ 0 0 0

X4 ∗ ∗ ∗ 0 0

X5 ∗ ∗ ∗ ∗ 0

X1 := x ∂x +
bz

b− 1
∂z +

p

b− 1
∂p −

r(b− 2)

b− 1
∂r,

X2 := y ∂y −

z

b− 1
∂z −

p

b− 1
∂p −

r

b− 1
∂z,

(iiia) X3 := ∂x,

X4 := ∂y,

X5 := ∂z,

X1 X2 X3 X4 X5

X1 0 0 −X3 0 −

b
b−1

X5

X2 ∗ 0 0 −X4
1

b−1
X5

X3 ∗ ∗ 0 0 0

X4 ∗ ∗ ∗ 0 0

X5 ∗ ∗ ∗ ∗ 0

X1 := x ∂x + y ∂y + z ∂z − r ∂r,

X2 := −y ∂x + x ∂y +ωz ∂z +


− F+ωp) ∂p + (−2DF+ω r) ∂r

(iiib) X3 := ∂x,

X4 := ∂y,

X5 := ∂z,

X1 X2 X3 X4 X5

X1 0 0 −X3 −X4 −X5
X2 ∗ 0 −X4 X3 −ωX5
X3 ∗ ∗ 0 0 0

X4 ∗ ∗ ∗ 0 0

X5 ∗ ∗ ∗ ∗ 0

To end this section, we would like to mention that Porter and Zelenko have made

advances [82, 83, 85] on higher dimensional Levi-degenerate CR manifolds. Natural

generalizations to para-CR geometry can be studied.

9 Homogeneous C2,1 Models

Now, let us make a brief expository survey of [32]. LetM ⊂ C
n2 be a local Cω CR

hypersurface, in coordinates z = (z1, . . . , zn) ∈ C
n, with 0 ∈ M. Assume that M is
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CR-homogeneous, so that the real Lie algebra:

hol(M) :=


L =


n

i=1 ai(z)
∂

∂zi
holomorphic :



L+ L




M
is tangent to M



,

is of dimension r with dim M  r  ∞, due to T0M = Span

(L + L)





0
: L ∈

hol(M)

.

If hol(M) ⊃ a contains an n-dimensional Abelian (real) Lie subalgebra a =

Span


L1, . . . ,Ln


of holomorphic vector elds having maximally real span:

Span


L1 + L1




0
, . . . ,Ln + Ln





0



⊂ T0C
n,

then after a straightening biholomorphism, one has L1 =
√
−1 ∂z1 , …, Ln =

√
−1 ∂zn .

Assume furthermore that a ⊂ hol(M) is an ideal. Consider other Lν ∈ hol(M)

for n+ 1  ν  r completing a basis. Since each
√

−1 ∂zi ,Lν


must be a real linear

combination of
√
−1 ∂z1 , . . . ,

√
−1 ∂zn , it comes:

Lν =

n

i=1



n

j=1

aν,i,j zj + bν,i



∂

∂zi
(n+1ν r),

with constantsaν,i,j ∈ R, andbν,i ∈ C; in factbν,i ∈ R, after subtracting appropriate

linear combinations of the
√
−1 ∂zi . Tangency to M of the real parts of the

√
−1 ∂zi

implies that M = H × iRn with H ⊂ R
n a hypersurface. Furthermore, writing

zi = xi +
√
−1yi, the vector elds

Tν :=

n

i=1



n

j=1

aν,i,j xj + bν,i



∂

∂xi
(n+1ν r),

are tangent to H, and their span at 0 ∈ H spans T0H. The converse is direct.

Focusing on n = 3, consider C2,1 — i.e. 2-nondegenerate of constant Levi rank

1 — hypersurfaces M5 ⊂ C
3. They are CR analogs of parabolic surfaces S2 ⊂ R

3.

Afnely homogeneous models have been presented at the end of Sect. 6.

Fels-Kaup’s classication [28] of homogeneousC2,1 hypersurfacesM
5 ⊂ C

3 relies

on expert knowledgeofLie structure theory.But only the equivalencemethod can reach

information about CR invariants. The present objective is to explore the concerned CR

invariants (either relative or absolute), since nothing about the branchings they create

appears in [28, 31, 35, 47, 60].

In coordinates C3 


z, ζ,w = u +
√
−1 v



, the graphed representation [14, 27,

34, 35, 37] of the at model is:

u =
zz+ 1

2
z2ζ+ 1

2
z2ζ

1− ζζ
=: m



z, ζ, z, ζ


.
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The 5-dimensional Lie group of its automorphisms xing the origin writes:

z  := λ
z+ iα z2 +



iαζ− iα


w

1+ 2iα z− α2z2 −


α2ζ− αα+ i ρ


w
,

ζ  :=
λ

λ

ζ+ 2iα z−


αα+ i ρ


z2 +


α2
− i ρ ζ− ααζ



w

1+ 2iα z− α2z2 −


α2ζ− αα+ i ρ


w
,

w  := λλ
w

1+ 2iα z− α2z2 −


α2ζ− αα+ i ρ


w
,

where λ ∈ C
∗, α ∈ C, ρ ∈ R are free.

A general C2,1 hypersurfaceM
5 ⊂ C

3 with 0 ∈ M writes as a perturbation of this

model:

u = F


z, ζ, z, ζ, v


= m(z, ζ, z, ζ) +G


z, ζ, z, ζ, v


,

where:

F =


h,i,j,k,l

zhζizjζ
k
vl Fh,i,j,k,l =



h,i,j,k

zhζizjζ
k
Fh,i,j,k(v),

with Fh,i,j,k,l = Fj,k,h,i,l, with 0 = F0,0,0,0,0, and the same for G.

The Poincaré-Moser convergent normal form established in [35, 47] shows that,

after some local biholomorphism xing the origin, one can assume:

0 ≡ Fh,i,0,0(v),

0 ≡ Fh,i,1,0(v),

0 ≡ Fh,i,2,0(v),

0 ≡ F3,0,0,1(v),

0 ≡ F4,0,0,1(v) ≡ F3,0,1,1(v),

0 ≡ F4,0,1,1(v) ≡ F3,0,3,0(v),

with the exceptions 1 ≡ F1,0,1,0(v) and
1
2
≡ F2,0,0,1(v).

SupposeM 5 ⊂ C
3 is another such C2,1 hypersurface, similarly normalized. If:

(z, ζ,w) −→


f(z, ζ,w), g(z, ζ,w), h(z, ζ,w)


=: (z , ζ ,w ),

is a local holomorphic map xing the origin which sends M into M , then as fol-

lows from general Poincaré-Moser theory, it is of the form above for certain ve real

parameters λ ∈ C
∗, α ∈ C, ρ ∈ R. Our goal is to normalize this remaining ambiguity,

cf. Questions Q➀ and Q➃ in [35].

Attributing weights [z] := 1, [ζ] := 1, [w] := 2, let us therefore show weighted

order 5 terms:

u = zz+ 1
2
z2ζ+ 1

2
z2ζ+ zzζζ+ 1

2
z2ζζζ+ 1

2
z2ζζζ

+ 2 Re


z3ζ
2
F3,0,0,2,0



+ Oz,ζ,z,ζ,v(6),
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the remainder being weighted as well. This coefcient F3,0,0,2,0 is a relative invariant,

hence it creates a branching.

?

C2,1

F30020=0

F30020 =0 Single
model

Theorem 9.1 In the branch F3,0,0,2,0 = 0, one can normalize F3,0,0,2,0 := 1, so λ := 1,

and 3 supplementary (real) normalizations hold:

F4,0,0,2,0 := 0, so α := 0,

Im F3,0,2,1,0 := 0, so ρ := 0,

so that the isotropy is reduced to be zero-dimensional.

Furthermore, all coefcients Fh,i,j,k,l ∈ C are uniquely determined to be specic

constants, as shown in [32], and the related 5 holomorphic vector elds e1, e2, e3,

e4, e5 have structure:

[e1,e2] = − 4e4−4e5, [e1,e3] = −2e1, [e1,e4] = 2e2+4e4, [e1,e5] = 2e2−4e5,

[e2,e3] = −4e2−4e4, [e2,e4] = 0, [e2,e5] = 0,

[e3,e4] = 2e4, [e3,e5] = − 2e2+6e5,

[e4,e5] = 0.

This Lie algebra g has the derived series of dimensions 5, 4, 2, 0, with:

[g, g] = Span


−4 e4 − 4 e5, −2 e1, 2 e2 + 4 e4, −4 e2 − 4 e4


.

The three underlined vector elds span a 3-dimensional Abelian ideal a ⊂ g, whose

value at the origin 0 ∈ C
3 spans a maximally real 3-plane. This is coherent with

Fels-Kaup’s item (3) in Sect. 6.

Next, assume F3,0,0,2,0 ≡ 0, or equivalently, 1
4
W0 ≡ 0. Some differential conse-

quences are:

F4,0,0,2,0 = 0, F3,0,1,2,0 = 0, F3,0,0,3,0 = 0,

hence up to order 6:

u = zz+ 1
2
z2ζ+ 1

2
z2ζ+ zzζζ+ 1

2
z2ζζζ+ 1

2
z2ζζζ+ zzζζζζ

+ 2 Re


z5ζ F5,0,0,1,0 + z3z2ζ F3,0,2,1,0



+ Oz,ζ,z,ζ,v(7).
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Suppose the graphed equation for M  is similar. Then F5,0,0,1,0 is a relative invariant,

and it creates a branching:

Flat
model

F50010=0

F50010 =0
?

C2,1

F30020=0

F30020 =0 Single
model

A further sub-branching could be created by the other relative invariant F3,0,2,1,0, but

this is not the case. The following result establishes, by normal forms techniques,

Pocchiola’s characterization of the at model.

Theorem 9.2 In the branch F3,0,0,2,0 = 0 = F5,0,0,1,0, if M
5 ∈ C2,1 is homogeneous,

then all Gh,i,j,k,l = 0, and M coincides with the at model:

u = m+ 0 =
zz+ 1

2
z2ζ+ 1

2
z2ζ

1− ζζ
.

Thus, in this top-most (degenerate) branch, F3,0,2,1,0 = 0 is implied, suprisingly.

Next, in the branch F3,0,0,2,0 = 0 and F5,0,0,1,0 = 0, one can use λ ∈ C to normalize

F5,0,0,1,0 := 1, so λ = 1. The nal tree will be explained by the third theorem:

Flat
model

F50010=0

F50010 =0 1-parameter family
of models (Mθ)θ∈R

C2,1

F30020=0

F30020 =0 Single
model

Theorem 9.3 In the branch F3,0,0,2,0 = 0 and F5,0,0,1,0 = 1, three supplementary (real)

normalizations hold:

F6,0,0,1,0 := 0, so α := 0,

Im F4,0,3,0,0 := 0, so ρ := 0,

so that the isotropy is reduced to be zero-dimensional. Notably, a constant value for

F3,0,2,1,0 = − 15 is also implied.

Furthermore, abbreviating:

θ := Re F4,0,3,0,0,
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which is a free absolute invariant, all coefcients Fh,i,j,k,l ∈ C are uniquely deter-

mined in terms of θ ∈ R, as shown in [32], and the related 5 holomorphic vector

elds e1, e2, e3, e4, e5 have structure:

[e1,e2] = −

4
5
θe4 − 4e5, [e1,e3] = 0, [e1,e4] = 2e2, [e1,e5] = 2

5
θ e2 − 20e4,

[e2,e3] = − 2e2, [e2,e4] = 0, [e2,e5] = 0,

[e3,e4] = 2e4, [e3,e5] = 2e5,

[e4,e5] = 0.

This Lie algebra g has the derived series of dimensions 5, 3, 0, with:

[g, g] = Span


−

4
5
θ e4 − 4 e5, 2 e2,

2
5
θ e2 − 20 e4



.

These three vector elds form a 3-dimensional Abelian ideal a ⊂ g, whose value at

the origin 0 ∈ C
3 spans a maximally real 3-plane. This is coherent with Fels-Kaup’s

items (2a), (2b), (2c) in Sect. 6

10 Poincaré-Moser Normal Forms for Levi Degenerate Para-CR
Structures

As an epilog to our survey, let us devote the remaining paragraphs to explain how the

CR normal form of [35, 47] may be generalized to degenerate para-CR structures.

As before, consider a real or complex hypersurfaceM ⊂ C
3
x,y,z×C

3
a,b,c graphed

as:

z = Q(x,y,a,b, c) (0 =Qc),

withQ analytic, i.e. expandable in converging power series. We may assume 0 ∈ M,

i.e. 0 = Q(0, 0, 0, 0, 0).

Also, consider the local innite-dimensional Lie group of local biholomor-

phisms (9) which separate variables and parameters, but do not necessarily x the

origin. Dene Sym(M) to be those transformations which stabilize M, near the ori-

gin.

Innitesimal generators of Sym(M) constitute the following (local) Lie subalgebra

of the innite-dimensional Lie algebra associated to (9):

sym(M) :=


L = X(x,y, z) ∂x + Y(x,y, z) ∂y + Z(x,y, z) ∂z

+A(a,b, c) ∂a + B(a,b, c) ∂b + C(a,b, c) ∂c : L




M
istangentto M



.
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Our twomain (invariant) hypotheses ofLevi degeneracy andofdouble2-nondegeneracy

express in terms of Q and P as:













Qa Qb Qc

Qxa Qxb Qxc

Qya Qyb Qyc













≡ 0 =













Qa Qb Qc

Qxa Qxb Qxc

Qxxa Qxxb Qxxc













,

0 =













Px Py Pz
Pax Pay Paz
Paax Paay Paaz













.

We already know that in analogy with (5), the appropriate homogeneous model

writes:

MLC : z+ c =
2xa+ x2b+ a2y

1− yb
=: m(x,y,a,b).

The letterm here stands formodel. Since this model is invariant under the scalings:



x,y, z, a,b, c


−→


λx,y, λ2z, λa,b, λ2c


(λ∈C
∗),

it is natural to assign the weights:

[x] := 1 =: [a], [y] := 0 =: [b], [z] := 2 =: [c],

whence coordinate vector elds inherit opposite weights:



∂x



:= − 1 =:


∂a

 

∂y



:= 0 =:


∂b

 

∂z



:= − 2 =:


∂c



.

Then by taking inspiration from [34, 35, 37], the 10-dimensional simple Lie algebra

of innitesimal symmetries of the model:

g := sym


MLC



∼= so(5,C),

has 10 natural vector elds generators g = Span{L1, . . . ,L10} tangent to MLC, which

may be organized in a graded Lie algebra:

g = g
−2 ⊕ g

−1 ⊕ g0 ⊕ g1 ⊕ g2,

whose components are:

g
−2 := Span


∂z − ∂c


,

g
−1 := Span


(y− 1) ∂x − 2x ∂z + (b− 1) ∂a − 2a ∂c,

(1+ y) ∂x − 2x ∂z − (1+ b) ∂a + 2a ∂c


,
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with g0 = gtrans0 ⊕ giso0 :

gtrans0 := Span


xy ∂x + (y2 − 1) ∂y − x2 ∂z + ab ∂a + (b2 − 1) ∂b − a2
∂c,

xy ∂x + (y2 + 1) ∂y − x2 ∂z − ab ∂a − (b2 + 1) ∂b + a2
∂c



,

giso0 := Span

x ∂x + 2z ∂z + a ∂a + 2c ∂c,

x ∂x + 2y ∂y − a ∂a − 2b ∂b


,

while:

g1 := Span


x2 − yz− z)∂x +


2xy+ 2x


∂y + 2xz ∂z +


a2
− bc− c)∂a

+


2ab+ 2a


∂b + 2ac ∂c,


− x2 + yz− z)∂x +


− 2xy+ 2x


∂y − 2xz ∂z −



− a2 + bc− c)∂a

−



− 2ab+ 2a


∂b + 2ac ∂c

,

g2 := Span

xz ∂x − x2 ∂y + z2 ∂z − ac ∂a + a2

∂b − c2 ∂c

.

The objective is to normalize as much as possible the right-hand side power series:

z =


Qi,j,l,m,n xiyjalbmcn (Qi,j,l,m,n ∈C),

by means of split biholomorphisms (9). It is not difcult to show that any z = Q can

be put into the form:

z = − c+ 2xa+ a2y+ x2b+ xayb+ Ox,y,a,b,c(5).

Theorem 10.1 There exists a split-biholomorphism (9) xing 0 which normalizes the

submanifold of solutions to:

z = − c+
2xa+ a2y+ x2b

1− yb

+ 2 Re


x3b2 F3,0,0,2(c) + yb


3 x2ab F3,0,0,2(c)


+ 2 Re


x5b F5,0,0,1(c) + x4b2 F4,0,0,2(c) + x3a2b F3,0,2,1(c)

+ x3ab2 F3,0,1,2(c) + x3b3 F3,0,0,3(c)


+ x3a3 Ox,a(1) + a3yOx,y,a(3) + x3bOx,a,b(3) + ybOx,a(3)Ox,y,a,b,c(2).

Furthermore, the biholomorphism exists and is unique if it is assumed to be of the

form:

x  := x+ f2(x,y, z) y
 := y+ g1(x,y, z), z

 := z+ h3(x,y, z),

0 = fz(0), 0 = hzz(0),
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with similar conditions on ϕ, ψ, χ.

Here, eν(x,y, z) denotes a holomorphic function near the origin all of whose

monomials xiyjzk are of weight i+ 2 k  ν.

Equivalently, writing:

z = Q =


i,j,l,m0

xiyjalbmQi,j,l,m(c),

the normal form is dened by the general prenormalization conditions:

0 ≡Qi,j,0,0(c) ≡ Q0,0,l,m(c),

0 ≡Qi,j,1,0(c) ≡ Q1,0,l,m(c),

0 ≡Qi,j,2,0(c) ≡ Q2,0,l,m(c),

with the obvious exceptions Q0,0,0,0(c) ≡ −c,Q1,0,1,0(c) ≡ 2 and Q0,1,2,0(c) ≡ 1 ≡
Q2,0,0,1(c), together with the sporadic normalization conditions, listed by increasing

orders 4, 5, 6:

0 ≡ Q3,0,0,1(c) ≡ Q0,1,3,0(c),

0 ≡ Q4,0,0,1(c) ≡ Q0,1,4,0(c), 0 ≡ Q3,0,1,1(c) ≡ Q1,1,3,0(c),

0 ≡ Q4,0,1,1(c) ≡ Q1,1,4,0(c), 0 ≡ Q3,0,3,0(c).

Without the above conditions x  = x + f2, y
 = y + g1, z

 = z + h3

guaranteeing uniqueness, one can verify that a normalizing transformation is unique

up to the right action of the 5-dimensional isotropy group (at the origin) of the model.

To terminate this survey as it started, namely with the 3-dimensional case, consider

a submanifold of solutionsM3 ⊂ C
2
x,y × C

2
a,b:

y = Q(x,a,b) & b = P(a, x,y),

which is Levi nondegenerate:

0 =








Qa Qb

Qxa Qxb









⇐⇒








Px Py
Pax Pay









= 0,

modulo the split-biholomorphisms group:

(x,y, a,b) −→


f(x,y),g(x,y), ϕ(a,b),ψ(a,b)


=:


x ,y , a ,b . (13)

It is elementary to show that any suchM can be put into the preliminary form:

y = −b+ xa+ Ox,a,b(3).
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The sphere model has zero remainder:

MS : y = −b+ xa.

Natural weights being:

[x] := 1 =: [a], [y] := 2 =: [b],


∂x



:= − 1 =:


∂a



,


∂y



:= − 2 =:


∂b



,

the Lie symmetry algebra of the model:

g := sym


MS



= pgl(2,C) = g
−2 ⊕ g

−1 ⊕ g0 ⊕ g1 ⊕ g2,

is 8-dimensional with components:

g
−2 := Span


∂y − ∂b


,

g
−1 := Span


∂x + x∂y + ∂a + a∂b, ∂x − x∂y − ∂a + a∂b


,

g0 := Span

x∂x − a∂a, x∂x + 2y∂y + a∂a + 2b∂b


,

g1 := Span

(x2 + y)∂x + xy∂y − (a2 + b)∂a − ab∂b, (x2 − y)∂x + xy∂y

+ (a2
− b)∂a + ab∂b


,

g2 := Span

xy∂x + y2∂y − ab∂a − b2∂b


.

Proceeding quite similarly as in [16, 46, 64], one can prove

Theorem 10.2 There exists a split-biholomorphism (13) xing 0 which normalizes the

submanifold of solutions to:

y = −b+ xa+Q4,2(b) x
4a2 +Q2,4(b) x

2a4 +


i+l7
i2, l2

xialQi,l(b).

Furthermore, the biholomorphism exists and is unique if it is assumed to be of the

form:

x  := x+ f(x,y), y  := y+ g(x,y),

fx(0) = fy(0) = 0, gx(0) = gy(0) = gyy(0) = 0.

Equivalently, writing:

y = Q =


i,l0

xialQi,l(b),
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the normal form is dened by the general prenormalization conditions:

0 ≡ Qi,0(b) ≡ Q0,l(b),

0 ≡ Qi,1(b) ≡ Q1,l(b),

with the obvious exceptions Q0,0(b) ≡ −b and Q1,1(b) ≡ 1, together with the

sporadic normalization conditions:

0 ≡ Q2,2(b) ≡ Q3,2(b) ≡ Q2,3(b).
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2, 1305–1306
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39. Hachtroudi, M.: Les espaces d’éléments à connexion projective normale. Actualités Scientiques et

Industrielles, Vol. 565, Paris, Hermann (1937)

40. Hachtroudi, M.: Les Espaces normaux. 1. Les espaces d’éléments à connexion afne normale. 2. Les
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