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Abstract

Motivated by recent works in Levi degenerate CR geometry, this article endeavors
to study the wider and more flexible para-CR structures for which the constraint of
invariancy under complex conjugation is relaxed. We consider 5-dimensional para-
CR structures whose Levi forms are of constant rank 1 and that are 2-nondegenerate
both with respect to parameters and to variables. Eliminating parameters, such struc-
tures may be represented modulo point transformations by pairs of PDEs z, =
F(x,y,z,zx) & zxxx = H(X,V,2,2x, 2xx), With F independent of z,, and
F; ;. # 0, that are completely integrable DEF = Ay H, Performing at an advanced
level Cartan’s method of equivalence, we determine all concerned homogeneous
models, together with their symmetries:

D zy =307 & zux =0
(i) zy = %(Zx)z & zZyxx = (Zxx)3;
(ilia) zy = %(zx)b & Zxexr =2 — b)% with z, > O for any real b € [1, 2);
(iiib) zy = f(zx) & zxxx = h(zy) (zxx)?, where the function f is determined
by the implicit equation:
(zﬁ +f (Zx)2> exp <2b arctan—lz’ffb‘j’:((g)) ) =1+b
and where, for any real b > 0:
(0> = 3)zx — 4bf (zx)

h(zy) =
@) (f (x) — bzy)?
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1 Introduction

In [21], the second-named author and Sparling explored in depth the close rela-
tionships between the geometry associated with second order ordinary differential
equations defined modulo point transformations of variables, and the geometry of
three-dimensional Cauchy-Riemann (CR) structures, cf. also [12, 20, 22]. The goal
of this article is to explain how certain degenerate five-dimensional CR structures
give rise, analogously, to certain closely tied pairs of PDEs, and then, to find all the
concerned homogeneous geometries, by employing Cartan’s method of equivalence.

Using a purely Lie-theoretical method, in their 2008 extensive Acta Mathematica
paper [9], Fels-Kaup classified all homogeneous 2-nondegenerate constant Levi rank
1 hypersurfaces M> C C>. Such hypersurfaces are termed “Cy.1 hypersurfaces”, and
our pairs of PDEs in question are issued from them by parameters elimination (see
below), after complexifying and relaxing the invariancy under complex conjugation.

A decade ago, no Cartan-type reduction to an {e}-structure bundle was avail-
able for ¢, 1 hypersurfaces. Since then, the Cartan(-Tanaka) method was applied
by Medori-Spiro [15], and in a parametric way by Pocchiola, Foo and the first-
named author [6, 19], who found two primary (relative) differential invariants Wy
and Jy. The identical vanishing Wo(M) = 0 = Jo(M) characterizes flatness,
namely biholomorphic equivalence of M to the flat model which is graphed in
C s (zc,w) as Khw = (ZZ—i— 1220+ %Z%) / (1 = ¢%), which was set up by
the firt-named author and Gaussier [7], and which was shown by Fels-Kaup [8]
to be locally biholomorphic to the tube S? x iR} C C? over the future light
cone S? := {x e R3: x% + x% = x32, X3 > O}. Two recent prepublications [3, 10]
construct Poincaré-Moser normal forms for &€, ; hypersurfaces.

Because a forthcoming survey will expose more complete historical and synthetic
aspects, we now directly come to the heart of the matter, i.e., we start by presenting
the PDE systems studied in this article. Then we perform a precise description of the
contents of our contribution, relating it to CR and affine geometry.

Given a C® real hypersurface M> C C> of complex-graphed equation:

w = 0(z1, 22,21, 22, W)

obtained by solving for w a real implicit equation p(z1, z2, w, Z1, 22, w) = 0, one
can forget about complex conjugation, work over the field K = Ror K = C, and
consider instead, in coordinates (x, y, z, a, b, ¢) a so-called submanifold of solutions
McCK )Z(erl . xK 24;,1 . having two equivalent equations:

z = Q(x,y,a,b,c) and c = Pa,b,x,y,2).

One thinks that (x, y, z) are the variables, while (a, b, c) are the parameters. Two
Levi forms, with respect to parameters and with respect to variables, can be defined
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They are represented by two 2 x 2 matrices:

M _QCQxb+Qbec _PzPax+PxPaz _PZPa)'+PyPaZ
2 Q2 P2 P2
c c and z z
—0:0ya+0a0yc —QcQyb+0p0yc — P, Ppy+Py Py, —P;Ppy+PyPp;
0?2 02 P2 P?

Furthermore, these two Levi forms are linked in a way [17, Lm. 9.1] that guarantees:
rank Levip, (Q) = rank Leviy, (P).

As in [19], we will assume that the Levi forms have (common) constant rank 1.

Also, similarly as for CR manifolds, two nonequivalent notions of 2-
nondegeneracy, with respect to parameters and to variables, may be defined [17, Sec-
tions 15, 20]. They are expressed invariantly by:

Qa Qb Qc Px Py Pz
0# | Oxa Oxb Oixc and 0 # | Pax Pay Paz|.
Oxxa Oxxb Oxxe Paax Paay Paaz

As Segre did in [25], from the three equations:

= Q(x7y7aabvc)5 ZX = Qx(x7y7aab7c)5 ZXX = Q)Cx(x’yaavb’c)7

assuming 2-nondegeneracy with respect to parameters, we can solve (a, b, ¢) and
replace them in zy = Qy, Zxxx = Qxxx, Obtaining a completely integrable system of
two PDE:s:

iy = F(x,y,2,2x,2xx) &  Zyxx = H(X,y,2, 2x, Zax)- (L.1)

It is elementary to verify [17, Prp. 23.1] that the rank of the Levi form of the
submanifold of solutions is 1 if and only if:

0=PF

Zxx*

So we do assume that F is independent of zy,. It is also elementary to ver-
ify [17, Prp. 26.2] that the submanifold of solutions is 2-nondegenerate with respect
to variables if and only if:

0 # Frpz,
The degenerate branch F, , = 0 will not be studied in this article, and we will
constantly assume F; =0 # F, ; .
2 2
The graphed model inspired from [7], rewritten z + ¢ = %, conducts to

the model PDE system:
zy = 1@’ & zuw =0

In Section 2.2, we show that its Lie group of decoupled symmetries [14, 16]:

(x,y,2, a,b,¢) — ((X'(x,9,2),y(x,¥,2,7(x,y,2), d'(a,b,c),b(a,b,c),c (a, b, c)),

which are point equivalences of the PDE system, is isomorphic to SO(3, 2).
Passing to the general case, introducing the two total differentiation operators
pulled-back to the PDE system:

D:=3d+pd+rd,+Hd & A:=2d,+Fd +DFd,+ D*F,
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the complete integrability expresses as D3F = AH, and guarantees [16, § 1] that
the general solution is of the form Q(x, y, a, b, ¢).

Forgetting about submanifolds of solutions, we launch Cartan’s method by defin-
ing a 2-nondegenerate para-CR structure on a real 5-manifold M > (x,y, z, p,r)
associated with the above two PDEs (1.1) as an equivalence class of 1-forms modulo
point equivalences in terms of an initial coframe of (contact) 1-forms, together with
lifted 1-forms, “rotated” by an initial G-structure:

o' :=dz — pdx — Fdy, ! 0 0 0 0\ [
w? :=dp — rdx — DFdy, 62 f2pe? 4 0 0|]e?
w’ :=dr — Hdx — D?>Fdy, Bl=17 77 0 0]]
w* = dx, 64 20 0 pe?® f4 w*
o’ = dy, 6 0 0 f 1)\

Similarly to the CR case [6, 19], we perform several torsion normalizations, which
lead us to change the initial coframe on M into:

—1

! 0 0 O 0 !

’ 0 1 0 O 0 2
w (QH249H,—3DH,) H w

P r
a)3 —> - 18 Tr -1 0 0 0)3 s
w? 0 0 0 1 Fy o
a)S 3Fpp FI’I’prstzpp 0 0 Fppp Fppp FI’73FI%P a)s
18F2 3F171) 3F171)

pr

and we invariantly reduce the G-structure to only 4 parameters p, ¢, 2, f> — plus
one extra parameter | —, the bar having nothing to do with complex conjugation
except some analogy link with the CR computations in [19]:

ol 2 0 0 0 0 !
02 f2ope? 00 0 2

R ) @
93 = W T & 0 0 0)3
4 2 -9 4
0 f 0 0 pe 0 w

£212 2 —

o) 2 0 0 =Ltew) \f

After computational cleaning, we obtain our first result, which happens to be the
para-CR analog of [6, Thm. 13.1].

Theorem 1.1 On the bundle G° = M> x G* with M° > (x,y,z, p,r) times R* >

(o, 9, fa, ?2), there exist four 1-forms 1, 2, 23, Q4 with oL 02, 03 04 05, Qq,
Q2, Q3, Q4 linearly independent at every point which satisfy the following para-CR
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invariant exterior differential system:

do! = —0' A Q4+ 6% A 6%,

do? = 02 A (% — $Q) —0' A Q3+ 6% A 0%,

463 = 203 A 2 — 62 A Q3 + e;—;”llel Aot + 2102 A3

+8+03 (26¢f_213|5 + o152+ 2% 1) — 4e_¢f213) ANAS
dot = — 07 A 07 — 0 A (121 + ) — 0" A Qu,
d6% = —20% A Qo + 0% A Qu+ 120" A 0% — 551750 1 6]
i (260 7215 + (P + 2170 = 4e70 f217) 01 £ 65, (12)

where I', I?, I’ are explicit relative differential invariants on the base M :

1" = — & (9DH, 27D H, — 18DH, Hy + 18H, H, + 4H} + S4H, ),

40F3

2
12 — prp 45FPPFI7PPFPPPP + 9FppFPPPPP

54 ng
3= 2Fppp + FppHyr
3Fpp ’

and where (*)|; fori =1, ..., 5 denote directional derivatives along the vector fields
X; dual to 6*.

)

04

Single homogeneous model | Differential |
icontradiction

04

1.2
Zy= g%

Zxxx = Zxx

Flat model

1-parameter family i
icontradiction i
icontracicilon Zy=7Zxx

of homogeneous models
Zxxx =0

Developing the technique of Cartan in, e.g., [1, Chap. III], see also [2], we split
the study in two branches: I3 # 0 and I3 = 0. When I # 0, we show that one
can normalize p, ui, f 2, Then in the obtained structure equations, / 3| 5 becomes a
relative invariant. We show that /3|5 = 0 conducts to a differential contradiction.
When I3|5 # 0, we can also normalize ¢, f2, hence obtaining an {e}-structure on the
base M, cf. [19]. At first, certain 15 scalar constant curvatures appear, and by looking
at differential consequences of d o d = 0, they reduce to only one pair of solutions,
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with ¢ = %1, and we come to Maurer-Cartan type equations:
do' = o (=60 A 67+ 30" A 6% — 30" A 6%) + 07 A6,
d6? = ¢ (— 50! 62 =207 07 + 167 A 6" — 07 n0%) — 6! A6
+50' A0t — 10T A 67+ 6% A 6%,
6’

e(=50' A 0% +16% A 0% — 167 £ 60%) + 107 A0t — 162 n 6%,
do* = ( Lot A%+ 10T A 0% + 403 Ao — 194/\95>—92/\95,
d65 = & (50" 67 +207 6 — ot n67).

Next, in the branch I3 = 0, the equations (1.2) become:

do! = —0' A Qp + 6% A 6%,

do? = 02 A (Q — 1Q1) —0' A Q3 + 07 A 6°,
63 = 203 A92—92AQ3+%’1191 A
do* = =07 A 0% — 0 A (31 + Q) — 0" A Qu,
46° = —20° A0 + 6% A Qu+ 2120 A 62

Here, I' and I? are relative invariants. _

In the sub-branch 72 # 0, we first normalize p, uy, f 2 Then I 2|5 becomes a
relative invariant. We show that /2|5 = 0 leads to a differential contradiction. When
1 2|5 # 0, we can also normalize ¢, f 2 hence obtaining an {e}-structure on the base
M, cf. [19]. At first, certain 12 scalar constant curvatures appear, and by looking
at differential consequences of d o d = 0, they reduce to one pair of 1-parameter
solutions and we come to Maurer-Cartan-type equations, parametrized by any s € R,
again with ¢ = +1:

o' = —¢ (91 A3+ 6! /\95) N

o2 = 8(591 /\92—92/\95) — 50" AO* + 63 A0,
63 = 8(91 /\94—93/\95) — 9l A g% — 507 A O,
do* = 8(—s91 A+ 63 /\94> 501 A 0% — 62 A5,
oS = e(—el AO* 463 /\95> +0' A6+ 502 A 0%,

Lastly, when / 2 = (), we show that I = 0 too necessarily, and we show that the
structure equations are those of the model z, = }t (Zxx)2 & Zxxx = 0. The diagram
above summarizes these explanations.

By general features of Cartan’s method, all obtained para-CR structures are
pairwise not equivalent.
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To conclude, by setting up the PDEs associated to para-CR submanifolds of solu-
tions inspired from Fels-Kaup’s list [9], we realize all these homogeneous models as
stated in our main

Theorem 1.2 Homogeneous models for 2-nondegenerate PDE five variables para-
CR structures are classified by the following list of mutually inequivalent models:

() zy =30 & zow=0;
(i) zy= %(Zx)z & Zyxx = (Zxx)?’;
2
(illa) zy = ;ll(zx)b & Zpxx = 2 — b)% with z,y > 0 for any real b € [1, 2);

(ib) zy = f(zx) & Zyxxx = h(zx) (zm)z, where the function f is determined
by the implicit equation:

(zﬁ + f(zx)2> exp (Zb arctan%) = 1+b?

and where:
(b* —3)z, — 4bf (zx)
(f(z2) — bzx)?

h(zy) =
for any real b > 0.

Our explorations can certainly be generalized to higher dimensions, cf. [23, 24] in
a CR context.

The body of the paper is devoted to provide a streamlined exposition of our
Cartan-type techniques. In Section 5, the reader will find the Lie algebras of point
symmetries of these models (i), (ii), (iiia), (iiib).

To end up this introduction, recall that the complete classification of A3(R)-
homogeneous surfaces S C R? was terminated by Doubrov-Komrakov-Rabinovich
in [4], and re-done by Eastwood-Ezhov in [5], who used the power series method.
The full classification includes that of Asz(R)-homogeneous parabolic surfaces

Fyx F, xy
. e . . . . . Fyx Fyy . .
classification lists contained in [4, 5] are in accordance with our main Theorem
1.2. The last Section 6 compares these classifications and shows that, surprisingly,

Cartan’s reduction gathers a scattered number of models into just one family.

{u = F(x,y)}in R? having Hessian matrix ( ) everywhere of rank 1. The

2 Preliminaries

2.1 Five-Dimensional Para-CR Manifolds with Levi Form Degenerate in One
Direction

A 5-dimensional CR manifold whose Levi form is degenerate in precisely one direc-
tion, and which is not locally CR-isomorphic to a product of a 3-dimensional CR
manifold times C , is called 2-nondegenerate at a generic point. It is well known that
the flat model for 5-dimensional 2-nondegenerate CR manifolds, is a “tube over the
future light cone” [11], and as such can be embedded in C? with coordinates (x,y,2)
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as:
x4+ + O -Pz—2)=0. (2.1)

This CR manifold is flat in the sense that it has maximal group of local symmetries
among all 5-dimensional 2-nondegenerate CR manifolds. This symmetry group is
isomorphic to SO(3, 2). In other words all 5-dimensional 2-nondegenerate CR mani-
folds are described in terms of a Cartan reduction to an {e}-structure, with flat model
having Maurer-Cartan equations of the Lie group SO(3,2), and a CR manifold is
locally equivalent to the fube over the future light cone if and only if the curvature of
this connection identically vanish [15, 19].

In this paper we will study a para-CR version of 5-dimensional 2-nondegenerate
CR manifolds. As explained in details in [14, 16] a geometry of para-CR manifolds
is closely related to the geometry of certain systems of PDEs. To see this consider
the tube over the future light cone (2.1) and think about variables (x, y, z, X, y, Z) as
being real, i.e., (x,y,2,X,y,2) € R® = R3 @ R3, where we have put a bar over the
second R? in the summand, to emphasize the difference between the real variables
(x, v, z) and the real variables (%, y, 7).

Treating (x, y, z, X, ¥, Z) in (2.1) as real, we solve this equation for z obtaining

=12
P A 2.2)
y—y
And now we interpret this expression as a defining formula for a 3-parameter family
of functions z = z(x, y; X, ¥, z) on the plane (x, y), with (x, ¥, z) enumerating the
members of the family. We calculate the derivatives z, z, and zy., and observe that
regardless of (x, y, z) we have

Ty = le(ZX)z & Zyxx = 0. 2.3)

Conversely, a system of PDEs on the plane (2.3) for the unknown z = z(x, y) has
(2.2) as its most general solution. Already in 1937, Hachtroudi [13] studied similar
PDEs.

Para-CR structures associated with the system of PDEs defined in the title of
this article and, in particular, the para-CR structure associated with the system (2.3),
according to Definition 2.3 from [14], is of type (1, 2, 2), i.e., is defined in terms of
an equivalence class [(w', ®?, >, w*, @)] of 1-forms on a 5-dimensional manifold

M such that:

o' Ao? A0 Aot A @’ # 0 at each point of M,
two choices of 1-forms (a)l, o?, @, o, a)5) and (J)l, %, @, &, 5)5) are equiv-

alent iff there exist real functions f, fi, fi. with i,j = 2,3,4,5, such

3

js

that:
&' fF 0 0 0 0\ /(o
(I)l f2 f22 f23 0 0 0)2
o' =125 0 0[] 2.4)
ol f4 0 0 f44 f45 (,()4
CZ)] f5 0 0 f54 f55 a)S

with of course f(f22 £33 — f23£22)(faf3s — f45£74) #0,
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e in addition, some (hence every) representative(s) (@Y, @%, @3, &%, &) of the

equivalence class [(@!, @2, w3, ?, ®°)] must satisfy integrability conditions

2

do' Ao' A@* A D =0,

do? A @' A @* A& =0,

do’ A ' A D* A& =0,

do' A @' Ad* A @ =0,

do* Ad' AP A D =0,

d’ Ad' Ad* A @ =0, (2.5)
hence defining two integrable rank 2 distributions D; = (o', w?, @)+ and

D, = (a)l, o, a)5)l on M.
A para-CR structure has the Levi form degenerate in precisely one direction if and

only if in the class of forms (2.4) there exists a representative (@', @2, @3, &%, @)

such that
do' ro' =@* Aot A

In the case when a para-CR structure has a Levi form degenerate in precisely one
direction, it is 2-nondegenerate if and only if in the class of forms (2.4) there exists a
representative (c?)l, %, @, 6)4, &)5) such that

do' Ao =’ Aot Ad & da* Ad' Adt £0.

Given a PDE system (2.3) one can consider a 5S-dimensional manifold M of second
jets for the function z, parameterized by (x, y, z, Zx, Zxx), and define 1-forms

&' = dz — zedx — 1(z,)*dy
@ = dzy — Zyedx — 32,20xdy
57 = dzxy — 5 (2xx)*dy
* = dx
S = dy. (2.6)

One can easily verify that they satisfy the integrability conditions (2.5). Thus, they
define a (1, 2, 2) type para-CR structure on M by considering all five-tuples of 1-

forms (a)l, o, 0, w?, a)5) given by
o! f 0 0 0 O !
602 f2 f22 f23 0 0 5)2
A= P2 0 0@, 2.7)
604 f4 0 0 f44 f45 5)4
a)S f5 0 0 f54 f55 5)5

with arbitrary functions f, f' f’ j on M such that
P22 = L2320 s = fA5 20 #0. 2.8)

As explained in [14] this para-CR manifold describes the same differential geometry
as the system of PDEs (2.3) considered modulo point transformations of variables.
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2.2 The Flat Model and Its EDS

Let (&', @2, &, @*, &) be the forms (2.6) defining the para-CR structure corre-

sponding to the PDE system (2.3). We use an equivalent representative of these forms
given by

w! -1000 0 !
> 01000 »?
l=]100-10 0 o,
ot 0001zt
@ 0000-1)\&
ie.,
1 1 2

o = —dz + zydx + z(zy)°dy

a)z = dzx - Zxxdx - %szxxdy

(1)3 = _dex + %(Zxx)zdy

0)4 = dx + %Zxdy

605 — —%dy. 2.9

They satisfy the system:

do' = &* A o*

do’ = zma)2 Ao+ o Ao
3 3 5

dw’ = 2z,x0” A @

do* = —0* A @ —zxxa)4 A@

dw’ = 0.

These equations show, in particular, that the para-CR structure defined by the PDE
system (2.3) has the Levi form degenerate in precisely one direction and that it is
2-nondegenerate.

For reasons which will be clear in the proof of Theorem 2.1 it is convenient to
define the following auxiliary 1-forms:

w1 =0, Wy =700, w3 =0, w4 =0, ws=0. (2.10)

Although majority of these forms are vanishing, they will not vanish in the case of a
general system of PDEs defined in the title of this article.
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With these auxiliary forms the system of ten 1-forms (a)1 02, w3, 0t W, wi, W7,

w3, w4, ws) on M satisfies an EDS:

do' =a)2/\a)4—w1/\w1
dw? =w3/\w4+w2/\(wz—%w1)—wl/\zm

dw’ =2(1)3/\ZD'2—602/\w'3

do* = —szwS—w4A(%w1+wz)—a)1AW4
do’ = —2w5/\wz+a)4/\w4

do; = —w4/\w3+w2/\w4—wl/\ws

dop = —a)3/\a)5—%a)4/\ZU3—%a)2/\w4

dos = —(%w1+wz)AW3+w3/\ZU4—%a)z/\zzg

dowy = (wz—%wl)/\ZU4+a)5/\w3—%a)4/\W5

dws = —w A ws + 23 A 4. (2.11)

Now we consider the most general forms defining the para-CR structure correspond-
ing to the PDE system (2.3). These are

o1 F 0 0 0 0\ /(o
2 220 0 0 f]e?
B l=|r2rs 0 0 o’ |, (2.12)
94 f4 0 0 f44 f45 61)4
95 f5 0 0 f54 f55 wS

with (0!, @?, 03, *, ®°) as in (2.9). These forms live on a (5 + 13)-dimensional

bundle M x Gy — M, with a group G = (GL(2, R) x GL(2, R)) x R’ consisting
of all matrices of the form:

£ 0 0 0 O
22 fs 0 0

S=1|73f3% f3 0 0 | such that det(S) # 0.
40 0 £ fts
70 0 f4 f3

Theorem 2.1 The para-CR structure [(a)l, o2,

, w*, )] defined on M by a rep-
resentative (a)l, o, &, ot & ) as in (2.9) locally uniquely defines a 10-dimensional

principal bundle G = M x G — M, with a 5-dimensional Lie group G consisting of
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all matrices of the form

d . e ® (s§+r4u)
r 2r3

‘M|r4|

0 re ® 0 0 0

u=| o se? 1o =, (2.13)
0 s2e~? s e ef(si—rtu
2r3 r2 r 2r3

0 0 0 0 re
and a rigid coframe (91, 0%, 63,04, 03, Q1, 2o, 23, Q4, Q) on G satisfying:

do! = 02 n0* —0' A Q

d0? = 3 A0+ 02 A (2 —1Q1) —0' A Q3

do =203 A — 62 A Q3

d0* = =07 A 0% —0* A (3 + ) -0 Ay

do’ = —20° AQ + 6% A

Q) = —0* A+ 02 A Qs — 60" A Qs

A = —0° A 0% — $0% A Q3 — 102 A Qy

dQ3 = —(3Q1 + ) A Q3+ 07 A Qs — 1607 A Qs

dQs = (0 - 1Q) A Qs +6° A Q23— 10% A Qs

dQ2s = —Q1 A Qs + 293 A Q4. (2.14)

Proof The proof of this theorem follows from the observation that the forms (!, »?,

a)3, a)4, o, W, T, w3, W4, ws) satisfying the EDS (2.11) constitute a pullback

%wl — ) —%ZD'5 w4 0)5 0
! —%zm —w ot 0 »
B = ? —w3 0 »* —wy
®? 0 — w3 %wl + o —1w5
0 »’ —w? ! —%wl + oo

to M, by an identity section o : M — G, of a flat s0(3, 2)-valued Cartan connection

- 195 Q6 0
o' —Ilo - o 0 6’
w = 62 —Q3 0 04 —Qy (2.15)
63 0 —Q3 1+ —3Ds
0 03 -2 o' i+
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on the bundle G 2 M. The relation between the pullback B and the Cartan
connection w is given by

wo=U-7*B)-U'—du -U"!, (2.16)

with U given by (2.13). On the identity section we have U = id, and @ = B. Relation
(2.16), when written component by component, gives

gl P2 0 0 0 0 !
92 Sz reZ’ 0 0 0 a)2
Pl=| &% = 0 0 |- |1,
6* 5 0 0 re? 0 ot
63 _3 _fe? -2 5
32 0 O — e o
and
Q) :&—ur2 1—@ 2+Se_¢w4,
r r r
S5 se? 5 S 4 4 5
Q) = _d¢+ﬁw +§ﬂ) +7w + Zyxw,
ds s dr | 1 e?(s5 + r'u) 5 Se2 3 e ?s2 4 STxx s
Qg:r—z——z(dzb—i——)—isuw—Tw—r—zw—}— 2r3a)+r2w,
ds 5 dr 52e? e (55 — rtu) e 20 (s + e2?57,,)
Q= —+—=(dp— — ) —Lsu0' — Z—0o? wt — 2w,
4 rz 2 ( ¢ ) 2 2r3 2r3 r2
2udr  2ssd¢p  sds  sds
Q5 = —du — + IT }"T - I‘T
se? 26 52 —9, se=20 (s 4 2e2%5
12,200 4 se uw2+ e?s w0 — e vuw4_ se”?(s +2e vzxx)ws'
r4 r r4

In these expressions the forms (w!, w?, w3, w*, @) are as in (2.9). Check, in
particular, that on the identity section given by r = 1, ¢ = 0, f = 0, f =
0, u = 0, the forms (01,92, 03,04, 93, Q1, Q22, 23, Q4, Q25) become respectively
(@', 0%, 03, 0" &, w1 = 0,07 = 750, @3 = 0,4 = 0, w5 = 0), which
explains why we introduced the forms w; in (2.10).

The fact that the above coframe (61, 02,03 6%, 05, Q, Q, Q3, 24, Q5) on G

satisfies the EDS (2.14) is equivalent to the following equality
do+wAw=0,

satisfied by the Cartan connection w. This can be checked by a direct calcula-
tion using the explicit expressions for (61, 62, 63, 0%, 07, Q1, Q>, Q3, Qu, Q5) given
above.

Thus, the Cartan connection w given by (2.15) is flat, and the s0(3, 2)-valued
1-form w can be interpreted as a Maurer-Cartan form on the group SO(3, 2). The
Cartan bundle G — M is then identified as a realization of the homogeneous model
G — SO(3,2) - M = S0O(3, 2)/ G, which has a natural para-CR structure related

to forms (a)l, a)z, a)3, a)4, @’ ) being in the same equivalence class as the respective
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descendent forms (01, 9%, 63, 04, 95). Obviously this structure has SO(3, 2) as its
group of symmetries. O

3 Nonflat Case; Four Basic Invariants

Now we generalize the flat example of Sections 2.1-2.2 to systems of PDEs on the
plane of the form

2y = F(x, 9,2, Zx, Zxx) &  zxxx = H(X, ¥, 2, 2y, Zxx)- (3.1
We introduce the standard notation
P=2x, =2y, T =Zxx,
i.e., we have
zy=F(x,y,2,p, 1), &  zxxx =Hx,y,2,p,7).

We note that for this system of equations to be equivalent to a 2-nondegenerate para-
CR manifold we have to assume F, = 0 and F),, # 0. In addition, this system
is of finite type, or, what is the same, its general solution can be written as z =
z(x,y;X,¥,2), if and only if D3F = AH, with

D =0, + pd; +rd, + Ho, & A=8y+F8Z+DF8p+D2F8r. (3.2)
From now on, we consider only systems (3.1) satisfying
F. =0, & Fpp #0, & D*F = AH. (3.3)

We now define a 2-nondegenerate para-CR structure on a 5-manifold M associated

with the equations (3.1), (3.3) by introducing an equivalence class of 1-forms as in
3

(2.7)~(2.8), but this time with forms (', w?, w*, w*, ) given by:
w' = dz — pdx — Fdy
w? = dp —rdx — DFdy
w® = dr — Hdx — D*Fdy
ot = dx
o = dy. (3.4)

These forms live on a manifold M parameterized by (x, y, z, p, r), which is the 5-
dimensional manifold of second jets for functions z = z(x, y). The differentials of
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the initial forms are as follows:
do' = —F.o' Ao —0® Ao* — Fpa)2 A,
do’® = —DFZa)1 Awd — (DF, + Fz)a)2 Ao’ — 0P Aot — Fpa)3 A,
do’ = —Hza)1 Aot — (DDF; + Fsz)a)1 Aw — Hpa)2 Aot
+3(DF,H, —3DF. — AH, + DH,F, — 3F,H,)0’ A &’ — H,0® A "
—(DFy+ F, + FyH)o’ A,
do* = 0,
do’® = 0. (3.5)
Here we introduce abbreviations such as A H,, or DD F, and abbreviations analo-
gous to them. They mean:

AH, = A(3,H) and DDF, = D(D(d,F)).

Definition 3.1 A 5-dimensional para-CR structure related to the point equivalence
class of PDEs (3.1) satisfying (3.3) via the representatives (3.4) will be called PDE
five variables para-CR structure.

Now, till the end of this Section, will adopt the convention that if f is a differ-
entiable function on M, then its coframe derivatives will be denoted by a subscript
running from 1 to 5:

df = fio' + fza)z + f3w3 + f4w4 + fSwS,

ie.,
adf
fu= 5o

Now we consider the most general forms (8!, 62, 63, 6%, 3) defining the same para-
CR structure:

pw=1,...,5. (3.6)

o1 0 0 0 0\ [
02 f2pe? 4 0 0|]e?
Bl=1rr 7 o oll?]. (3.7
04 20 0 pe? 4|t
95 JFS 0 0 f6 JF7 ws

and view them as lifted I-forms on the bundle M x Gy — M, where

L0 0 0 0
2 pe? 40 0
GO:{GL(S,R)aS: S5 0 0|, wit
f:z 0 0 pe_*‘b f“
f5 0 0 f6 f7
LT P eR p > 0}.
(3.8)
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We force the lifted 1-forms (9l 02,03, 04, 95) to satisfy a nonzero curvature ver-
sion of equations (2.14). In particular we want the forms (91, e, 95) to satisfy the
first five of these equations:

E1=d91—(92/\94—91/\91>— RRT AN

1<i<j<5

2=d0? (B n0t 0 A (- bR -0 ARs) = D el a6l
1<i<j<5
(293/\92—92/\Q3>— DRI
l<i<j<5
4 _ 4ot — (9% 94/\(%91+Qz)—91AQ4>— DRI
I<i<j<5
S=d0° (<205 A0 AR - Y e A6, (3.9)

1<i<j<5

with “torsions” #' jx as “minimal” as possible. Although an ultimate goal would be
to find a unique way of normalizing these torsions in such a way that the resulting
system for the forms (CLNY) ) describes a curvature of an so(2, 3) Cartan connection,
we are not that ambitious here. Our aim is to find all pairwise locally nonequivalent
homogeneous models for these para-CR structures, so we are happy with any set of
normalizations allowing to achieve this task.

Actually, in the following we will require that the forms (6', €2,,) should be lin-
early independent at each point, and that they should satisfy equations (3.10) with
thij =15 =14 =0foralli,j = 1,2....5 and *1p = 15 = 1334 = 1725 = 0,
and 13 ijj =0forall3 <i < j <5, as well as t513 = t154 = t5,~j = 0, for all
2 <i < j < 5 with an exception of t545 # 0. This means that we will require that
our invariant forms will satisfy the following restricted form of equations (3.9):

E' = do! - (92/\94—91 /\Ql>
E? = do? — (9 AO* £ 02 A (R — b Q])—Ol/\Q3)
(293 A — 02 A 93) 3130 A6 — P140" A0 — 13362 A O30
B = do* — (=02 A 07 —6* A (31 +22) — 0 A Q)
ES = do° — ( 205 A Q2 + 6% A 94) —5120' A — 13130 AO% — 15450 A O°.
(3.10)

Note that we additionally require an equality of the coefficients at 6! A 63 in d6>
and at 0! A 67 in do°.
We have the following theorem.
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Theorem 3.2 The torsion normalization equations (3.10) define the forms
0',62,6°, 6% 6% as

ol -1 0 0 O 0 ol
02 0 1 0 O 0 o2
(2H?+9H,—-3DH,) H,
Bl=s |7 m  3-10 0 o |,
g4 0 0o 0 1 Fp ot
5 3Fpp Fpppp=S5Fppp Fopp  FpopFp=3Fp, 5
0 lgng O 0 3F]7p 3F]7p @
with the matrix S given by
p2 0 0 0 0
2 ¢
f pe? 0 0 0
2\2 2.0
S = —(593 fpe e 0 0 ) (3.11)
20 0 pe® 0
_(H? —fre? 29
22 0 0 -5 e
The nonvanishing torsions 314, 1393, 210, t545 read.:
3¢
4= 77
-3¢
t512 = ;7?3,
-¢
103 = 5,C,
¢ ~
P45 = 5C,

where
A = —1O9D?H, —21DH, — 18DH, H, + 18H,H, + 4H} + 54H.),
40F;,, — 45Fpp Fppp Fpppp + 9F§prpppp

B — ppp
2F3, '
C = 2Fppp + FppHrr,
F[’P
G- (DF, + F;)C — F,C4 + C5.
2F,,

The vanishing or not of each of the quantities A, B, C, C is an invariant property of
the corresponding para-CR structure.

The forms 21, Q2, 23, Q4 are given explicitly in terms of the defining functions of
the para-CR structure, their derivatives, fiber variables (p, ¢, f>, f2), and one new
real variable, which we call uj.

Proof We use the normalization equations (3.10).
We first impose equation

0=E'A0'=(@@0' =02 no*) A0
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This immediately gives
f4 =0, f4 — Fppe_¢, fl — _102
in (3.7). Then we go to impose

0=E>A0"A0%=(d0* - 03 AOY) A B AB2,
0=E*A0"A0% = (d0* —0° AO%) A O ABY,

which additionally gives

== & fl=—Fe @ +F,f°
in (3.7).
After these normalizations we have (3.7) in the form
6! —p2 0 0 0 0 !
62 f2 pe? 0 0 0 w?
93 — jiS f6 —62¢ 0 0 61)3
64 Jiz 0 0 pe__¢ pe~? Fp o*
03 0 0 f° —e2F,,+ f%F,) \&

Now we impose the first equation
0=E'=d0' — 0> r0*—0' A Q).

This defines the 1-form €2; as:

(3.12)

(3.13)

) 2 76 1 3¢ 2¢
F.e%F F

Q) = 2dlog(p) — u16' + 102 + (—f—2+¢) o4 — eF—zeS. (3.14)
pp

0? o o Fpp

Note that to define this form we needed to introduce a new variable u|.
Thus we have normalized our forms (6', €2,,) in such a way that

do' =62 A o* — 0! A Q.
Let us pass to the equations EZ = 0 and E* = 0. We first impose
E>n0'=E*nol =0

It is easy to check that this is equivalent to

Q = —d¢ +u0' +

202 2Fp,
3f2F,, + pe’? fSQDF, + F,) + 2pe *F
_ pp TP p T Iz P PP o4
2Fppp? .

Now it is easy to solve for €23 and €4 from

0=E?=E"
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This gives
d
P
A7

where we have indicated that both of these forms are given modulo an addition of a
term proportional to 6! by introducing new variables u3 and u4.
Next we impose
0=E>n0"AO? = E> 0" A6

This gives
2.0 _ e—¢ F —2¢
A v A AL 2op” (3.15)
1) Y pp
in (3.7).
Now,

0=E>A0'=En0',

gives 1353 and 1745 precisely as in the thesis of the theorem. It also gives that:

22 _ )2 SF2, —3F,,F,
= - —e¢(3DH,—9H,—2H?) & f°= U7 L 20 2%bon = 2T oree
202 18 202 18 F2,

(3.16)
Finally,

0=E=FE

gives 1314 and 171, precisely as in the thesis of the theorem. It also gives an explicit
formula for 7313, u2, u3 and us. In particular,

. ficet Gt T
13 = 603 + 6p3 - ?,
with a function T on M having a property that it vanishes when C = 0. It is also
worth mentioning that in the obtained formulas u; depends on the para-CR structure
and the variables (p, ¢, f2, f), and u3 and u4 depend on the para-CR structure and
the variables (p, ¢, f2, f_z, up).

Note that with the normalizations (3.12), (3.13), (3.15) and (3.16), the matrix S
bringing the forms (a)l, w?, w3, wt, a)s) to (91, 62, 93, 94, 495) becomes precisely as
in the thesis of the theorem, provided that we change fiber coordinates according to
(f2 ) = (=2 =), )

The relation between relative invariant C and C together with its coframe deriva-
tives, is a consequence of integrability conditions (d> = 0) for the system (3.5) and,
in particular, the condition that d2 H. =0.

This finishes the proof. About the Monge invariant B, see [18]. O

(3.17)

An immediate consequence of this theorem is the following
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Corollary 3.3 It is always possible to force the lifted coframe (01, 6%, 63, 6%, 0°) of
a PDE five variables para-CR structure to satisfy the following exterior differential
system:

do' = —6' A Q; + 62 n0*

do? = 0 A (22— 1) —0' A Q3+ 6% A 0!

463 = 293A92—92AQ3+Q91A93+2§j3

Aot = 02 A0 -0 A+ Q) -0 Ay

e 3% 1 2 1 5, ¢ ~Ap4 5

27,0339 ANOT+ Q0 AD +§C9 NG,
(3.18)

AB' NG+ S CO NG

do® = 200 AQ + 6% A Qu +

Here, the functions A, B, C and C are functions on the base manifold M, where the
para-CR structure is defined, and are obtained in terms of the functions F and H
defining the para-CR structure and their derivatives, i.e., they do not depend on the
fi3ber coordinates (f%, f%, p, #). The function Q depends on fiber coordinates as
t?13in (3.17).

4 Cartan’s Reduction: Homogeneous Models
4.1 New Notation and the Relative Invariants

Corollary 3.3 assures that by means of transformations (3.7) we can always bring the
initial 1-forms (a)l, %, @3, a)4, w5) defining our PDE five variables para-CR struc-
ture via (3.4), into an equivalent set of 1-forms on a para-CR manifold M satisfying

the following EDS:

dwlz—wl/\w1+w2/\w4
2 1 2 1 3 4
do” = —w N3+ 0" A (T2 — 301) t @ A
do’ = —? Aoy +20° Awn + V o' A’ + 1M o' A o* + 1P 0? A W?
da)4=—wl/\w4—w4/\(w2+%w1)—w2/\a)5

do’ = * Aoy =200 Ao+ IP0' A? +V 0! A + 10 A, “.1)

with some set of auxiliary forms (w1, @y, @3, @4) and certain func-
tions V, I', 12, I® and I* on M. For this it is enough to take a
section o = (f2 =0,f>=0p= % ¢=0,u; = O) of this bundle
over M which is described in Corollary 3.3, and to take the o pull-
backs of the forms (9],02, 93,04, 03, Qr, 2, 023,R24) as the forms
(a)1 , w2, @, 0, @, wy, o, w3, @4) in the EDS (4.1). In terms of this pullback the
functions 1!, 1%, I3, I* become the respective relative invariants A, B, C, C of the
considered para-CR structure.

Due to Corollary 3.3 the system (4.1) can be also interpreted as the structural
EDS for any PDE five variables para-CR structure on a nine-dimensional bundle

G° — M over the para-CR manifold M, where all the nine 1-forms (o', @?, @, w*,

@ Springer



On Degenerate Para-CR Structures: Cartan Reduction...

w’, w1, o, w3, wy) are linearly independent, and the functions V, I', 1%, I3, I* are

functions on the bundle. For this think about (a)l, o, @3, a)4, a)s, wy, W, W3, W4)
36 “3p
as (01,02,03,0%, 0%, 1, Q, 3, Q),andof V, I, 1%, 13, [* as O, ;77/4, ;773,

%C, %C’ in (3.18), respectively.

In the following we will use the para-CR structural system (4.1) having in mind
both of the above interpretations. Essentially every argument we will give can be
interpreted either in the first or in the second way. It is a matter of convenience
to choose one of them. For example, in this section, we will adopt the following
notation:

Consider a differentiable function f as a function on the bundle G°, i.e., use
the second interpretation. Its differential decomposes onto the basis of the 1-forms
(a)l, o, @, ot o, w|, Wy, W3, W4) ON G° and we denote the coefficients of this
decomposition as:

df = ﬁ1a)l+f|2w2+f|3w3+f|4w4+f|5w5+(. oo+ D)+ D)oL ) o

4.2)
We especially do not assign particular notation to the dotted coefficients, because
once the notation for the coefficients at w* is set, the dotted coefficients follow from
d? = 0 applied to the system (4.1) and to f.

Thus, in the bundle G° interpretation, the symbol fi denotes the directional
derivative of f in the direction of the vector field X ,, which constitutes the yu com-
ponent of the basis of vector fields (X1, X2, X3, X4, X5, vyl v2 vs3, Y4) dual to the
coframe (a)] w2, @, e, Q1 , Q, ©4) on go.

On the other hand, if we interpret the system (4.1) directly on M, the introduced
notation (4.2) for d f, does not mean anymore that, e.g., f3 is the coframe ? deriva-
tive f3 of f, but that it is a corrected coframe w> derivative by the terms coming
from the dotted coefficients standing at @® parts of w;s. This happens because now
the forms eo; are linearly dependent on w*s.

Anyhow, it turns out that when compared with the notation for d f introduced in
(3.6), the new notation, as in (4.2), considerably simplifies the formulas we are going
to derive in this section.

So now, having both interpretations of the system (4.1) in mind, and knowing
that it encodes all the structural information about an arbitrary PDE five variables
para-CR structure, we consider it as an abstract exterior differential system, and
we will close it, namely apply the condition d> = 0, as far as it is needed for
our purposes, obtaining in particular information on the derivatives of the structural
functions 7!, 12, 13, [* and V.

This leads to the following statement.

Proposition 4.1 The differential consequences of the system (4.1) are:

do! :—wl/\w1+a)2/\w4
2 1 2 1 3 4
do”™ = —w' A3+ 0" A (D — 5301) + 0" A
do’® = —a)z/\w'3 ~|—2a)3 Ao + %(2I3|4+I3‘52)w1 A

+I'o' Nt + P o Ao
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do* = —wl/\ZU4—w4/\(af2+%w1)—a)2/\w5

do’ = * Aoy =20 Ao+ P 0! A w® + %(2I3|4+I3|52)a)] A

4 5

—%13‘5a) A . (4.3)

drt = Il|1a)1 +Il|2a)2 -I—Il|3a)3 +11‘4a)4 — %]lwl —SIIWQ
dr* = 12|1a)1 + 12|2(1)2 + 12|4a)4 + 12‘5605 — %IZZIH +312w2
A} = Pho' + Ppo® + Ppe’ + Puo* + Piso® — 1 Po) + Pos, (4.4)

do; = a)l/\ZU5+a)2/\W4—a)4/\w3

doy = —%130)1 A w3 — %I3|5a)1 AWy — 2w2 AWy — %a) A w3+
%(13\522 +2P 1 — 8% 5)0" A0 + ﬁ(13\523 +2P )0 Ao’ +
ﬁ(gllm — Pisos — 2 o' Aot - %(13\525 +2Pus)o' Ao +
%(13‘52—2]3‘4)a}2/\a)4—%13‘560 Ao 4+ Pa® Aot — o A

dwos = @3 A (%wl + wy) + é(2[3‘4+1 ‘52)0) A @3+ ZI ? AN @3+
é[3‘5a)2/\LU4+%a)z/\w5+w3/\ZU4+Jla)l Aw?+
1@ +41° ) = 2P — Pisp)o' Ao’ + (' = T'p)o' Aot +
o' A — %(213|43 + 13\523)502 A + %(13\524 — 8[1|3 —1—213‘44)502 Aot +
16(21 s + P j525)0” A @ 8(213\4+13|52)w Ao’

doy = oy A Gt —o2) + QP 4+ Pisp)o’ Aoy — 1P0* Aos —
%13‘5w4 A g + %a)4 A @5 + @ A w3 +
1%3 (16(13\14 —I'PR)+ 8501 — '3 + 2P P + l313|524> o' Aot +
QP+ PP 5o Aw? — Po' Ao’ + £ B1%5 =2 — Pisn)o” Ao’
(P54 =413 + 2P 44 + 2 50" A0’ + EQP 4+ P15’ Ao’ —
%(213\43 + 13|523)w3 Aot — %(213|45 + 13|525)w4 NS

dws = w5 A w) + 24 A w3 + J2o! A w3 + ol A w4 + %(213|4+ I3|52)a)1 AN ws +
QP+ Pisp)o? Aoy — §QP s+ Pisp)o* Aoy + T4 Ao® + o' Ao’ +
Jo' A + JT0' A’ — IP0? A + J30% A 0* +
1(13\524—41 |3+213|44+213|51)w Ao’ +

%(412‘5 +413|| — 213|42 — 13‘522)w3 Aot — I'o* Ao,

d[3‘2 = %(16(13“2—1 13‘5)4-1 (8]2|5—213‘42—I3|522))w +I3‘220) +I3|23w +
P3P+ P+ PP —2) o + 1 (2P = Py = Prs) o -

13|2w1 +213‘2w1 — 13\3673 — I3w4
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dri;; = ﬁ (1613|13 - 213\3(213\4 + 13\52) - 13(13|523 +213\43)> o' + (13\23 - PPp)e* +
P’ + 3 (13|523 +208 5 2P + (13)2)) ot 4305w — %13|3w1 +3 30,

A5 = Pisio" + Pise® + 48P0 + Pisso® + Pisse® — 1815wy — Pison

AP = Pisyo' + PBisne® +4 ((13)2 + 13‘2) & + I spu0® +

(213|45 + (13|5)2 + [3‘525 — 2[3‘54> ® — I3|52w1 —4[3E'3,

The coefficients JY, J%, ..., J8 are not important here.

We now use this proposition interpreting forms (o', w?, >, »*, »>) as defining a

specially adapted coframe of an arbitrary PDE five variables para-CR structure, and
use it to build the lifted coframe (3.7) which satisfies equations of the form (3.9).
This in turn, by the same procedure which we used to get Theorem 3.2, leads to the
reinterpretation of this Theorem and Corollary 3.3 into the following form:

Corollary 4.2 The torsion normalization equations (3.10) applied to the forms
(3.7) with (0!, w?, ®3, w*, ) satisfying (4.3) yield the following para-CR invariant
differential system

do' = —0' A Q; + 6% A 6*
do* = > A (22— 1) —0' A Q3+ 03 A 0*
403 = 203 A — 02 A+ 2T 0 A0t + 01302 A 63
s P
1k (2e¢f213|5 + (s +21%) — 4e—¢f213) o' A 63
d0* = =02 A 0° — 0 A (3 + ) -0 Ay
405 = —205 A + 0% A+ e%1291 N AN
[ (2e¢f213|5 + o5 +21%) — 4e—¢f213) 0l AB5. (45)
Proof Since this Corollary is just a reformulation, in the new notation, of Theo-
rem 3.2 we only give the matrix § = (S)') which, via 6* = S!'w", brings the system

(4.3) to the system (4.5). It is not a surprise that this matrix is precisely given by the
formula (3.11). O

This shows that in the notation of this section the simplest relative invariants of
the considered para-CR structures are / Ly2 Band [ 3|5. In particular the structures
with the structural function I° # 0 and I3 = 0 are locally para-CR nonequivalent.

4.2 The Case I* # 0 and Corresponding Homogeneous Models

If the relative invariant /3 # 0 we can normalize the term at 62 A 63 in d6> to 1,
—¢73
e ?I
=1,
o
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reducing the system (4.5) by one dimension, due to the choice of the section
p = e 01,

After this normalization the form €2, becomes dependent on the forms 2, 6*, and

thus it disappears from the equations (4.5). Actually, the entire combination €2, — % Q

disappears from these equations. This in particular gives

(d@z)/\93/\94/\95=<—91/\§23+ 91A92>/\93/\94/\95,

K
8(13)5
with the coefficient K = 4(13)°u; + L. Here u; is an auxiliary variable introduced
when normalizing the system (4.5). It is analogous to u; introduced in (3.14). The
quantity L depends on the structural function / 3 its derivatives, and the free fiber
coordinates ¢, f2 and f2, only. The explicit linear u-dependence of K, where the
uy term is multiplied by a fifth power of I3, which is assumed not to vanish, enables
us to normalize the coefficient at 8! A #2 in d92 to 0,

K =0.

This eliminates the auxiliary variable u#; from the system.
After this normalization we get in particular that:

ez¢f2[3 +f213|3 _1313‘2

2, p4
()3 RN

do* = 02 A0 — 0 AQ =0 A Qs+
—2¢ 713 2¢ 13
ey e €5 g s
- 9/\9+T9/\9.

This enables for further reduction, by forcing the coefficient of 6 A 6* to vanish.
This results in the restriction of the system (4.5) to a section

- 1313‘2 _ f2[3|3
on which the form €4 becomes dependent on 23 and 6*s. Thus, it is not present in
the reduced system in which, in particular the differential of 62 reads:

—2¢ 13 2¢ 13
e %1 eI
B2 093 15

d9? = 0P A0 —0' A3+ (.)0%2 A0Y - 73 T@M(;S.

This shows that when I # 0, which we assume in this section, the structural func-
tions / 3\3 and / 3| 5 are relative invariants of such para-CR structures. In particular, if
we have two para-CR structures, one with /3 |5 # 0 and the other with 1 3 15 =0, then
they are locally para-CR nonequivalent.

Let us first concentrate on the case when

Pjs #0.

In this case we can normalize the term at 62 A 67 in d6? to be equal to —e, where
13
& = sgn <1—3‘5> .
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This results in further reduction of the system (4.5) to the section on which
1 el
¢ = 5 log (m) .

This makes €21 dependent on 8#s only, and eliminates €2 from the variables in the
reduced EDS. Then in particular, the differential of 0! satisfies

4f%— P

EIE RN AN AN AN
s

dOHY AP NG A G =
This enables for the ultimate normalization which kills the 8! A 62 term in d@!. It is
obtained by taking the section
fF=31Ps.
After this normalization the system (4.5) reduces to the original five manifold M on
which the para-CR structure is defined. It brings the initial forms w" satisfying the
system (4.3) to the fully para-CR invariant forms 6# on M, via the formula 0* =

", where the matrix § = (SJ) is given by:

eI’ 0 0 0 0

1B » 0 0 0

£(P)’ ePpsy gf® 0 0

S= 3213135 4835 s

13

45(1‘;)72 (41313‘2_13|3[3‘52) 0 0 el 0

r 373 13 13 _\2 & 33 3 13 I

_328(1‘53)5 (4[ 1 ‘2_1 |3I |52) 0 _48(1‘35)3 (4[ 1 |2_[ \31 |52) '9’73‘5

The resulting para-CR invariant EDS on M is presented in the following statement.

Theorem 4.3 Every PDE five variables para-CR structure on a 5-dimensional mani-
fold M with the relative invariants I® # 0 and I3|5 # 0 uniquely defines five I-forms
01, 6%,63,0%, 0°) on M which satisfy the following exterior differential system

o' = ¢ (—639] A3+ 5ol AGF — cyf! /\495> 0% A0t

o2 = 8(0891/\92+(4—C3)62/\93—0992/\94—02/\05>—91/\93
470" AO* — ce0' A OO + 03 A *

o3 = ¢ (—cu@l ANO3 4101 AO* — (s +200)0% A 0% + (cq — 2)0° /\95)
+c100" A 0% + 702 A O — 602 A O

do* = ¢ (01291 NG+ 140" A 0% + L (1 — 8c6 + 2c306 + 200)0" A 67
1403 A 0% + (1 — c)0* A 95) N N L '
do’ = ¢ (01561 ANO* 4+ L(co +2011)0" A0 +c120° A0 + (8 — 3)0° A 6O°

—(1 + ¢5 — deg + c3c6 + 3¢9)8% A 95> 20" A 6% — 1362 A 6% (4.6)
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Here, the coefficients ci, ca, ..., c15 are totally expressed in terms of the structural
functions I', I?, I3 and their derivatives. They are uniquely defined by the para-CR
structure on M (but their explicit forms are not relevant here) .

Two different PDE five variables para-CR structures with their corresponding rel-
ative invariants I> # 0 and 1 3|5 # 0 are locally para-CR equivalent if and only if
their corresponding 1-forms 0" and 0" can be transformed to each other by a local
diffeomorphism ®, i.e., if and only if ®*(O%) = 0" forall p = 1,2,3,4, 5.

This theorem, with the reasoning preceding it, assures that the only possible homo-
geneous PDE five variables para-CR structures with I3 # 0 and / 3|5 # 0 are those
that correspond to the forms (91, 02, ..., 95) satisfying the system (4.6) with all
coefficients cq, ¢2, ..., c15 being constants. If such structures exist, these constants
must satisfy the system (4.6) and its differential consequences d(d(6*)) = 0O for all
w=1,2,3,4,5. This is a very strong condition which have only one solution, given
by:

cr=c=cp=cp=c3=c5=0, c3=6, C4=%, c5 =

1 1 3 1
8= "1 €9= "3, C1l = 75> Cl4 = —3-

(Sl
e}
o)
Il
ool—
9}
N
I
m‘_
)

It is easy to see that the case when I3 # 0 and
13|5 =0

in an open set is impossible. Indeed, using the EDS from Proposition 4.1 and the
condition that 135 = 0 we see that

0=dd@) Ao Aw? =20 A? A0 Aot Ao,

i.e., that in particular I3 = 0 in the open set, which is a contradiction.
Summarizing we have the following

Corollary 4.4 The only possible two homogeneous models of a PDE five vari-
ables para-CR structure with I3 # 0 must be described by invariant forms
0,602,603, 6%, 05) satisfying

do' = & (60" A%+ 0! A0 — 30" A 07) + 62 A

do* = e (—%0' /\92—292/\93—1-%92/\94—92/\95) —0' no?
501 A0t — 201 AO% 407 A0
do® = o (= 50" A 67+ 167 A0 — 16° A 67) + 02 A 0" — 467 A 6]
dot = & (—46" A 0" + 50" 07 + 403 A 0% — 10F A 6%) 67 n 6]

40° = ¢ (—1—1691 AOS+20% A 05 — Lo* A 95) . 4.7)
Here ¢ = +£1, and the structures with different values of € are para-CR nonequiva-

lent.
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We will realize these two homogeneous structures with a 5-dimensional symmetry
algebra in Section 4.4.

4.3 The Case I* = 0 and Corresponding Homogeneous Models

If
=0
in an open set then Proposition 4.1 reduces to:
Proposition 4.5 The defining coframe (o', w*, 0>, w*, w>) of a PDE five variables

para-CR structure with I3 = 0 can be chosen in such a way that it satisfies the
following EDS:

dwlz—a)l/\wl—i—a)z/\a)4

2 _ 1 2 1 3 4
do” = —w AT3+ 0" A (D2 — 7301) + 0 Aw
da)3:—a)z/\W3+2w3sz+Ila)1/\a)4
da)4=—a)l/\w4—a)4/\(w2+%w1)—a)2/\w5
da)5=w4/\am—2a)5/\wz+lza)l/\a)2. 4.8)

dr' = "o + 1'po? + 1'30® + 1o = 31wy — 31>,

dr? = 12|1a)1 + 12‘20)2 + I2|4a)4 + 12|5a)5 — %Izwl +3122D'2

do| :a)l/\w5+a)2/\zzr4—a)4/\w3

doy, = —%szW4—%a)4/\ZU3—%12‘5wl /\a)z-l—%llga)l Aot — @ Ao

do; = zzn/\(%nn+w2)+%w2/\w5+a)3/\am+]1a)l/\a)2+12|5a)1/\a)3—
Il‘za)l/\a)4+lla)1/\a)5—%1]|3w2/\a)4

doy = w4/\(%w1 —wz)+%w4/\w5 —|—a)5AZH3+12‘4w1 Aw? = IPo' Ao’ +
%12|5w2/\w4711|3w1/\w5

dos = w5/\w1+2w4/\w3+.12a)1Aw3+J3w1/\ZU4+J4a)1/\w2+J5w1/\w3+
J6w1/\a)4+J7a)1/\a)s—12w2/\w3+]1w2/\w4—11‘3w2/\w5+

12‘5a)3/\a)4—11w4/\w5. 4.9)
d]2|2 = %(212‘12 + [2[2|5)a)1 + 12|22w2 =+ 12|24w4 =+ ]2‘25605 — 212|2w1 =+ 412|2w'2 — 312w'4,
dr’y = %(212\14 =321 0! + (FPps — P )e? — IPpe® + IPue® + Puse’ —

212|4w1 + 212|4w'2 + 12‘5w'4,
d12|5 = 12‘15(1)1 + (12|25 + ]2‘4)(02 +3%0% + 12‘45(1)4 + 12|55w5 - %12‘5131 + 12|5ZD'2,
d12|25 = % (412‘152 — 412\14 + 2(12|5)2 - 1212‘55) o' + 12|252a)2 +412|2a)3 + 12|245C()4 +

12‘2556()5 — 212|25w1 + 212|25WQ — 3IZW3 — 312‘5W4.
The coefficients JY, J%, ..., J7 are not important here.
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Similarly, Corollary 4.2 now takes the form:

Corollary 4.6 The torsion normalization equations (3.10) applied to the forms (3.7)
with (wl,a)z,a)3,w4, ws) with I3 = 0 as in (4.3) yield the following para-CR
invariant differential system

o' = =o' A Q + 0% A 0%
2 _ 2 1 _ gl 3 4
d0? = 2 A (L —1Q) —0'AQ3+6° A6
63 = 293A92—92A93+i—31191w4
do* = =07 A 0% —0* A (3 + ) — 0" A
405 = —205 A + 64 A QU+ e%129‘ N2 (4.10)
Soif I3 = 0 in an open set, the structural functions [ I and 1?2 are relative

invariants of the considered para-CR structures.
We first analyze the case when

1> £ 0.
If the relative invariant /> # 0 we can normalize the term at 8! A 62 in d6° to 1,

e=3¢]2
7 =1L

0

reducing the system (4.10) by one dimension, due to the choice of the section
P
p=e"t(I%3.

After this normalization the form €2, becomes dependent on the forms 2, 6*, and
thus it disappears from the equations (4.10). Actually, the entire combination 2, —
%Ql disappears from these equations. This in particular gives

@OHANP A A = —0' A Qs+ ANl WNAVN AN

6(12)3

with the coefficient K = 3(/ 2)%141 + L. Here u is an auxiliary variable introduced
when normalizing the system (4.10). It is analogous to u; introduced in (3.14). The
quantity L depends on the structural function 72, its derivatives, and the free fiber
coordinates ¢, f2 and f2, only. The explicit linear u-dependence of K, where the 1

term is multiplied by (1 23, which is assumed not to vanish, enables us to normalize
the coefficient at 8! A 2 in d6? to 0,

K =0.

This eliminates the auxiliary variable u from the system.
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After this normalization we get in particular that:

do* = —02A0° —0* AQ -0 Ay

2
3e? f2(1%)3 - I? e’ 1?
T i) N A L AALa

3(I1%)3
This enables for further reduction, by forcing the coefficient of 62 A 6% to vanish.
This results in the restriction of the system (4.10) to the section

- I’

fr=—E
3e2¢(12)3

on which the form Q4 becomes dependent on 6#s. Thus, it is not present in the

reduced system in which, in particular the differential of 6% reads:

2¢12
6% = 93A94—9‘/\93+e2¢(...)92A94—e?)T'Seeri

This shows that when I3 = 0 and /2 # 0, which we assume in this section, the struc-
tural function / 2| 5 is a relative invariant of such para-CR structures. In particular, if
we have two para-CR structures, one with / 2| 5 # 0 and the other with [ 2| 5 = 0, then
they are locally para-CR nonequivalent.

Let us first concentrate on the case when

I*)5 #0.

In this case we can normalize the term at 62 A 65 in d62 to be equal to —e, where
12
& =sgn (1—2‘5> .
This results in further reduction of the system (4.10) to the section on which
¢ = Llog 3el?
12‘5 :

This makes €21 dependent on 8#s only, and eliminates €2 from the variables in the
reduced EDS. Then in particular, the differential of #! satisfies

5
9f2(1%)3 — 31> (I%ps + I*4) + 217217 5

(dOHYAOIAO* NG = 0 AOZADP N NO3.

4
3(12) 3 12|5

This enables for the ultimate normalization which kills the 81 A 62 term in d9!. Tt is
obtained by taking the section

2= 312(1%ps + 1)) — 217017 5

3
9(1%)3
After this normalization the system (4.5) reduces to the original five manifold M on
which the para-CR structure is defined. It brings the initial forms w" satisfying the
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system (4.3) to the fully para-CR invariant forms 6# on M, via the formula 6% =
St w’, where the matrix S = (S.') is given by:

812‘5

T 0 0 0 0
3(12)3 |
312(1% s +1%14) 217 p 12 =
(I s+ |4)5 12175 (12)3 0 0 0
9(12)3
S = | eBPUPps+120) 217125 B2 ps+1*W)—21%p1%5) 312 0
54(122)352‘5 3]2]2|5 ]2‘5 )
el“pl”s el”|s
3 0 o —7 0
9(52)2 2 3(122)32 2
_5(1 )15 0 0 _81 pl75 el”s

54(12)3 9(12)2 312

The resulting para-CR invariant EDS on M is presented in the following statement.
Theorem 4.7 Every PDE five variables para-CR structure on a 5-dimensional man-
ifold M with the relative invariants I° = 0, I* # 0 and 12|5 # 0 uniquely defines

five I-forms (01, 62,63, 0%, 6°) on M which satisfy the following exterior differential
system

! = —e (91 NG + a0l AOF — 20 A 95) 1620t

do?

—s (cg@l AO% + 307 A 6F + 62 /\05) + 0" MO 4 ce0' AO5 + 0% A6
a9 = ¢ (61091 AO® 4101 A 6% + (ca — 2¢3)0% A OY + (c2 — 2)03 A 95)

—c1160' A 0% 4+ ¢10% A 6% + 60 A O°

do*

¢ (—a;@l AO* + 30" AB5+63 A0Y + (1 — )6 /\95> +es0' 02— 02 A0S
6% = ¢ (—61291 AO* — 100" A 65 4+ 6% A6 + (ca — 3¢3)0* A 95)

+01 A 0% + ¢50% A 64, 4.11)

Here, the coefficients c1, ca, . . ., c12 are totally expressed in terms of the structural
functions I', I and their derivatives. They are uniquely defined by the para-CR
structure on M (but their explicit forms are not relevant here) .

Two different PDE five variables para-CR structures with their corresponding rel-
ative invariants 1> = 0, I*> # 0 and I 2‘5 # 0 are locally para-CR equivalent if and
only if their corresponding I-forms 6" and 6" can be transformed to each other by
a local diffeomorphism ®, i.e., if and only if ®*(0*) = 0" forall u = 1,2, 3,4, 5.

The above theorem, and the reasoning preceding it, assure that the only possible
homogeneous PDE five variables para-CR structures with /3 = 0, % % 0 and / 2| 5 £
0 are those that correspond to the forms (9!, 62, ..., 67) satisfying the system (4.11)
with all coefficients ¢y, c3, ..., c12 being constants. If such structures exist, these
constants must satisfy the system (4.11) and its differential consequences d(d(6*)) =
Oforall u =1, 2,3,4,5. This is a very strong condition which has a one parameter
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family of solutions only. This family is given by:
c3=c4=ce=c10=0, co=a=ci=cn=1, c¢s=c=—c7=-cg=s,
where s is a real parameter.
It is easy to see that the case when /> = 0 and
1240 while I%5=0
in an open set is impossible. Indeed, using the EDS from Proposition 4.5 and the
condition that 725 = 0 we see that

0= d(d(12)) Ao A0? Aot =31%70" A APt A,

i.e., that in particular / 2 — 0in the neighborhood, which is a contradiction.
The last case to consider when I3 = 0 is to assume that

’=0
in an open set.
If this is the case we also have [ 2|5 = 0 in the equations of Proposition 4.5. Then

using the second (4.9) we find that

0 =d(d(m)) A ot = —I]‘3a)] Aw* Aot AW,

which implies that ' ;3 = 0 in the open set. Having established this we get that
0=dd(@)) Aw® = —31'0' Ao A o' A,

i.e., that also I' = 0in the open set.

Thus, the assumption that /> = I? = 0 in an open set implies that also /! = 0 in
the same open set, i.e., that all the fundamental invariants of the para-CR structure
in question vanish. Therefore if

P=1*=0
the corresponding para-CR structure is locally para-CR equivalent to the flat model

described in Section 2.2.
Summarizing we have the following

Corollary 4.8 In the case when I® = 0 in an open set the only homogeneous models
of a PDE five variables para-CR structure with I = 0 are given either by

(i) the flat model represented by the coframe (2.6), or
(ii) must be described by the invariant forms (0", 6%, 03,04, 0°) satisfying

d@l=—8(91/\93+91A95>+92/\94
d92=8<s91/\92 9%9) s01 A 0%+ 0% A0t
d93:8<91/\ /\95)—91/\92—S92/\94
d04=e< s01/\94+63/\94)+s91/\02 AN
d05=8< 91/\94+93/\9>+91/\92+S92/\94. (4.12)
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Here ¢ = %1, s is an arbitrary real number, and the structures with different values
of (&, s) are para-CR nonequivalent.

We will realize these homogeneous structures in the next Section.
4.4 All Homogeneous Models
Combining Corollaries 4.4 and 4.8 we have the following proposition.

Proposition 4.9 The only homogeneous models of a PDE five variables para-CR
structure are given either by

(1) the flat model represented by the coframe (2.6), or
(i) must be described by the invariant forms (91, 02,63, 0%, 95) satisfying the
system (4.7) or
(iii) must be described by the invariant forms (91, 02,03, 0%, 95) satisfying the
system (4.12).

The structure (i) has SO(3, 2) as the local group of para-CR symmetries, whereas
the structures described in (ii) and (iii) have maximal local group of para-CR symme-
tries of dimension 5. There are no homogeneous models of such para-CR structures
with a local symmetry group of exact dimensions six to nine.

In this section we will show that all the structures described in this proposition do
exist, and will associate a system of PDEs on the plane, of the form (3.1)—(3.3), to
each of them.

We have the following statement.

Theorem 4.10 All homogeneous models of PDE five variables para-CR structures
are given, in terms of their defining PDEs, by

1 zy= Ll‘(zx)2 & Zyxx =0; it is the flat case,
(i) zy = JT(ZX)2 & Zyxx = (2ox)3; this is the case corresponding to
(ii) in Proposition 4.9 with
& = —sgn(zxx),
(ilia) zy = %(zx)b & zyxx = 2 — b)%; this is the case corresponding to
(iii) in Proposition 4.9 with
€ = —sgn(zyxy) and s < =3 -

of course 7, > 0,
(ib) zy = f(zx) & Zyxxx = h(zx) (zxx)z, where the function f is determined
by the implicit equation

(z,% + f(zx)z) exp (2b arctanﬁj;;—;'gg))) 145 (413)
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and
b* —3)z, —4b
hz) = ¢ )2 fz(z")~ (4.14)
(f(zx) — bzy)
_3
this is the case corresponding to (iii) with ¢ = —sgn(z,,) ands > —3-27 3.

Proof We first show that the case (ii) in the theorem realizes the EDS (4.7), and
therefore exhausts all possible homogeneous PDE five variables para-CR structures
with I3 0.

We start with the PDE system

Iy = LIT(Zx)z & Zyxx = (Zxx)3 (4.15)
and associate with it the coframe (w"), u = 1, 2, ..., 5 via (3.4). Explicitly, we have:

o' = dz — pdx — %p2dy

w? = dp —rdx — %prdy

o =dr —ridx — %rz(l + pr)dy

ot = dx

w’ = dy. (4.16)

Now, it is easy to check that the matrix

8r3 0 0 0 0
23 2 0 0 0
3
S=14 04£ 0 0 ,
0 0 0 —der? —2epr?
0 00 O er

which has values in the allowed para-CR group Gy as in (3.8), transforms the coframe
(4.16) defining the PDE five variables para-CR structure of the system (4.15) to the
invariant forms 6* = S!'w" satisfying the homogeneous system (4.7), provided that
& = —sgn(r) = —sgn(zxx). S

Now we show that the EDS (4.12) with s < —3 - 27 3 is realized by the PDE five
variables para-CR structure associated with the system

1 b (Zxx)2
iy = 71(20)” & 2y = 2 = b)——, 4.17)
4 2

with b = const.
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Using this PDE system we define the corresponding PDE five variables para-CR
structure via the coframe (3.4). This reads:

o' = dz — pdx — %pbdy
W = dp —rdx — A—Itbpbflrdy

2 —byr?
0 =dr— —( ) dx — A—I‘brzpb_zdy
p
ot = dx
a)s = dy, (4.18)
Now introducing the matrix
2
% 0 O 0 0
—(b+Drt t
o7 i 3 0 0 0
—er(1=Th+b% e(b=5) ¢
S == 18])2 3p r 0 O 9
—&(b+Drt 0 0 —ert —ebrp®=2t
9p2 3p 12
er(1=7b+b%) 0 0 £d=2byr e(b—2)brpP~2
18p2 3p 12

1
witht = (b —2)(b+ 1)(2b —1))3 and ¢ = —sgn(zy,), which again has values
in the allowed para-CR group Gy as in (3.8), it is easy to see that the transformed
coframe O* = S/ w" with wts as in (4.18), satisfies the homogeneous system (4.12)
with
3 1 —b+b? ds 27 bb-1)
2[(b=2)(b+1)2b— D3 db 2 [(b—2)(b+1)@2b— D]

2 4 -2 -1
b
§ s
-3 (/ \ -3 6
-5 -5 -10

Looking at the range of the function b — s = s(b) we see that the PDE system (4.17)
5

.

S

realizes the EDS (4.12) for all the values of s < —3 - (2)~ 3. For this it is enough to
take 1 < b < 2.
The last part of the proof is to show that the PDE system

2y = f(2) & Zoxx = h(ze) (@xx), (4.19)

with f = f(zy) and i = h(x) as in (4.13)—(4.14) corresponds to a PDE para-CR
structure realizing the system (4.12) with the parameter s belonging to the remaining

range s > —3-(2)” 3. This is a bit more tricky since we have no explicit dependence
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of f and & on z,. To deal with this situation we observe that the general solution to
the equations (4.19), (4.13)—(4.14) is

Z = exp (b arctan (%)) \/(x + )2)2 +(y+ )-,)2 -7,
where X, y, z are integration constants. It is now convenient to introduce a new

variable

y+
X +x

~I

u =

and to write down the para-CR coframe (3.4) for the para-CR structure associ-
ated with this PDE in terms of five variables (y, X, y, Z, u) rather than the variables
(x, ¥, 2, Zx, Zxx)- This coframe reads:

exp (b arctan u)

1+ u?

2,2
W — exp (barctanu) (1 + b*)u (udi — d5)

3
A+u®2(y+y)

— exp (barct 1+ b2)u’
S exp (barctanu) (1 4+ b=)u ((bu+3)udi+(u2—bu—2)d§)

5
(I +uh)2(y+5)?
ot = d(5 - %)

= dy. (4.20)

o' = —dz+ ((1 = bu)dx + (b 4 u)dy)

Now it is easy to see that the transformation w* > 0" = S'w” with

E(l[zbl
—Lark 0 0 0 0
3/ 14U (y+3)
2atbu at+/14u?
—=din 0 0 0
3/ 14u2 (y+5) u s
S = ea(9+5b>)u 2ea(3+2bu)/ 14+u?  ca(1+u®) 2 (y+7) 0 0 ,
18(14+52) 8/ T+12 (y+5) 3(1+b7u? (467
2satbu 0 0 —st(1+bHu?  et(1+b)u
3/ 1412 (y+75) I+ (y+5)  (A+u?)(y+Y)
—ea(9+5b*)u 0 0 eu(bu—3) —eu(b+3u)
18(14+62) A/ 1+u2 (y+5 3A4u?)(y+5)  3(1+u?)(y+3)

1

—barctanu — (2b(9+b2)) 3
and t = A

invariant coframe 6% satisfying the homogeneous system (4.12) with

and witha = e , brings this coframe to a para-CR

3 bt —3 ds 27 br+1

S = — _— —_— =

2po+ )P db 2P 2 o)
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5
The range of this even function s —> b(s) is s > —3 - (2)” 3. To achieve all the

5
values of s > —3 - (2) 3 it is enough to take b > 0.

5 Lie Symmetry Algebras

O

The point automorphism groups for cases (i), (ii), (iiia), (iiib) can be d;:ter—
mined infinitesimally. Indeed, a vector field with unknown coefficients A’ =

Ai(xayazvp7r),i == 1,...,5:
= A'd, +A%8, +A%8, + A%, + A% %,
should act on 1-forms as the matrix (2.4), so that:

0=Lx@) Ao,

0= Ex(w2)/\w NN
0= Lx@) Ao Aw® Ao,
0=Lx@HA0'Ao* Ao,
0=Lx@) Ao Ao* Ao’ (5.1)
For instance, in case (ii), the first equation writes:
1 1 _ 2 1 4 3 1 3 42 1 1
Li(@) Aw _dx/\dy[p(A LA —pal—dpat—lpal+ Ly Ax+4—Ax)},
tdx Adz [pA —ip pzA;+Ai—%p2A§—pAi—A4}
+dx Adp [p (AP—Zp A?,—pA},)]—i—dx/\dr [p (AE—%pzAf—pA})]
+dynde [§ A= pta2—dpialeal -4 pal - pal - 14t
2 (1 43 1 .2 42 1 1 3 2_ 1 1
+dy Adp |:p (ZApfﬁp A,—zpA )]+dyAdr[ ( A; 771) A; pAr)]
+dz/\dp[7A*;+%p2Af,+pAj|+dz/\dr|:7 +%1)2Af+pA,!].

Solving this linear system of partial differential equations, we get
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Corollary 5.1 The Lie algebra of infinitesimal point automorphisms of the flat model
(i) is simple, isomorphic to 503 2(R), with the 10 generators:

X = xy8x+y28yfx281f(py+2x)3p*(2”y+2)3r,

Xy = —(xz—yz)ax—nyay—szaz— (%pzy—i-Zz) 0y, —(pry—2rx+2p) o,
X3 1= yox —2x0; — 20,

Xy = xzax—xzay—i—zzaz—(%pzx—pz) 8p+<%p2—prx> O,

X5 = zax—2x8y—%p28p—pr8r,

X6 := x0x +220; + pap,

X7 = 3)(7
Xg := y0dy =20, —pdp —ro,
X9 = 3y,
X10 1= 0,

having commutator table:

X1 X2 X3 X4 Xs X6 X7 Xg  Xo X10
Xy 0 0 0 0 —-X, 0 —X3 —X1 —Xg—2Xg 0
X, x 0 2X1 0 2X4 —X2 2Xe¢+2Xg 0 —X5 —X3
X3 * * 0 Xz —Q.Xg X3 2X1() —X3 —X7 0
X4 *  *x  x 0 0 —2X4 —X;5 X4 0 —Xs
Xs *x k% * 0 —X5 2Xo Xs 0 —X7
Xe * x % * Xk 0 —-X7 0 0 —2X10
X7 *x %k % * % * 0 0 0 0
Xg *x k% * % * * 0 —Xo X10
Xo * % % * % * * * 0 0
X110 * * % * %k * * * * 0

In the CR context, observe that if S> C R? is an affinely homogeneous parabolic
surface, then the tube M> := §2 x iR? has transitive holomorphic symmetry algebra
hol(M), with an Abelian ideal a := Span {id;,, i0,, i3, }. Conversely, for an M3 e
¢, 1, it is not difficult to show that if hol(M) D a contains an Abelian ideal a with
rankc a = 3, then M> = §? x iR3 is biholomorphically equivalent to the tube over
an affinely homogeneous parabolic surface S> C R3.

In the para-CR context, as can be read off from commutator tables, all the Lie
algebras in cases (i), (ii), (iiia), (iiib) have a 3-dimensional abelian ideal.

Corollary 5.2 The Lie algebras of infinitesimal point automorphisms of the homo-

geneous models (ii), (iiia), (iiib) are all 5-dimensional and solvable, and are given in
the (x, v, z, p, r)-space by the following generators together with their Lie brackets:
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Xp=xd+iyoy+3z0.+1pap,—L1ro, [ X1 X X3 X4 Xs
Xo:=ydx —2x0; —23p, X 0 —3X2 —X3 —3X& —3Xs
. L X * 0 2Xs —X3 0
(i) X3:=0y, X3 | % % 0 0 0
X4Z:3y, X4 * * * 0 0
XSZZBZ, XS * * * * 0
. bz | p rb—2) .
X|.:x3,y+b_l aZ+b—l 3[;— 1 o, | X1 X, X3 X4 Xs
z p r X1 0 0 —X3 0 _1717TIXi
Xo:=y oy — d; — 9, — dz,
TR TR T x| 0 0 —Xi X
(iiia) X3:=d,, Xy | ok ox 0 0 0
Xumi,, X4 * * * 0 0
) Xs | = * * * 0
XSZZBZ,
X1:=x0y +y0dy +20, — 710, | x X X X X
. ; _ _ 1 2 3 4 5
Xoi=—yoy +x0dy +wz0, (F @ p)ap X, 0 0 —X3 —X4 —X5
— 2DF —wr) 9, X, * 0 —X4 X3 —wXs
(iiib) X3:=9,, Xafox %0 0 0
. X4 * * * 0 0
X4:=0y, Xs | * * * * 0
X52=32,

6 Link with Homogeneous Parabolic Surfaces

We close this article by some comments on the classification Theorem 4.10. Para-CR
structures can be defined either from the point of view of submanifolds of solu-
tions [16], of from the point of view of exterior differential systems [14]. From the
first viewpoint, after “dividing” by the 3-dimensional Abelian ideal present in all the
homogeneous models (i), (ii), (iiia), (iiib), namely after passing to a quotient, one
can convince oneself that one obtains affinely homogeneous surfaces S* C R3.

The complete classification of A3(R)-homogeneous surfaces S* C R3 was termi-
nated by Doubrov-Komrakov-Rabinovich [4], and re-done by Eastwood-Ezhov in [5]
who employed the power series method. This classification incorporates the classifi-
cation of A3(R)-homogeneous parabolic surfaces, namely surfaces locally graphed
as z = F(x, y) with

Fix 750

From [9], the list is as follows.

(1) {x12 + x% = x32, X3 > O} the future light cone, having infinitesimal symme-
tries x10x, + X20y, 4+ X30x;, —X20x, + X10x,3
(2a) {r(cost,sint,e”) € R’ : r € R*andt € R} with @ > 0 arbitrary, graphed
as u = /x2+ y2e® N having symmetries xdy + Yoy + udy, —ydx +
X0y + wudy;
@2b) {r(.t,¢") eR?: r e R andt € R}, graphed as u = xex, having symme-
tries x0y + y0dy + udy, x9y + udy;
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2c) {r(.,e',e")eR?: r e RT and s € R} with & > 2 arbitrary, graphed as u =
X (%)0, having symmetries xdy — (0 — D)udy, ydy + Oudy;

B {c)+rd@eR:reR andr €eR}, where c(t) = (12,1
parametrizes the twisted cubic {(t,t*>,t3) : t € R} in R® and
c(t) = (1,2t,3t%), graphed as u = —2x> + 3xy — 2(x%> — y)*/?, having
symmetries x0y + 2ydy + 3udy, 0y + 2x3y + 3y0,.

Conversely, from any parabolic surface S C R? graphed as z = F(x, y), one can
introduce the fube para-CR submanifold of solutions $? x R3 defined by z + ¢ =
F(x 4+ a, y + b), differentiate z,, = Fy, zxx = Fxyx, solve for (a, b, c) in these three
equations, replace in zy = Fy, Zyxx = Fyxyx, and get a PDE system of the kind
studied in the preceding sections.

Such submanifolds of solutions z+c = F(x+a, y+b) being invariant under trans-
lations along the parameter directions, one gets a homogeneous PDE five-variables
para-CR structure as soon as the surface z = F(x, y) is affinely homogeneous. This
observation applies to all cases (1), (2a), (2b), (2¢), (3).

We leave as an exercise to verify that the PDE systems (i), (ii), (iiia), (iiib)
shown in Theorem 4.10 come from (1), (2a), (2b), (2¢), (3) by this process, though
rearranged differently.

In fact, irrespectively if we knew or not something about classification of
homogeneous parabolic surfaces, Cartan’s method have brought us only two kinds
Maurer-Cartan equations for homogeneous PDE five variables para-CR structures,
namely (4.7) and (4.12). Thus, cases (i), (ii), (iiia), (iiib) were in fact nicely unified
in a smaller number of cases in our first classification, which is an advantage of
Cartan’s reduction with respect to classical classification results. In conclusion, Car-
tan’s reduction is more natural, because it groups a scattered number of homogeneous
models into only one 1-parameter family.
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