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The conformal Feerman-Graham ambient metric construction is
one of the most fundamental constructions in conformal geometry.
It provides an embedding of a manifold of dimension n with a con-
formal structure into a semi-Riemannian manifold of dimension
n+ 2 whose Ricci tensor vanishes up to a certain order along the
original manifold. Despite the general existence result of such ambi-
ent metrics by Feerman and Graham, not many explicit examples
of conformal structures with smooth Ricci-at ambient metrics are
known. Motivated by previous examples, for which the Feerman-
Graham equations for the ambient metric to be Ricci-at reduce
to a system of linear PDEs, in the present article we develop a
method to nd ambient metrics for conformal classes of metrics
with two-step nilpotent Schouten tensor. Using this method, for
metrics for which the image of the Schouten tensor is invariant
under parallel transport, i.e., certain types of Walker metrics, we
obtain explicit ambient metrics. This includes certain left-invariant
Walker metrics as well as pp-waves.
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1. Introduction and main results

This paper is a follow-up of our papers [3, 25, 26], where we presented
several examples of semi-Riemannian conformal structures, not conformally
Einstein, with explicit Ricci-at Feerman-Graham ambient metrics. The
Feerman-Graham ambient metric is a fundamental construction in confor-
mal geometry that is dened as follows:

Given a conformal class represented by a metric g on a smooth n-dimen-
sional manifold M , a Feerman-Graham ambient metric or just an ambient
metric is a metric

(1.1) g = 2dtd(ρt) + t2(g(xi) + h(xi, ρ)),

dened on M̃ = (0,∞)×M × (−ϵ, ϵ), with coordinates xi on M , t ∈ (0,∞)
and ρ ∈ (−ϵ, ϵ), such that h(xi, ρ) is smooth, h(xi, ρ)|ρ=0 = 0, and

Ric(g) = O(ρm), with m = ∞ if n is odd and m = n−2
2 if n is even.(1.2)

Feerman and Graham [15, 16] have shown that an ambient metric always
exists and is unique in a certain sense, which justies it to call it the ambient
metric (for details see Section 2.1).

Moreover, when n is even, there is a conformally covariant, symmetric,
divergence and trace free (0, 2)-tensor O, the Feerman-Graham obstruction
tensor, which vanishes whenever (1.2) holds also for m ≥ n

2 .
We will refer to the equations (1.2) for a metric of the form (1.1) as the

Feerman-Graham equations. Sometimes we will say that a solution of (1.2)
is given by h, by which we mean that h denes a metric g via the formula
(1.1) such that Ric(g) = O(ρm). Moreover if equation (1.2) holds for all m
when n is even, we emphasise this by calling g a Ricci-at ambient metric.

Finding explicit (Ricci-at) ambient metrics amounts to solving a system
of second order PDEs for the unknown symmetric ρ-dependent (0, 2)-tensor
eld h. In general, these PDE are nonlinear in h, however, for the examples
presented in [3, 25, 26], we were able to solve these PDEs explicitly, by the
following approach: we found an ansatz for h such that the operator Ric(g)
became linear in h, which allowed us to solve the equation Ric(g) = 0. This
raises the immediate question: Which features of the conformal class are
responsible for this phenomenon? In the present paper we will identify one
of these features as a property of the conformal holonomy. To formulate our
results we have to dene the following linear dierential operator A: if g is a
semi-Riemannian metric and h a symmetric ρ-dependent symmetric bilinear
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form, we dene A(h) = Aij(h) as

(1.3) Aij(h) = 2ρḧij + (2− n)ḣij + 2Rk l
ij hkl −□hij ,

where Rijkl is the curvature tensor, □ = ∇k∇k the tensor Laplacian of g
and the dot denotes the derivative with respect to ρ. The following theorem
provides a partial answer to the above question. It is a consequence of several
key results in this paper. In the remainder of the introduction we will explain
how to derive it from the other results.

Theorem 1.1. Let (M, [g]) be a conformal manifold such that the con-
formal holonomy admits an invariant subspace that is totally null and of
dimension greater than 1. Then, locally on an open dense subset of M , there
is a metric g in the conformal class dening the linear dierential opera-
tor A in equation (1.3), such that a solution of equation (1.2) is given via
(1.1) by a smooth, divergence free, symmetric bilinear form h that solves the
equation

(1.4) hkl∇k∇lhij +∇khli∇
lhkj +Aij(h) + 2Rij = O(ρm),

with m = ∞ if n is odd and m = n−2
2 if n is even, and where Rij is the Ricci

tensor of g.

Although the appearance of the quadratic terms in equation (1.4) is
somewhat unsatisfactory, in many cases there is an ansatz for h such that
the quadratic terms vanish and the resulting linear equation for h can be
solved explicitly. We will come back to this.

Recall that the conformal holonomy is dened as follows. To a conformal
class of signature (p, q) one can assign the normal conformal so(p+ 1, q + 1)-
valued Cartan connection which induces a principal connection and in turn
a connection on the vector bundle of conformal standard tractors that is
compatible with a bundle metric of signature (p+ 1, q + 1). The conformal
holonomy group is the holonomy group of this connection and its natural rep-
resentation on R

p+1,q+1 is the conformal holonomy representation or simply
the conformal holonomy. In analogy to Riemannian geometry, the reduction
of the conformal holonomy to a proper subgroup of SO(p+ 1, q + 1) is re-
lated to the existence of special structure of the conformal manifold, such
as the existence of Einstein scales [6, 18], the structure of a Feerman space
[17], twistor spinors [7, 29], or exceptional conformal structures [9, 31]. One
feature that is very dierent to Riemannian holonomy reductions is that the
same conformal holonomy reductions can induce dierent structures along
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dierent curved orbits [11]. There is however a close relationship between
the conformal holonomy and the holonomy of the Levi-Civita connection of
the Feerman-Graham ambient metric [10] and in the present paper we will
analyse this relationship further for a specic class of conformal structure
that plays an important role for the classication of conformal holonomies.

If the conformal holonomy representation is irreducible, several classi-
cation results are known [1, 2, 14]. In the case when the holonomy repre-
sentation is not irreducible, three essentially dierent situations have to be
distinguished: the invariant subspace is a) of dimension one, b) of dimen-
sion greater than one and non-degenerate, or c) of dimension greater than
one and degenerate with respect to the tractor metric. For case a) it is well
known that, locally on an open and dense set in M , there is an Einstein
metric in the conformal class. The open dense set is in fact the complement
of the zero set of a smooth function σ with the property that σ and dσ have
no common zeros. This restriction is a feature of all the other cases that
follow. Hence, in case (a) there is an explicit Ricci-at ambient metric, see
Remark 2.1 below. Case b) is similar, here there is a metric in the conformal
class that is a product of Einstein metrics (with related Einstein constants),
[4, 5, 28]. Again, such conformal structures admit Ricci-at ambient metrics
[19]. The last case c), when the invariant subspace is degenerate, can be
reduced to the situation in Theorem 1.1: intersecting the invariant subspace
with its orthogonal space gives a holonomy invariant totally null space. It
was shown in a series of papers [22, 27, 30] that the assumption in The-
orem 1.1 — that the conformal holonomy admits an invariant totally null
subspace of dimension k + 1 > 1 — is equivalent to the existence, locally and
outside a singular set with dense complement, of a totally null distribution
N of rank k and a metric g in the conformal class, such that:

(A) The image of the Schouten tensor P of g, considered as an endomor-
phism eld P

♯, Im(P♯) = {P♯(X) | X ∈ TM}, is contained in N (which
implies (P♯)2 = 0),

(B) N is parallel (with respect to the Levi-Civita connection of g).

In the present paper we will deal with the problem of nding ambient metrics
for such conformal classes.

Metrics with a parallel totally null distribution N are called Walker
metrics [36]. Metrics with properties (A) and (B) are special Walker metrics,
for which the image of the Schouten tensor is contained in the parallel null
distribution N . This implies that these metrics are scalar at and hence
the Schouten tensor is a constant multiple of the Ricci-tensor. In particular,
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their Ricci and Schouten tensors are divergence free. In the following we
will call metrics that have both properties (A) and (B) null Ricci Walker
metrics, referring to the property that image of the Ricci tensor is totally
null. The case k = 1 was considered in [27], where the metrics were called
pure radiation metrics with parallel rays. There are many known examples
of null Ricci Walker metrics. This includes Lorentzian pp-waves but also
the examples of metrics we gave in [3], which are of signature (3, 3) and
lie in Bryant’s conformal classes [9]. Recently, in [21] the ambient metric for
Patterson–Walker metrics was computed. Patterson–Walker metrics are null
Ricci Walker metrics in neutral signature (n, n) that arise from projective
structures in dimension n. In Section 5 we will give more examples of null
Ricci Walker metrics including left-invariant metrics.

With the above characterisation of the assumption, Theorem 1.1 is a
consequence of several results we will prove in this paper. To explain these
results, we recall that property (A) is satised by all all the examples in [3],
the generalised pp-waves (see more in Sections 5.3 and 5.4), the conformal
structures given by generic distributions in dimension ve and six (neither
of which are directly the subject of the current paper). This observation
combined with the fact that ∂ρh|ρ=0 = 2P, suggested our ansatz for h as a
tensor satisfying Im(h♯) ⊂ N . If not only (A) but also (B) is satised, which
is the case for most but not all of the examples in [3], then we can show that
the condition Im(h♯) ⊂ N is necessary.

Theorem 1.2. Let (M, g) be a semi-Riemannian null Ricci Walker met-
ric with parallel null distribution N . Then for every ambient metric g =
2dtd(ρt) + t2(g(xi) + h(xi, ρ)), i.e., a solution to the equations (1.2) with
smooth h, it holds

(1.5) divg(h) = O(ρm), Im(h♯) ⊂ N mod O(ρm)

with m = ∞ when n is odd and m = n
2 when n is even. Moreover, when n is

even, the obstruction tensor satises Im(O♯) ⊂ N and there is an ambient
metric for which h satises equations (1.5) for m = ∞.

We will prove this theorem in Section 4.2. Note that the statement about
the obstruction tensor can also be obtained from results in [24]. Theorem 1.2
leads us to study the equation (1.2) for g as in (1.1) dened by a Walker met-
ric g with parallel null distribution N and with a tensor h with Im(h♯) ⊂ N .
From the results and computations in Section 3 and Section 4 we obtain the
following statement, which together with Theorem 1.2 implies Theorem 1.1:
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Theorem 1.3. Let (M, g) be a null Ricci Walker metric with parallel null
distribution N and assume that h is a divergence-free symmetric (0, 2)-
tensor eld such that Im(h♯) ⊂ N . Then the metric g dened by h via equa-
tion (1.1) satises (1.2) if and only if h satises equation (1.4).

In the case when the parallel null distribution N has rank one or satises
an additional condition on the curvature, we can strengthen this result in
the sense that the quadratic terms in equation (1.4) will vanish:

Corollary 1.1. Let (M, [g]) be a conformal manifold given by a null Ricci
Walker metric g with parallel null distribution N that has rank one or sat-
ises N R = 0, for R the curvature tensor of g. Then there is an ambient
metric, i.e., a solution of (1.2), that is given via (1.1) by a divergence free
symmetric bilinear form h that solves the linear PDE system

(1.6) Aij(h) + 2Rij = O(ρm),

with m = ∞ if n is odd and m = n−2
2 if n is even, and where Rij is the Ricci

tensor of g. When n is even, the obstruction tensor satises Im(O♯) ⊂ N
and N ∇O = 0 and is given by

Oij = cn □
mRij ,

where cn is a nonzero constant and □
m is the m-th power of the tensor

Laplacian.

This corollary follows from the previous results by the following con-
siderations: if the rank of N is one, then h being divergence free implies
that

(1.7) LXh = 0, for all X ∈ N ,

where LX denotes the Lie derivative in directionX, and hence that∇Xh = 0
for all X in N , which in turn yields to the vanishing of the quadratic terms
in (1.4). Similarly if the rank of N is larger than one, one can show that the
curvature condition N R = 0 implies condition

(1.8) LXP = 0, for all X ∈ N ,

and consequently that ∇XP = 0 for all X ∈ N . This can then be used to
show that h has to satisfy the condition (1.7) and which again implies the
vanishing of the quadratic terms.
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Let us point out that Corollary 1.1 is sharp in the sense that there are
null Ricci Walker metrics with N R ̸= 0 for which the Feerman-Graham
equations remain quadratic in h. We make this explicit in Example 4.1. It
turns out that for the linearisation of the Feerman-Graham equations the
conditions (1.7) and (1.8) are crucial. In fact, when (1.8) is satised, the
ansatz (1.7) enables us to reduce the Feerman-Graham equations to linear
equations in a much larger class than the one that satises the assumptions
of Corollary 1.1. In Section 3 we show that for g as in (1.1) the Ricci tensor
Ric(g) becomes at most in h if we assume that

(1) the image of P is contained in a totally null distribution N ,

(2) and that N⊥ is involutive (but not necessarily parallel).

The form of the Feerman-Graham equations in this more general situation,
although being at most quadratic in h, is however more complicated than
equations (1.6). Nevertheless, we nd this more general class noteworthy: the
examples of G2-conformal metrics in [3, 26], for which the linear Feerman-
Graham equation were reduced to linear PDEs, are not null Ricci Walker
metrics but rather from this more general class. The reduction was possible
because these metrics satisfy the additional property (1.8), which suggested
the ansatz (1.7).

Based on Corollary 1.1, we are able to construct explicit ambient met-
rics for several examples of null Ricci Walker metrics, including left-invariant
metrics on Lie groups and generalised pp-waves. Our main results in Sec-
tion 5 are the following:

Theorem 1.4. Let k be a two-step nilpotent Lie algebra, H be a Lie group
with Lie algebra h, and ϕ : h → der(k) a Lie algebra homomorphism to the
derivations of k. Let G be the Lie group corresponding to the Lie algebra g

that is given as the semi-direct sum

g = h⋉ϕ k.

Moreover, let g be a semi-Riemannian left-invariant metric on G such that
z⊥ = k and g = h⊥ ⊕ z, where z is the centre of k. Then the conformal class
of g on G admits a Ricci-at ambient metric

(1.9) g = 2d(ρt)dt+ t2

g +

2ρ

n− 2
Ric(g)


,

where n is the dimension of G and Ric(g) is the Ricci tensor of g.
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We should point out that the ambient metric in (1.9) is not unique
(when n even or when non-analytic ambient metrics are allowed). In fact,
in Theorem 5.1 we nd the most general form for Ricci-at ambient metrics
for the left-invariant metrics in Theorem 1.4 and show that the ambiguity is
parametrised by k(k+1)

2 functions of n− k variables, where k is the dimension
of h and n the dimension of G.

Finally, amongst other results, in Section 5 we extend our results in [25]
and [3]. The rst paper [25] dealt with Lorentzian pp-waves, that is, metrics
on R

n of the form

(1.10) g = 2dudv +H du2 +

n−2∑

i=1

(dxi)2, H ∈ C∞(Rn) with ∂H
∂v

= 0.

In general, these metrics are not conformally Einstein. In [25] a formula for a
Ricci-at ambient metric is given when n is odd or in the case when n is even
and ∆

n

2 H = 0, where ∆ is the at Laplacian in the coordinates x1, . . . , xn−2.
In the odd case, this is the unique analytic ambient metric, in the even case
however, we were not able to rigorously prove that the obstruction tensor is
given by ∆

n

2 (H)du2. This result was generalised in [3] in two ways: it was
generalised to analogues of Lorentzian pp-waves to other signatures and,
more importantly, in even dimensions we provided the general solution to
the Feerman Graham solutions including log-terms and the explicit form of
the ambiguity. Here, in the current paper, we improve this result by deriving
a formula for the ambient metric in the more general setting in which we
allow for a non-at Riemannian metric Gij in the x1, . . . , xn−2 coordinates.
Moreover, for Lorentzian pp-waves we can use Corollary 1.1 to show that the
obstruction tensor is in fact given by ∆

n

2 Hdu2. We summarise our results
of Sections 5.3 and 5.4 in the case of Lorentzian manifolds:

Theorem 1.5. Let

g = 2dudv +H du2 +

n−2∑

i,j=1

Gijdx
idxj , with ∂H

∂v
= ∂Gij

∂v
= ∂Gij

∂u
= 0,

be a Lorentzian generalised pp-wave metric. For ∆G the Laplacian for the
Riemannian metric Gijdx

idxj on R
n−2 with coordinates x1, . . . , xn−2 and

f = f(x1, . . . , xn−2, u) a smooth function of the xi’s and u, consider the
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metric

g = 2d(ρt)dt+ t2g+(1.11)

+ t2

(
m∑

k=1

∆k
G(H)

k!
∏k

i=1(2i− n)
ρk +

∞∑

k=0

∆k
G(f)

k!
∏k

i=1(2i+ n)
ρ

n

2
+k

)
du2,

where m = ∞ when n is odd and m = n−2
2 when n is even. Then, when n

is odd, the metric in (1.11) with f ≡ 0 gives the unique Ricci-at ambient
metric that is analytic in ρ. When n is even, we have the following:

(1) If ∆
n

2

G(H) = 0, then the metrics in (1.11) are Ricci-at ambient met-
rics that are analytic in ρ. Otherwise the metrics are solutions to (1.2),
that is Ric(g) = O(ρ

n

2 ).

(2) If Gij ≡ δij is the Euclidean metric, then the obstruction tensor O is
given by

O = cn∆
n
2 (H) du2,

for some non-zero constant cn. If O vanishes, the metrics in (1.11)
are Ricci-at.

In addition to this, we obtain non-analytic Ricci-at ambient metrics
with h ↓ 0 if ρ → 0 from formulas (5.9) and (5.11) in Theorems 5.2 and 5.3,
in particular in the case when n is even and the obstruction tensor does not
vanish.

We believe that the formulas we provide in this paper turn out to be
useful for obtaining explicit solutions to the Feerman-Graham equations
for new examples beyond the ones given in Theorems 1.4 and 1.5.

2. The Feerman-Graham ambient construction

2.1. The Feerman-Graham ambient metric construction

A conformal structure (M, [g]) on an n = p+ q dimensional manifold M
is an equivalence [g] class of (p, q)-signature metrics on M , such that two
metrics g and ĝ are in the same class [g] if and only if there exists a function
ϕ on M , such that ĝ = e2ϕg.

Let us focus on a given conformal structure (M, [g]). In the following

denition of an ambient metric we will refer to a manifold M̃ that is a
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product

M̃ = (0,∞) × M × (−ϵ, ϵ), ϵ > 0,

with respective coordinates (t, xi, ρ).

Denition 2.1. An ambient metric g for (M, [g]) (that is in normal form

with respect to g) is a metric on M̃ given by

(2.1) g = 2dt d(ρt) + t2g(xi, ρ),

with a 1-parameter family of symmetric, non-degenerate smooth bilinear
forms g(xi, ρ) on M , parametrized by ρ, such that

g(xi, ρ)|ρ=0 = g(xi),

for some metric g = g(xi) from the conformal structure [g] and such that

• Ric(g) = O(ρ∞) if n is odd, and

• Ric(g) = O(ρ
n

2
−1) and trg


ρ1−

n

2 Ric(g)|TM⊗TM


= 0 along ρ = 0, if n

is even.

Here, using the usual convention, for a smooth tensor eld tensor S on M̃
we write S = O(ρk) if S = ρkT for a smooth tensor eld T . The existence
and uniqueness result for ambient metrics in [15, 16] states that for each
choice of g = g(xi) there is an ambient metric w.r.t. g. In all dimensions
n ≥ 3, g(xi, ρ) has an expansion of the form

g(xi, ρ) =
∑

k≥0

g(k)(xi)ρk

starting with

g(xi, ρ) = g(xi) + 2ρP(xi) +O(ρ2),

where P = 1
n−2(Ric− Scal

2(n−1)g) is the Schouten tensor of g = g(xi). In odd

dimensions the Ricci-atness condition determines g(k) uniquely for all k,

whereas in even dimensions only the g(k<
n

2
) and the trace of g(

n

2
) are deter-

mined uniquely. The ambient metric construction is conformally invariant
in the sense that ambient metrics for dierent metrics in the conformal class
are dieomorphic to each other (modulo O(ρ

n

2 ) when n is even).
For n even a conformally invariant symmetric (0, 2)-tensor on M , the

ambient obstruction tensor O, obstructs the existence of smooth solutions
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to Ric(g) = O(ρ
n

2 ). For g in normal form w.r.t. g as in Denition 2.1 it is
given by

O = cn


ρ1−

n

2 (Ric(g)|TM⊗TM )
 ∣∣∣

ρ=0
,(2.2)

where cn is some known nonzero constant [16]. From this one can deduce
that O is trace- and divergence free.

Remark 2.1. If [g] contains the at metric g0, then the corresponding
ambient metric is

g = 2dt d(ρt) + t2g0.

Similarly, if [g] contains an Einstein metric gΛ, Ric(gΛ) = ΛgΛ, then

g = 2dt d(ρt) + t2

1 +

Λρ

2(n− 1)

2

gΛ

is an ambient metric for [gΛ] that is Ricci-at.

2.2. Poincaré-Einstein metrics

As noticed by Feerman and Graham in [15, 16], their ambient metric con-
struction associating a (p+ 1, q + 1)-signature Ricci-at metric g to a (p, q)-
signature conformal structure [g], is very closely related to another construc-
tion, called the Poincaré-Einstein construction, which associates a certain
(p+ 1, q)- or (p, q + 1)-signature Einstein metric gPE to the conformal class
[g]. This construction goes back to Penrose [33] and is widely used by math-
ematical physicists1 in such elds as AdS/CFT correspondence [13, 34] and
General Relativity, where it describes the geometry near horizons of black
holes [12] or the evolution of conformal data from hypersurfaces formed by
the starting points of all null geodesics of a spacetime, which is of importance
in Penrose’s conformal cyclic cosmology, [32, 35].

As the ambient metric construction is a generalisation of the relation be-
tween the Minkowski spacetime (Rn+1,1, η) and the at conformal structure
on the Euclidean sphere Sn, which is its light cone cut, the Poincaré-Einstein

1There is a confusion of terminology: mathematical physicists refer to the
Poincaré-Einstein construction as ‘Feerman-Graham construction’, whereas in
mathematics, since the rst Feerman-Graham paper [15], this term has been re-
served for the ‘ambient metric construction’.
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construction is the generalisation of the relation between the usual hyper-
bolic metric on the interior of a ball Bn+1 and the conformally at structure
on the Euclidean sphere Sn which is the boundary of this ball. In the lowest
dimension this simple ball-sphere relation is just the relation describing the
classical Poincaré disk model of the 2-dimensional geometry. To be more
explicit, the passage from an ambient metric g in M̃ to the corresponding
Poincaré-Einstein metric gPE in one dimension lower is as follows.

Let [g] be a conformal class of signature (p, q), with p denoting the

number of spacelike vectors in an orthonormal basis, and let (M̃, g) be its
ambient space, expressed in the ambient coordinates (t, xi, ρ) as in (2.1).

Then consider a hypersurface in M̃ dened in the following steps:

• Let MPE be an open set in R
n+1 parametrized by the coordinates

(r > 0, xi).

• Imbed MPE into M̃ , via the map ι : MPE → M̃ , given by

ι(r, xi) = (t = 1
r , x

i, ρ = − ϵ
2r

2).

Choose the parameter ϵ to be either 1 or −1.

• For the choice of the parameter ϵ, pull the ambient metric g back by
ι∗ from M̃ to MPE obtaining:

gPE := ι∗(g) = 1
r2


ϵdr2 + g(xi,− ϵ

2r
2)

.

• The metric gPE on MPE has signature (p+ 1, q) if ϵ = 1 and (p, q + 1)
if ϵ = −1.

• More importantly, the metric gPE on MPE is Einstein,

Ric(gPE) = −ϵngPE ,

since the ambient metric g is Ricci-at.

For each chosen value of the parameter ϵ, the pseudo-Riemannian manifold
(MPE , gPE) is the Poincaré-Einstein manifold associated with the conformal
structure [g] on M . The metric gPE is called the Poincaré-Einstein metric
for [g]. Note that the metric ĝ = r2gPE , conformally related to gPE , denes a
regular conformal class of metrics on the boundary ∂MPE of MPE , given by
∂MPE = {(r, xi) | r = 0}. The conformal manifold (∂MPE , [ĝ]) is (locally)
conformally equivalent to the original conformal structure (M, [g]).
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We remark, that via the procedure described above, all explicit ambient
metrics appearing in this paper have their Poincaré-Einstein counterparts
and we will not comment any further on this relation in what follows.

2.3. The Feerman-Graham equations

Given a conformal structure and having its representative
0

g, the search for
a corresponding Feerman-Graham ambient metric

g = 2d(ρt)dt+ t2g(x, ρ),

consists in nding a 1-parameter family g(x, ρ) of metrics on M with g|ρ=0 =
0

g and such that the Ricci tensor of the metric g satises equations (1.2). In
Ref. [16, Eq. 3.17] the components of Ric(g) for (2.1) were written explicitly
for the unknown tensor g = g(xi, ρ). Writing g as g = gijdx

idxj , with gij =
gij(x

k, ρ) (or in abstract index notation), equation (1.2) then reads as:

ρg̈ij − ρgklġikġjl +
1
2ρg

klġklġij −
n−2
2 ġij −

1
2g

klġklgij +Rij = O(ρm),(2.3)

gkl (∇kġil −∇iġkl) = O(ρm),(2.4)

gklg̈kl +
1
2g

klgpq ġpkġql = O(ρm),(2.5)

for m = ∞ when n is odd and m = n−2
2 when n is even. Here for each ρ, ∇

is the Levi-Civita connection of the metric g(xk, ρ) = gij(x
k, ρ)dxidxj , Rij

is the Ricci tensor of g(xi, ρ), and the dot denotes partial derivative of gij
with respect to ρ. The left-hand sides of these equations are the components
of the Ricci-tensor Ric(g) of g.

The rst of the Feerman-Graham equations above is a system of nonlin-
ear 2nd order PDEs for the coecients gij . It is also obvious that nding the

general solution for this system with a given initial condition gij |ρ=0 =
0

gij
is rather hopeless. One can search for Feerman-Graham metrics assuming
that the metric g(x, ρ) admits a power series expansion with integer powers
in ρ. Feerman and Graham [16] gave expressions for the rst few terms in
the power series expansion in ρ of g(x, ρ) so that g is Ricci-at up to the
order 3. Up to this order, their expansion reads:

g =
0

g + 2Pρ+ µρ2 + . . . ,

with P being the Schouten tensor for
0

g, and

(4− n)µij = Bij + (4− n)P k
i Pkj .
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Here B is the Bach tensor of the metric
0

g dened by

Bij =
0

∇
kAijk − P

klWkijl,

with

Aijk =
0

∇jPki −
0

∇kPji

the Cotton tensor. The symbol
0

∇ denotes the Levi-Civita connection for
0

g

and W i
jkl is the Weyl tensor for

0

g.

2.4. Our approach

Our approach in this paper will be the following: We will write the unknown
family of semi-Riemannian metrics g(xi, ρ) in the Feerman-Graham metric
as

g(xi, ρ) =
0

g(xi) + h(xi, ρ),

where
0

g =
0

g(xi) is a suitable metric from the conformal class (independent
of ρ) and h = h(xi, ρ) is symmetric, ρ-dependent symmetric bilinear form
on M . For our approach we will express the Levi-Civita connection and
the Ricci tensor of g(xi, ρ), which is needed in equations (2.3, 2.4, 2.5), in

terms of the Levi-Civita connection and the Ricci tensor of
0

g. For this, recall
the formulas relating the Levi-Civita connections and the curvatures of two

given metrics gij and
0

gij . The dierence of both Levi-Civita connections is
given by a tensor eld Ck

ij ,

(2.6) ∇iXj −
0

∇iXj = Ck
ijXk,

where Xk is a one-form. For vector elds we have

∇iX
j −

0

∇iX
j = −Cj

ikX
k.

Since both connections are torsion-free, it is Ck
ij = Ck

ji, which, together
with ∇igjk = 0, implies

(2.7) Ck
ij =

1
2g

kl


0

∇lgij −
0

∇igjl −
0

∇jgil



For the curvature tensors, dened by R l
ijk vl = 2∇[i∇j]vk we obtain

R l
ijk =

0

R
l

ijk + 2
0

∇ [iC
l
j]k + 2Cp

k[iC
l
j]p,
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and hence for the Ricci tensor

(2.8) Rij = R k
ikj =

0

Rij +
0

∇iC
k
kj −

0

∇kC
k
ij + Cp

ijC
k
kp − Cp

jkC
k
ip.

We will use these formulas later on.

Unless we use indices, for a symmetric (0, 2)-tensor h we denote by h♯

the corresponding endomorphism dened by the metric g via h(X,Y ) =
g(h♯X,Y ). In the following it will be clear from the context which metric
will be used to perform this dualisation. We will say that h is two-step nilpo-
tent if (h♯)2 = 0. When making statements about the image of a symmetric
(0, 2)-tensor, we refer to the image of h♯ as an endomorphism of TM . It is
immediate that a symmetric (0, 2)-tensor is 2-step nilpotent if and only if its
image is trivial or totally null. In particular, we have that Im(h♯) ⊂ Ker(h♯).
We summarise the situation in case of the Schouten tensor:

Lemma 2.1. Let (M,
0

g) be a semi-Riemannian manifold with Ricci tensor
Ric and Schouten tensor P. Then the following are equivalent:

(1) (P♯)2 = 0,

(2) (Ric♯)2 = 0,

(3) Im(P♯) is totally null or trivial,

(4) Im(Ric♯) is totally null or trivial.

If any of these conditions is satised, then (M,
0

g) has vanishing scalar cur-
vature.

Hence, since we aim to nd ambient metrics for metrics with two-step
nilpotent Schouten tensor P, it is reasonable to assume that there is a to-
tally null vector distribution N that contains the image of the Schouten
tensor (which will be the case for the null Ricci Walker manifolds of the
Introduction and Section 4). On the other hand from [16] we know that
ḣ|ρ=0 = 2P, which leads to our ansatz for the ambient metric to assume
that Im(h(ρ)) ⊂ N for all ρ. It will turn out that further conditions on N
and on h will be needed to ensure that the Feerman-Graham equations
become linear in h.
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3. Towards linear Feerman-Graham equations

In this section we will compute the Ricci tensor for metrics of the form

g = 2d(ρt)dt+ t2(
0

g + h),

where h = h(ρ) is a ρ-dependent family of symmetric bilinear forms with
h|ρ=0 = 0 and moreover with the property that

Im(h♯) ⊂ N ,

for a totally null distribution N . We will then successively impose further
conditions on N and on h so that the Feerman-Graham equations become
at most quadratic and eventually linear in h.

3.1. Conventions

In this and in the following sections we work with specic (co)-frames. Hence

we will distinguish between tensors (written in boldface letters)
0

g, h and

later g, and their components
0

gij , hij and gij in a specic (co)-frame that
is adapted to N and later on satises additional properties. Some of the
statements in the next sections will only hold for the components hij of h
in such a basis.

Let
0

g be a semi-Riemannian metric and N be a vector distribution that
is totally null and of rank p ≥ 1. We x a local frame

e1, . . . , en,

(3.1)

such that span{e1, . . . ep} = N and span{e1, . . . , en−p} = K := N⊥.

Note that p ≤ n− p. We will use the following index conventions:

(3.2)

i, j, k, . . . ∈ {1, . . . , n}
a, b, c, . . . ∈ {1, . . . , p}

A,B,C, . . . ∈ {p+ 1, . . . , n− p}
ā, b̄, c̄ . . . ∈ {n− p+ 1, . . . , n}.

We use the indices i, j, k, . . . as abstract indices (or with respect to an ar-
bitrary frame), whereas indices ā, B, c̄ will refer to components in a frame
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ea, eB, ec̄, such that

0

g(eā, eb) =
0

g(eb, eā) =
0

gāb =
0

gbā constant and non degenerate,
0

g(eA, eB) =
0

g(eB, eA) =
0

gAB =
0

gBA constant and non degenerate,
0

g(ei, ej) = 0 otherwise.

(3.3)

In other words, if Θ1, . . . ,Θn denote the algebraic duals to the ei’s, i.e.

Θ
i(ej) = δij

then the metric is

(3.4)
0

g =
0

gijΘ
i
Θ

j = 2
0

gac̄Θ
a
Θ

c̄ +
0

gABΘ
A
Θ

B.

Note that the inverse
0

gij of the matrix
0

gij is given by
0

gab̄ =
0

gb̄a and
0

gAB

satisfying

0

g
ab̄

0

gb̄c = δ c
a ,

0

gāb
0

gbc̄ = δ c̄
ā ,

0

gAB

0

gBC = δ C
A .

This relates the algebraic duals Θi to the metric duals
0

g(ei, .) of ei as follows

Θ
a =

0

gac̄
0

g(ec̄, .), Θ
ā =

0

gāc
0

g(ec, .), Θ
A =

0

gAB 0

g(eB, .)

Now we consider a symmetric bilinear form h (depending on a parameter ρ)
that satises

Im(h♯) ⊂ N .

This is equivalent for h to be of the form

(3.5) h := hāc̄Θ
ā
Θ

c̄ = hijΘ
i
Θ

j ,

i.e., hij = 0 unless i, j = ā, c̄, for smooth functions hāc̄ = hāc̄(ρ, x) with hāc̄ =
hc̄ā, The corresponding (1, 1) tensor h♯ has components

h b
ā = hāc̄

0

gbc̄

and all others zero, i.e.

h♯ = h b
ā Θ

ā ⊗ eb.

and satises

(h♯)2 = 0, i.e. h k
ā h b

k = 0.
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It holds that

K = N⊥ ⊂ ker(h♯).

Finally, we obtain the (2, 0)-tensor dened by hij =
0

gik
0

gjlhkl, i.e., with

hbd =
0

gbā
0

gdc̄hāc̄

and all other components zero. From now on the components of all the tensor
are given in the frame (3.1) with the index conventions as in (3.3).

Lemma 3.1. For h as in (3.5) denote by h(r) = (h
(r)
ij ) the tensor whose

components are given by the r-th ∂ρ-derivative of the components of hij,
i.e., h(r) := ∂r

ρ(hij)Θ
i ◦Θj. Then

(3.6)
0

gijh
(r)
ij = 0 and h

(r)
ik h(s)kj = 0 for all 0 ≤ r, s.

Moreover, if
0

∇ is the Levi-Civita connection of
0

g, then

(3.7)
0

∇kh
(r)
ij = 0, unless i = ā or j = ā,

as well as

(3.8)
0

gkl
0

∇ih
(r)
kl = 0,

and

(3.9) h
(r) l
i

0

∇kh
(s)
jl = −h

(s) l
j

0

∇kh
(r)
il

for all r, s = 0, 1, . . . .

Proof. Equations (3.6) follow from the fact that h j
i squares to zero and is

trace free. Indeed, since hij = 0 unless i, j = ā, c̄, we also have for the deriva-

tives that h
(r)
ij = 0 unless i, j = ā, c̄, for all r ≥ 0. Therefore h

(r)
ik h(s)kj = 0

unless i, j = ā, c̄ and in this case we have

h
(r)
āk h

(s)k
c̄ = h

(r)

āb̄
h(s)b̄c̄ = h

(r)

āb̄

0

gb̄d̄ h
(s)

d̄c̄
= 0,

because
0

gb̄d̄ = 0. Equation (3.7) follows from

0

∇Xh(ei, ej) = X(h(ei, ej))− h(
0

∇Xei, ej)− h(ei,
0

∇Xej) = 0

unless ei or ej is equal to eā.



Conformal Walker metrics and linear Feerman-Graham equations 711

The last equation (3.9) follows from (3.6),

0 = ∇k


h
(r) l
i h

(s)
jl


= h

(r) l
i ∇kh

(s)
jl + h

(s) l
j ∇kh

(r)
il ,

by the Leibniz rule. □

3.2. The Ricci tensor of a 2-step nilpotent pertubation

In the following, for a semi-Riemannian metric
0

g we will consider pertur-
bations by a 2-step nilpotent, symmetric bilinear form h depending on a
parameter ρ. By the results in the previous section we can write this per-
turbation as

(3.10) g =
0

g + h, where h = hāc̄Θ
ā ◦Θc̄ and

0

g =
0

g
ab̄Θ

a
Θ

b̄ +
0

gABΘ
A
Θ

B,

where we use the conventions in Section 3.1 and with smooth functions
hāc̄ = hāc̄(ρ, x) with hāc̄ = hc̄ā. The metric coecients of g are gij(ρ, x) :=
0

gij(x) + hij(ρ, x). The perturbed metric g has the property that the inverse
of g is linear in the perturbation h, i.e., if gij are the coecients of the
inverse of gij , then

(3.11) gij =
0

gij − hij .

In the following we will raise the indices with
0

gij . First we observe:

Proposition 3.1. Let
0

g be a semi-Riemannan metric and h a ρ-dependent,
2-step nilpotent symmetric bilinear form. Then for the metric

(3.12) g = 2d(ρt)dt+ t2(
0

g + h)

the possibly non-vanishing components of the Ricci tensor are given by

0

gkl
0

∇kḣil and ρḧij −


n

2
− 1


ḣij +Rij .(3.13)

Here the dots denote the ρ derivatives of the hij’s and Rij are the components

of the Ricci tensor of g =
0

g + h.

Proof. The components of the Ricci tensor of g are given by the left-hand
sides of the Feerman-Graham equations (2.3, 2.4, 2.5). Lemma 3.1 shows
that the term in the third Feerman-Graham equation (2.5) is zero.
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In order to analyse the term in the second Feerman-Graham equa-

tion (2.4), we use formula (2.6) for expressing ∇ in terms of
0

∇ and the
tensor Ck

ij = Ck
ji, i.e.,

gkl (∇kġil −∇iġkl) = (
0

gkl − hkl)(
0

∇kḣil −
0

∇iḣkl + Cp
klḣip − Cp

ilḣpk)

(3.14)

=
0

gkl(
0

∇kḣil + Cp
klḣip − Cp

ilḣpk)− hkl
0

∇kḣil − hklCp
klḣip,

because h is trace free and because of Lemma 3.1. For Ck
ij , the formula

(2.7) reduces to

(3.15) Ck
ij =

1

2
(

0

gkl − hkl)(
0

∇lhij −
0

∇ihjl −
0

∇jhil),

again by Lemma 3.1. Hence

ḣkpC
p
ij =

1

2
ḣ l
k (

0

∇lhij −
0

∇ihjl −
0

∇jhil).

Therefore the last term in (3.14) becomes

2hklḣipC
p
kl = hklḣ p

i (
0

∇phkl −
0

∇khpl −
0

∇lhpk)

= −hkl(hkl
0

∇pḣ
p
i − hpl

0

∇kḣ
p
i − hpk

0

∇lḣ
p
i ) = 0,

because of (3.9) in Lemma 3.1. Similarly, the remaining term in (3.14) is

0

gkl(Cp
klḣip − Cp

ilḣpk)− hkl
0

∇kḣil = −ḣ l
i

0

∇kh
k
l − hkl

0

∇kḣil +
1
2 ḣkl

0

∇ih
kl = 0.

This veries the formula for the terms in the second Feerman-Graham
equation. The term in the rst Feerman-Graham equation (2.3) is seen to
be equal to the second term in (3.13) by using Lemma 3.1. □

This proposition shows that, apart from the Ricci tensor of g, the
Feerman-Graham equations contain only terms that are linear in h. Thus,

we now determine the Ricci tensor of a metric g =
0

g + h in terms of the

Ricci tensor of
0

g and of h using formula (2.8) and apply this to a metric

g = 2d(ρt)dt+ t2(
0

g + h). For this we note that for a metric as in (3.10) with
inverse (3.11) the formula (2.8) for the Ricci tensor of g contains terms up
to fourth order in h. Hence we observe:



Conformal Walker metrics and linear Feerman-Graham equations 713

Proposition 3.2. Let
0

g be a semi-Riemannian metric and h be a 2-step

nilpotent symmetric bilinear form. The Ricci tensor Rij of g =
0

g + h is given
by

(3.16) Rij =
0

Rij +
0

∇
k

0

∇(ihj)k −
1
2

0

∇
k

0

∇khij +Q
(2)
ij (h) +Q

(3)
ij (h) +Q

(4)
ij (h),

in which we raise the indices with
0

gij and where the Q
(r)
ij (h) are symmetric

tensors that are of order r = 2, 3, 4 in hij, and which are given explicitly
in (3.20), (3.19) and (3.18) below.

Now we are going to compute the Q
(k)
ij (h)’s by using equation (2.8) for

the Ricci tensor of g =
0

g + h. First we note that the formula (3.15) for Ck
ij

and Lemma 3.1 implies

Ck
ki = −1

2(
0

gkl − hkl)
0

∇ihkl = 0.

Hence (2.8) simplies to

(3.17) Rij =
0

Rij −
0

∇kC
k
ij − Cp

jkC
k
ip.

We start with the terms of fourth order in h: by (3.9) in Lemma 3.1 we get

Q
(4)
ij (h) = −1

4h
pqhkl(

0

∇qhjk −
0

∇jhkq −
0

∇khjq)(
0

∇lhip −
0

∇ihlp −
0

∇phil)

(3.18)

= −1
4h

pqhkl(
0

∇qhjk −
0

∇khjq)(
0

∇lhip −
0

∇phil)

= 1
4h

abhcd(
0

∇chjb −
0

∇bhjc)(
0

∇dhia −
0

∇ahid)

= 1
4h

abhcd(h(ej , [ec, eb]))(h(ei, [ed, ea])),

where, for the last equality, we have written the summation in terms of the

frame eld ei and used that hia = 0. Note that Q
(4)
ij (h) = 0 if [ea, eb] ∈ K.
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Now we compute the third order terms and because of (3.7) in
Lemma 3.1 we obtain

Q
(3)
ij (h) = −1

2h
kl 0

gpq


0

∇ihkp
0

∇jhlq − (
0

∇phik −
0

∇khip)(
0

∇qhjl −
0

∇lhjq)
(3.19)

= −1
2h

ab 0

gc̄d


0

∇ihac̄
0

∇jhbd − (
0

∇c̄hia −
0

∇ahic̄)(
0

∇dhjb −
0

∇bhjd)


− 1
2h

ab 0

gCD


0

∇ihaC
0

∇jhbD − (
0

∇Chia −
0

∇ahiC)(
0

∇Dhjb −
0

∇bhjD)


= 1
2h

ab 0

gc̄d(
0

∇c̄hia −
0

∇ahic̄)(
0

∇dhjb −
0

∇bhjd)

+ 1
2h

ab 0

gCD

(

0

∇Chia −
0

∇ahiC)(
0

∇Dhjb −
0

∇bhjD)


= 1
2h

ab


0

gc̄d(
0

∇c̄hia −
0

∇ahic̄)h(ej , [ed, eb])


+ 1
2h

ab


0

gCD((
0

∇Chia −
0

∇ahiC)(h(ej , [eb, eD])

.

Clearly, this vanishes if [ea, eb] ∈ K and [ea, eB] ∈ K, and in particular if K
is involutive.

Finally, we turn to the second order terms. They are given as

Q
(2)
ij (h) =

0

∇kh
kl

1
2

0

∇lhij −
0

∇(ihj)l


+ hkl


1
2

0

∇k

0

∇lhij −
0

∇k

0

∇(ihj)l

(3.20)

− 1
4

0

∇ih
kl

0

∇jhkl −
1
4


0

∇
kh l

i −
0

∇
lh k

i


0

∇lhjk −
0

∇khjl


.

First we rewrite the last term as

1
4


0

∇
kh l

i −
0

∇
lh k

i


0

∇lhjk −
0

∇khjl


=

0

∇[khl]i
0

∇
kh l

j =
0

∇[khl]j
0

∇
kh l

i .

Next, we analyse the term hkl
0

∇k

0

∇(ihj)l using the divergence of h,
Lemma 3.1, the curvature, and the fact that h is 2-step nilpotent:

hkl
0

∇k

0

∇ihjl

= −hjl
0

∇k

0

∇ih
kl −

0

∇khlj
0

∇ih
kl −

0

∇kh
kl

0

∇ihjl

= −hjl


0

∇i

0

∇kh
kl + hpl

0

R
k

ki p + hkp
0

R
l

ki p


−

0

∇khlj
0

∇ih
kl −

0

∇kh
kl

0

∇ihjl

= −hjl
0

∇i

0

∇kh
kl − h l

j h
kp

0

Rkilp −
0

∇khlj
0

∇ih
kl −

0

∇kh
kl

0

∇ihjl.
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Hence, we obtain

Q
(2)
ij (h) = 1

2

0

∇kh
kl

0

∇lhij + hl(i
0

∇j)

0

∇kh
kl + 1

2h
kl

0

∇k

0

∇lhij − hkphl (i
0

Rj)klp

+
0

∇khl(i
0

∇j)h
kl − 1

4

0

∇ih
kl

0

∇jhkl −
0

∇[khl]i
0

∇
kh l

j .

Therefore, if h is divergence free, i.e. ∇kh
kl = 0, we get formula (3.21) for

Q
(2)
ij (h).

Proposition 3.3. Let
0

g be a semi-Riemannian metric and h be a 2-step
nilpotent symmetric bilinear form such that there is a totally null distribution
N with Im(h♯) ⊂ N and K = N⊥ involutive. Then the Ricci tensor Rij of

g =
0

g + h is at most quadratic in h, i.e., the terms Q
(3)
ij (h) and Q

(4)
ij (h)

in (3.16) vanish. If we assume in addition that h is divergence free, then

Q
(2)
ij (h) = 1

2h
kl

0

∇k

0

∇lhij − hkphl (i
0

Rj)klp +
0

∇khl(i
0

∇j)h
kl(3.21)

− 1
4

0

∇ih
kl

0

∇jhkl −
0

∇[khl]i
0

∇
kh l

j .

We can apply these results to the metric g = 2d(ρt)dt+ t2g as dened
in (3.12): Under the assumption that K is involutive and that h is divergence
free we can apply Proposition 3.1. Since ḣ is divergence free if h is divergence
free, it implies that g is Ricci-at if and only if

ρḧij −


n

2
− 1


ḣij +

0

∇
k

0

∇(ihj)k −
1

2

0

∇
k

0

∇khij +
0

Rij +Q
(2)
ij (h) = 0,(3.22)

where Q
(2)
ij (h) is given as in (3.21). Moreover, that h is divergence free also

allows us to simplify the term
0

∇k
0

∇(ihj)k. In fact, if
0

∇khik = 0 we get

(3.23)
0

∇
k

0

∇ihjk =
0

R
k l
ij hkl +

0

R
k l
ik hjl +

0

∇i

0

∇
khjk =

0

R
k l
ij hkl +

0

R
l
i hjl.

This shows that we can eliminate all
0

∇i derivatives from this term to obtain

Corollary 3.1. Let
0

g be a semi-Riemannian metric and h be a 2-step nilpo-
tent symmetric bilinear form such that there is an involutive distribution K
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such that Im(h♯) ⊂ N = K⊥ ⊂ K. Then the metric

g = 2d(ρt)dt+ t2(
0

g + h)

is Ricci-at if the perturbation h is divergence free and

ρḧij −
n−2
2 ḣij −

1

2

0

□hij +
0

R
k l
ij hkl +

0

R
k
(ihj)k +

0

Rij +Q
(2)
ij (h) = 0,(3.24)

where Q
(2)
ij (h) is given in (3.21) and

0

□hij =
0

∇k
0

∇khij.

Now we are looking for geometric conditions such that Q
(2)
ij (h) simplies

further and perhaps vanishes. In fact we show:

Theorem 3.1. Let
0

g be a semi-Riemannian metric and h be a divergence
free, 2-step nilpotent symmetric bilinear form. If there is an involutive dis-
tribution K with Im(h♯) ⊂ N = K⊥ ⊂ K and

0

∇ZY ∈ K⊥, for all Y, Z ∈ K⊥(3.25)
0

∇XY ∈ K, for all X ∈ TM, Y ∈ K⊥,(3.26)

then,

(3.27) Q
(2)
ij (h) = 1

2h
kl

0

∇k

0

∇lhij −
0

∇[khl]i
0

∇kh l
j .

Moreover, if in addition

(3.28) LY h = 0, for all Y ∈ K⊥,

then Q
(2)
ij is zero, i.e., the Ricci tensor of g =

0

g + h is linear in the pertur-
bation h,

(3.29) Rij =
0

Rij +
0

∇
k

0

∇(ihj)k −
1

2

0

∇
k

0

∇khij .

Proof. We work in a basis (ea, eA, eā) and use the conventions as in Sec-
tion 3.1. First note that assumption (3.26) implies that terms of the form
0

∇khal or
0

∇khAB are zero (where we use our index convention). This implies

that in formula (3.21) for Q
(2)
ij (h) the terms

0

∇khli
0

∇jh
kl and

0

∇ih
kl

0

∇jhkl
vanish.



Conformal Walker metrics and linear Feerman-Graham equations 717

Next we look at the curvature term in formula (3.21) for Q
(2)
ij (h). Again

by assumption (3.26) we have

0

R(ei, ea, eb, ec) = −
0

g(
0

∇ea
eb,

0

∇ei
ec) +

0

g(
0

∇ei
eb,

0

∇ea
ec),

which vanishes because of (3.25) and (3.26). This proves the rst statement.
To prove the second point, assumption (3.26) gives

0

∇[khl]i
0

∇
kh l

j = −1
2

0

gāb
0

gc̄d
0

∇dhāi
0

∇bhc̄j +
1
2

0

gAB 0

gCD(h([eA, eC ], ei)
0

∇BhDj .

(3.30)

Note that the last term in this formula is zero since K is involutive. On the
other hand, we observe that for Y ∈ K⊥

0

∇Y h = LY h,

because of (3.26). This also shows that in our situation LY h is tensorial in
Y ∈ K⊥. If we now assume that LY h = 0 for all Y ∈ K⊥, then ∇Y h = 0 for
all Y ∈ K⊥ and thus the remaining term in (3.30) vanishes, as well as the

term hkl
0

∇k

0

∇lhij . Consequently, Q
(2)
ij (h) is zero. □

Theorem 3.1 gives another corollary.

Corollary 3.2. Let
0

g be a semi-Riemannian metric and h be a 2-step nilpo-
tent symmetric bilinear form. If there is a totally null distribution N such
that Im(h♯) ⊂ N , K = N⊥ is involutive and conditions (3.25) and (3.26)

of Theorem 3.1 are satised, then the metric g = 2d(ρt)dt+ t2(
0

g + h) is
Ricci-at if the following system of linear PDEs on h = (hij) is satisied:

div(h) = 0,(3.31)

LY h = 0, ∀ Y ∈ K⊥,(3.32)

ρḧij −
n−2
2 ḣij −

1
2

0

□hij +
0

R
k l
ij hkl +

0

R
k
(ihj)k +

0

Rij = 0.(3.33)

The examples of conformal structures in [3, 26] satisfy the assumptions
of Theorem 3.1 and the corollary, which enabled us to use the ansatz to nd
Ricci-at ambient metrics.

Note that the assumptions of Theorem 3.1 imply that
0

∇Xea ∈ K but
not that K or K⊥ = span(e1, . . . , ep) are parallel distributions. Indeed, the
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terms

2
0

g(
0

∇iea, eA) =
0

g([ei, ea], eA) +
0

g([eA, ea], ei) +
0

g([eA, ei], ea)

might be non-zero for i = B or i = c̄.

4. Ambient metrics for null Ricci Walker metrics

In this section we apply the results of the previous section to conformal
classes given by a null Ricci Walker metric g as dened in the introduction.
First we review some results about Walker metrics, then focus on the Ricci
tensor, and derive a condition for being null Ricci Walker. Recall that we
dened a null Ricci Walker manifold as a semi-Riemannian manifold that
admits a vector distribution N ⊂ TM of rank p > 0 such that N is totally
null, invariant under parallel transport with respect to the Levi-Civita con-
nection, and contains the image of the Schouten tensor P, or equivalently of
the Ricci tensor, when considered as endomorphisms. In regards to the ambi-
ent metric, given that of ḣ|ρ=0 = 2P, our ansatz for h in the previous section
was to assume that the image of h is also contained in N . We will show here
that for null Ricci Walker metrics this ansatz is in fact necessary, at least
up to the critical order when n is even and hence proving Theorem 1.2 from
the introduction. Finally we will draw the conclusions from the previous
sections about the ambient metric of null Ricci Walker-manifolds.

Note that in Section 4.1 we drop the sux 0 on
0

g for brevity, and use

it again in Section 4.2 when we need to distinguish between
0

g and the ρ-
dependent family g. Moreover, in this section we will use the same index
conventions as in (3.2).

4.1. Walker manifolds

A semi-Riemannian manifold (M,g) is a Walker manifold if there is a vec-
tor distribution N ⊂ TM of rank p > 0 that is a totally null with respect
to g and invariant under parallel transport with respect to the Levi-Civita
connection of g. The most comprehensive study of Walker manifolds can be
found in [8]. In the following we will derive a description that is useful for
our purpose and allows us to construct examples.

Proposition 4.1. Let (M,g) be a semi-Riemannian manifold of dimen-
sion n. Then the following conditions are equivalent

(1) (M,g) is a Walker manifold with parallel null distribution N .



Conformal Walker metrics and linear Feerman-Graham equations 719

(2) There exists local coordinates (x1, . . . , xn), so-called Walker coordi-
nates, such that

(4.1) g = 2dxā(δābdx
b + FāBdx

B +Hāb̄dx
b̄) +GABdx

AdxB,

where the FāB and GAB independent of the xa’s. Here we use the same
index conventions as in (3.2) as well as δāb = 1 if ā = n− p+ b and
zero otherwise. In these coordinates, the parallel null distribution N is
given by the span of the ∂a = ∂

∂xa ’s.

(3) There is a frame (e1, . . . , en) with dual frame (Θ1, . . . ,Θn) such that

(4.2) g = 2gac̄Θ
a ◦Θc̄ + gABΘ

A ◦ΘB,

with constants gac̄ and gAB and such that

(4.3)

K = span(e1, . . . en−p) is involutive,

[ea, eb] = [ea, eB] = 0,

[ea, ec̄] ∈ K⊥, [eB, ec̄] ∈ K, and [eā, ec̄] ∈ K⊥.

In this frame N = K⊥ = span(e1, . . . , ep).

Proof. The equivalence of items (4.1) and (4.1) is due to Walker [36]. In order
to show that (4.1) implies (4.1), we x some Walker coordinates (x1, . . . , xn)
such that

g = 2dxā(δābdx
b + FāBdx

B +Hāb̄dx
b̄) +GABdx

AdxB,

with FāB and GAB independent of the xa’s. Then we set

ea := ∂a, eA := C B
A


∂B − FāBδ

āb∂b


, ec̄ := ∂c̄ −Hāc̄δ

āb∂b,

where C B
A is a matrix such that C B

A GBEC
E

D = ϵAδAD, with ϵA = ±1. Note
that, since GAB does not depend on the xa’s, also C B

A does not depend on
the xa’s. We claim that this frame satises all the conditions (4.3). Clearly,
the metric in this frame has the correct form and [ea, eb] = 0. But also the
other commutator relations are satised:

[ea, ec̄] =
[
∂a, ∂c̄ −Hb̄c̄δ

b̄e∂e

]
= −dHb̄c̄(∂a)δ

b̄e∂e ∈ K⊥,

[ea, eA] =
[
∂a, C

B
A


∂B − Fc̄Bδ

c̄d∂d

]
= 0,

[ec̄, eA] =
[
∂c̄ −Hāc̄δ

āb∂b, C
B

A


∂B − FēBδ

ēd∂d

]
∈ K.
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This shows that all the conditions (4.3) are satised.
Conversely, we have to show that the bracket relations (4.3) imply that

∇Xea ∈ N = K⊥. For this we use the Koszul formula

2g(∇ei
ea, ej) = g([ei, ea], ej) + g([ej , ea], ei) + g([ej , ei], ea).

From (4.3) is follows that this is zero for all j = a and j = B. Hence, ∇Xea ∈

N = K⊥ = span(e1, . . . , ep). □

Next we record formulas for the curvature of a Walker metric.

Lemma 4.1. Let (M,g) be a Walker manifold and let (e1, . . . , en) be a
frame as in (4.1) of Proposition 4.1 such that g is given as in (4.2).

(1) Let Γk
ij the connection components with respect to the frame

(e1, . . . , en), i.e., dened by ∇iej = Γk
ijek. Then

(4.4)

Γ
k
ab = Γ

k
ba = Γ

k
Ab = Γ

k
bA = 0,

Γ
B
ai = Γ

B
ia = 0,

Γ
c̄
ai = Γ

c̄
ia = Γ

c̄
Ai = Γ

c̄
iA = 0.

(2) The curvature tensor and and the Ricci tensor of g satisfy

(4.5) Rijab = RijaB = 0,

and

(4.6) Rab = RaB = 0,

for all a, b = 1, . . . , p, B = p+ 1, . . . n− p and i, j = 1, . . . n.

Proof. The properties of the connection components are a direct consequence
of K and K⊥ being parallel distributions and of the Koszul formula

Γ
k
ij =

1
2g

kl (g([ei, ej ], el) + g([el, ej ], ei) + g([el, ei], ej)) .

As K and K⊥ are parallel distributions, in the given frame, the curvature
tensor of a Walker manifold satises equations (4.5). Indeed, we have for
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example

RbiAd = g(
0

R(eb, ei)eA, ed) = 0,

since K is parallel and thus R(eb, ei)eA ∈ K. This implies that the compo-
nents of the Ricci tensor

Rai = gbc̄(Rbaic̄ +Rc̄aib) + gABRAaiB = gbc̄Rc̄aib

are zero unless i = d̄. □

This shows that the terms of the Ricci tensor that could prevent a Walker
metric from being null Ricci Walker are the following

(4.7)

Rāb = gc̄dRdābc̄,

RAB = gCDRCABD,

RāB = gc̄dRc̄Bād + gACRABāC .

We will now give conditions for these terms to vanish. The following results
will also provide a method of constructing examples of null Ricci Walker
metrics in Section 5, in particular for the examples of Lie groups with left-
invariant metric.

Proposition 4.2. Let g be a metric as in (4.2) and assume that the frame
(e1, . . . , en) satises the following bracket relations

[ei, ej ] = rkijek

with smooth functions rkij satisfying the relations

(4.8) rkab = rkaB = rc̄AB = rb̄ac̄ = rBac̄ = rāBc̄ = rb̄āc̄ = rBāc̄ = 0

(these are just the conditions in Proposition 4.1). If we assume in addition
that

rCAB = 0,(4.9)

and

drdbc̄(eA) = 0,(4.10)

drdBC(eA) = drDBc̄(eA) = 0,(4.11)
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then g is a Walker metric whose curvature satises in addition

RABCi = RābDc̄ = 0, RAi = 0,

and

Rābc̄d = gf(ādr
f
c̄)d(eb).

Moreover, g is null Ricci Walker, if and only if

(4.12) Rbc̄ =
1
2


gf c̄g

āddrfād(eb) + drdc̄d(eb)

= 0.

Proof. First we compute the curvature components Rbijd. Because of the
previous lemma we only have to compute Rbāc̄d as all other are zero. In
terms of the rkij ’s the connection coecients Γk

ij write as

(4.13) Γ
k
ij =

1

2
rkij + gklrml(igj)m =

1

2
rkij − gklgm(ir

m
j)l.

After imposing the condition on the frame to dene a Walker metric, i.e.,
after imposing equations (4.8), Lemma 4.1 leaves us with the only possibly
non-vanishing connection coecients Γb

ac̄, Γ
b
AB, Γ

C
AB, Γ

b
Ac̄, Γ

B
Ac̄ and Γk

āc̄.
Imposing the additional condition (4.9), rCAB = 0, implies

Γ
C
AB = −gCDgE(Ar

E
B)D = 0,

This together with Γc̄
AB = 0, implies that ∇eA

eB ∈ K⊥ and hence, with K⊥

being parallel, that

RABCD = 0,

and therefore by (4.7) that

RAB = 0.

Next, we look at the curvature terms in Rc̄B = gādRāBc̄d + gACRABc̄C and
compute

RāBc̄d = −gb̄ddΓ
b̄
āc̄(eB) =

1
2gb(ādr

b
c̄)d(eB).

This vanishes because of condition (4.10). Moreover,

RABDc̄ = gbc̄


dΓb

BD(eA)− dΓb
AD(eB)



= −gbc̄dr
b
D(A(eB))− drEDc̄(e[A)gB]E + gEDdr

E
c̄[A(eB]),
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vanishes because of condition (4.11). Hence we have

RABDc̄ = RāBc̄d = 0,

and therefore RAi = 0. Furthermore, because of Γk
ab = 0 and [ea, ec̄] = rbac̄eb

we obtain

Rbādc̄ = g(∇b∇āed, ec̄) =

dΓf

ād(eb) + Γ
k
ādΓ

f
bk


gfc̄ = dΓf

ād(eb)gfc̄

= gf(ādr
f
c̄)d(eb),

which implies the formula (4.12) for the Ricci components Rbc̄. The metric
is null Ricci Walker if and only if these components vanish. This proves the
statement. □

Remark 4.1. Of course, when constructing examples, the rkij ’s in this
proposition cannot be chosen freely as they have to obey Jacobi’s identity.
However in some situations, such as N = N⊥, i.e., n = 2p, or when con-
structing examples of left-invariant metrics, i.e., when the rkij ’s are constant,
the conditions (4.9), (4.10) and (4.11) can be imposed without yielding a
contradiction.

Remark 4.2. In view of the examples we will construct in Section 5, note
that in general the remaining Ricci components do not vanish, even if all
the rkij ’s are constant:

Rāc̄ = 2gbd̄Rb(āc̄)d̄ + gBDRB(āc̄)D

= 2

dΓb

(āc̄)(eb)− dΓb
b(ā(ec̄)) + Γ

d
b(ār

b
c̄)d − Γ

d
b(āΓ

b
c̄)d + Γ

b
bd̄Γ

d̄
(āc̄)

+ dΓA
(āc̄)(eA)− dΓA

A(ā(ec̄)) + Γ
A
B(ār

B
c̄)A + Γ

A
B(āΓ

B
c̄)A + Γ

d̄
(āc̄)Γ

A
Ad̄


.

4.2. Necessary conditions for the ambient metric of null Ricci
Walker metrics

In this section we will derive conditions on the bilinear form h of the ambient
metric for a conformal class that contains a null Ricci Walker metric

0

g. This
will show that, for null Ricci Walker metrics, our ansatz for h to have its
image contained in N is in fact necessary, at least up to the critical order
when n is even. The following theorem will imply Theorem 1.2 from the
introduction.



724 Anderson, Leistner, Lischewski, and Nurowski

Theorem 4.1. Let (M,
0

g) be a null Ricci Walker metric of dimension n > 2

with Schouten tensor P whose image is contained in a
0

∇-parallel totally
null distribution N . Let g = 2dt d(ρt) + t2g with g = g(xi, ρ) be an ambient

metric for
0

g in the sense of Denition 2.1. Then for

h = g −
0

g =
∑

m≥1

1

m!

m

h ρ
m

with
m

h =
m

h(xi) the following holds:

(1) If n is odd, then, for all m ≥ 1,

Im
m

h
♯ ⊂ N ,(4.14)

0

∇k

m

h
k

i = 0.(4.15)

(2) If n is even, then (4.14) and (4.15) must hold for m ≤ n
2 − 1 and the

obstruction tensor satises

Im(O♯) ⊂ N .

Moreover, one can choose an ambient metric such that the correspond-

ing
m

h satisfy (4.14) and (4.15) for all m ≥ 1.

Remark 4.3. The statement about the obstruction tensor in the case n
even can also be obtained from results in [24].

Remark 4.4. Note that (4.14) is equivalent to
m

hij = 0 unless i, j ∈ {n−

p+ 1, . . . , n}. Moreover, we use the following convention: gkl refers to the
inverse of gkl = gkl(x

i, ρ). However, whenever a raised index appears on a

coecient
m

h =
m

h(xi), the index is raised w.r.t.
0

g, i.e.
m

h
i

j :=
0

g
ikm

hkj .

Proof. The proof is carried out by induction over m, where we assume m ≤
n
2 − 1 when n is even. When n is odd, we have that Ric(g) = O(ρ∞) and
when n is even that Ric(g) = O(ρ

n

2
−1). We will work in a coordinate frame

as in (4.1) in Proposition 4.1.

Step 1: For m = 1, the statement follows from the assumption on P as
well as the contracted version of the second Bianchi identity and P

i
i = 0.

Assuming the induction hypothesis that the statement holds for
b

h with

1 ≤ b ≤ m− 1, we show that the statement also holds for
m

h. As a prepara-
tion, note that as a consequence of the induction hypothesis and parallelity
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of N we have

(4.16)
u

h
ki v

hkj = 0,
u

h
ki 0

∇j

v

hkl = 0, for all 1 ≤ u, v ≤ m− 1.

Moreover, for the inverse gij of gij the induction hypothesis implies that

(4.17) gij =
0

gij −

m−1∑

p=1

1

p!

p

h
ijρp +O(ρm).

Indeed, it is

gik


0

gkj −

m−1∑

p=1

1

p!

p

h
kjρp


= δ

j
i +

m−1∑

p,q=1

1

q!p!

q

hik
p

h
kjρp+q +O(ρm),

so that the rst equation in (4.16) veries (4.17). Moreover, equations (4.16)
and (4.17) then imply that

∂u
ρ (C

k
ij)ρ=0 = −

1

2

0

g
kl 0

∇i

u

hjl = −
1

2

0

∇i

u

h
k

j ,(4.18)

for i ∈ {1, . . . , n− p} and u ≤ m− 1,

where the Ck
ij were dened in Section 2.4.

Step 2: Here we show that the induction hypothesis implies that

∂a
ρRij |ρ=0 = 0, for a ≤ m− 1 and i ∈ {1, . . . , n− p},(4.19)

where Rij is the Ricci tensor of gij(ρ). To this end, we rewrite this using (2.8)
at ρ = 0

∂a
ρRij = ∂a

ρ


0

∇iC
k
kj −

0

∇kC
k
ij + Cq

ijC
k
kq − Cq

jkC
k
iq


.(4.20)

Everywhere, not only at ρ = 0, we have Ck
kj = −1

2

0

gkl
0

∇jgkl. Expanding the

g-s in terms of the
u

h using the induction hypothesis as well as (4.16) and
(4.17) reveals that Ck

kj = O(ρa+1). Thus, the rst and third term in (4.20)
vanish at ρ = 0. The fourth term is treated as follows:
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Expanding ∂m−1
ρ


Cq

jkC
k
iq


at ρ = 0 gives a sum of certain coecients

times summands of the form (∂u
ρC

q
jk)(∂

v
ρC

k
iq) with u+ v ≤ m− 1. Assum-

ing i ∈ {1, . . . , n− p} and applying (4.18) to this yields

(∂u
ρC

q
jk)(∂

v
ρC

k
iq) =

1

4

0

gpq
0

gkl
0

∇j

u

hkp
0

∇i

v

hql = 0,

since u and v are ≤ m− 1 by the induction hypothesis and the fact that N
is parallel. Thus, the fourth term in (4.20) vanishes at ρ = 0.

Finally, we show that the second term in (4.20) vanishes at ρ = 0: As-
suming i ∈ {1, . . . , n− p} and using (4.18) again, this term is given as

1

2

0

∇k

0

∇i

a

h
k
j .(4.21)

By the induction hypothesis, we must necessarily have that k ∈ {1, . . . , p}.

As N is
0

∇-invariant, it follows for the curvature of
0

g that

0
Rikhl= 0 for all i ∈ {1, . . . , n− p}, k ∈ {1, . . . , p},(4.22)

see also Lemma 4.1. This shows that the covariant derivatives in (4.21)

commute and one obtains
0

∇i applied to the divergence of
a

h, which vanishes
by the induction hypothesis. Thus, (4.19) is established.

Now we are going to dierentiate the Feerman-Graham equations
(2.3, 2.4, 2.5) with respect to ρ and use that

∂k
ρRic(g) = 0, for all k if n is odd, and for k ≤

n

2
− 2 if n is even.

Step 3: Applying ∂m−2
ρ to the third Feerman-Graham equation (2.5),

where ∂ρ always denotes the Lie derivative of a tensor in ρ-direction, and
then evaluating at ρ = 0 yields using (4.16) that

0

g
klm
hkl = 0, for all m if n is odd and for m ≤

n

2
if n is even.(4.23)

Step 4: We apply ∂m−1
ρ , for m ≤ n

2 − 1 if n is even, to the second
Feerman-Graham equation (2.4) and evaluate at ρ = 0. Using (4.23) and
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rewriting ∇ in terms of
0

∇ and C, the result is

0 =
0

g
kl 0

∇k

m

hil

(4.24)

+ cu,v,w
u

h
kl

∂v
ρ(C

h
ki)

w

hhl + ∂v
ρ(C

h
kl)

w

hih − ∂v
ρ(C

h
ik)

w

hhl − ∂v
ρ(C

h
il)

w

hkh



ρ=0

for certain integer coecients cu,v,w, where u+ v + w = m and 1 ≤ w ≤ m−

1. Using Ck
ij = Ck

ji as well as (4.16), the bracket reduces to

u

h
kl 

∂v
ρ(C

h
kl)

w

hih



ρ=0
−

∂v
ρ(C

h
il)


ρ=0

w

h
l

h .(4.25)

In order for the second term in (4.25) to be nonzero, we must necessarily
have that l ∈ {1, . . . , p}. In this situation, we can insert (4.18) for the C-term
and it follows using (4.16) immediately that the resulting term vanishes. It
remains to analyze the rst term in (4.25). Unwinding the denitions, it is
given by

u

h
kl
∂v
ρ


ghj


0

∇jgkl −
0

∇kgjl −
0

∇lgkj



ρ=0

w

hih.(4.26)

If the ρ-derivative falls on ghj , then the resulting contraction with
w

hih is

zero by (4.16). Thus ghj in (4.26) can be replaced by
0

g
hj
. But then (4.26)

involves a factor
w

h
j

i, which can only be nonzero if j ∈ {1, . . . , p}, and (4.26)
then reduces to

u

h
kl 0

∇j

v

hkl
w

h
j

i = 0.(4.27)

Thus, every term in (4.24) except for the rst one vanishes and we obtain
0

∇k

m

h
k

i = 0, which establishes (4.15).

Step 5: In order to prove (4.14), we apply ∂m−1
ρ to the rst Feerman-

Graham equation (2.3), assume that i ∈ {1, . . . , n− p} and evaluate at ρ =
0. Using the induction hypothesis and (4.16) applied to the rst-fth term
in the Feerman-Graham equation (2.3), (4.23) applied to the fth term, as
well as (4.19), we obtain that at ρ = 0 and for i ∈ {1, . . . , n− p} that


m−

n

2


m

hij + ∂m−1
ρ Rij |ρ=0 =


m−

n

2


m

hij = ∂m−1
ρ (Ricij(g)|ρ=0.(4.28)



728 Anderson, Leistner, Lischewski, and Nurowski

If n is odd, ∂m−1
ρ (Ricij(g)|ρ=0 = 0 for all m and hence equation (4.28) shows

that
m

hij = 0 for i = 1, . . . n− p completing the induction and establishing
(4.14) for all m.

If n is even, ∂m−1
ρ (Ricij(g)|ρ=0 = 0 for allm ≤ n

2 − 1, and hence equation

(4.28) shows that
m

hij = 0 for i = 1, . . . n− p for all m ≤ n
2 − 1. But by taking

m = n
2 , it also gives a formula for the obstruction tensor Oij , in which cn is

a non-zero constant:

Oij = cn∂
n

2
−1

ρ Ricij(g)|ρ=0 = cn∂
n

2
−1

ρ Rij |ρ=0 = 0,

if i ∈ {1, . . . n− p} by (4.19). This veries the statement about the obstruc-
tion tensor.

Finally, in the case that n is even, the terms
m

hij , for m ≥ n
2 , in an

ambient metric are not subject to any equation and we can choose them
to be divergence free and with image in N . This completes the proof of the
Theorem. □

4.3. The Feerman-Graham equations for null Ricci Walker
metrics

Here we apply our results of Theorems 3.1 and 4.1 to null Ricci Walker
metrics. The following theorem will imply Theorem 1.3 and consequently
Theorem 1.1 from the introduction.

Theorem 4.2. Let (M,
0

g) be a null Ricci Walker-manifold with parallel
totally null distribution N such that Im(P♯) ⊂ N . Then an ambient metric

g = 2dt d(ρt) + t2g(ρ) for [
0

g] in the sense of Denition 2.1 is given by g =
0

g + h, where h = h(ρ) is divergence free bilinear form with Im(h♯) ⊂ N that
satises the the PDE

ρḧij −
n−2
2 ḣij −

1
2

0

□hij +
0

Rkijlh
kl +

0

Rij +
1
2


hkl

0

∇k

0

∇lhij +
0

∇khli
0

∇
lhkj

(4.29)

= O(ρm),

for m = ∞ if n is odd and m = n−2
2 when n is even. Here h = (hij),

0

Rijkl

denotes the curvature tensor,
0

Rij the Ricci tensor and
0

□hij =
0

∇k
0

∇khij, all

with respect to
0

g.
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Proof. Let g = 2dt d(ρt) + t2g(ρ) be an ambient metric for the conformal

class of
0

g in the sense of Denition 2.1. Then, from Theorem 4.1 we know

that there is a h = g −
0

g that is divergence free and its image is contained
in N . Then h and K = N⊥ satisfy the assumptions of Corollary 3.1. Hence,

the term quadratic in h in the Ricci tensor of g =
0

g + h is given by equa-
tion (3.27). Note that, since K is parallel, the second term in (3.27) simplies
to

0

∇[khl]i
0

∇
kh l

j = −1
2

0

∇khli
0

∇
lhkj .

Moreover, since Im(P♯) ⊂ N and Im(h♯) ⊂ N , in (3.24) the product of h

with the Ricci tensor of
0

g vanishes,

0

R
k
ihjk = 1

n−2P
k
ihjk = 0.

This proves the statement. □

This theorem shows for a null Ricci Walker metric, that the terms in the
Feerman-Graham equations that are non-linear in h vanish whenever the
components hb̄d̄ of h do not depend on the coordinates xa in Proposition 4.1
corresponding to the total null plane, i.e., if

L∂a
hb̄d̄ = ∂a(hb̄d̄) = 0.

In the following we will present two situations in which this assumption is
satised.

4.4. Null Ricci Walker metrics with linear Feerman-Graham
equations

We have seen that the condition (1.7), i.e, that

LXh = 0, for all X ∈ N ,

is crucial for the Feerman-Graham equations to linearise. We will now see
special classes of null Ricci Walker metrics for which this is the case. It turns
out that the relation between property (1.7) and the curvature when applied
to N is crucial. First we observe:
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Lemma 4.2. Let
0

g be a null Ricci Walker metric with parallel null distri-
bution N and Schouten tensor P. Assume furthermore that

(4.30) X
0

R = 0, for all X ∈ N ,

where
0

R is the curvature tensor of
0

g. Then LXP = 0 for all X ∈ N .

Proof. For a Walker manifold, the dierential Bianchi identity ensures that

condition (4.30) also implies that N
0

∇
0

R = 0. This on the other hand im-

plies that
0

∇aPij = 0, which for a null Ricci Walker metrics this is equivalent
to Lea

P = 0. □

Next we prove a result that strengthens Theorem 1.2 for this class:

Proposition 4.3. Let
0

g be a null Ricci Walker metric with parallel null
distribution N and Schouten tensor P satisfying condition (4.30) for its
curvature.

Then an ambient metric g = 2dt d(ρt) + t2g(ρ) for [
0

g] in the sense of

Denition 2.1 is given by g =
0

g + h, where h = h(ρ) satises Im(h♯) ⊂ N ,
LXh = 0 for all X ∈ N and solves the linear PDE

(4.31) ρḧij −
n−2
2 ḣij −

1
2

0

□hij +
0

Rij = O(ρm),

for all m if n is odd and for m ≤ n
2 − 1 if n is even. When n is even, the

obstruction tensor is given by

Oij = cn
0

□
m

0

Rij ,

where cn is a non-zero constant depending on n and
0

□
m is the m-th power

of the tensor Laplacian of
0

g. In particular,

Im(O♯) ⊂ N , LXO = 0, for all X ∈ N .

Proof. From Theorem 4.1 we know that h in the ambient metric satises (or,
if n is even, can be chosen such) that Im(h♯) ⊂ N . The remaining properties

of h =


m≥1
1
m!

m

h ρm are proved in a similar way by induction over m as
in the proof of Theorem 4.1. But now the computations are simplied, as
we can use equations (4.29) in Theorem 4.2, which are equivalent to the
Feerman-Graham equations:
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Applying
0

∇a to equation (4.29), dierentiating it (m− 1) times with re-
spect to ρ, for m ≤ n

2 − 1 when n is even, and using the induction hypothesis
yields

0 =


m−

n

2


0

∇a

m

hij −
1

2

0

gkl
0

∇a

0

∇k

0

∇l

m−1

h ij +
0

∇a

0

Rkijl

m−1

h
kl =


m−

n

2


0

∇a

m

hij .

Here we use the Bianchi identity and that (4.30) allows to commute
0

∇a

with
0

∇k. This equation shows
0

∇ahij = O(ρm) for all m, when n is odd,

and for m = n
2 − 1, when n is even. Moreover, when n is even, the terms

m

h
for m ≥ n

2 are not determined by the Feerman-Graham equations. So we

can choose them in a way that Lea

m

hij = ∂a(hij) = 0, which is equivalent to
0

∇ahij . With this and the assumption
0

Raijk = 0, equation (4.29) reduces to
equation (4.31). Note also that such a h is divergence free.

In order to obtain the formula for the obstruction tenser when n is even,

we write equation (4.31) in terms of the
m

hij and obtain

m
1

hij =
0

Rij , 2(k −m)
k+1

h ij =
0

□

k

hij , for k = 1, . . . ,m− 1.

This shows that the term of order ρ in (4.31), which is the obstruction tensor,

is equal to cn
0

□
mRij with a nonzero constant cn. □

Note that for h = hāc̄Θ
āΘc̄ with

0

∇ahij = 0 the term
0

□hij , i.e. the wave

operator of
0

g applied to the tensor h in (4.31), simplies to

0

∆(hb̄d̄) =
0

gAC
0

∇A

0

∇C(hb̄d̄),

which is the wave operator for the metric gACΘ
AΘC in n− 2p dimensions

applied to the component functions hāc̄ of h. Finally, the vanishing of the

curvature terms
0

Raijk implies that the system (4.34), in addition to becom-
ing linear, decouples to p+1

2 single equations on the p+1
2 components hb̄d̄.

These equations only dier in their inhomogeneity:

Corollary 4.1. Let (M,
0

g) be a null Ricci Walker-manifold with parallel
totally null distribution N and Im(P♯) ⊂ N and such that that

X
0

R = 0, for all X ∈ N ,

where
0

R is the curvature tensor of
0

g. Then, the an ambient metric metric

g = 2d(ρt)dt+ t2(
0

g + h) for [
0

g] is given by h whose components hb̄d̄ of h
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in a basis as in Proposition 4.1 satisfy the following inhomogeneous linear
PDE

∆−(hb̄c̄) + 2
0

Rb̄d̄ = O(ρm),(4.32)

where m = ∞ when n is odd and m = n−2
2 when n is even and where ∆− is

the linear second order dierential operator dened by

∆−(f) = 2ρf̈ + (2− n)ḟ −
0

∆(f)(4.33)

for the function f = f(xp+1, . . . , xn, ρ) and with
0

∆(f) =
0

gAC
0

∇A

0

∇C(f) =
0

gACeA(eC(f)).

A special case of this situation is when the parallel null distribution
has rank one, i.e. p = 1 and N = R·e1. Here the property Le1

h = 0 follows
directly from h = h(Θn)2 being divergence free. Indeed, we have

div(h) =
0

∇kh
k
i = Le1

h = ∂1(h).

Moreover, if the rank of N is one, also the curvature terms
0

Riklj that occur
in equation (4.29) have to vanish:

Lemma 4.3. If g is a null Ricci Walker metric and if the null parallel
distribution N has rank one, then Rābdc̄ = 0.

Proof. This is an immediate consequence of equations (4.7):

0 = Rac̄ = gb̄d(Rb̄ac̄d +Rdac̄b̄) + gABRAac̄B = gb̄dRb̄ac̄d,

because of equation (4.5). □

Hence, we obtain:

Corollary 4.2. Let (M,
0

g) be a null Ricci Walker manifold with a parallel
null line N = R·e1, a frame e1 = ∂1, eB, en with a dual frame Θ1,ΘB,Θn

as in Proposition 4.1, and such that Im(P♯) ⊂ N , i.e., Ric = f(Θn)2, for a
function f with ∂1(f) = 0. Then an ambient metric g = 2dt d(ρt) + t2g(ρ)

for [
0

g] in the sense of Denition 2.1 is given by g =
0

g + h, where h =
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h(ρ, xi)(Θn)2 and h satises ∂1(h) = 0 and the following linear PDE

(4.34) ∆−(h) + 2f = O(ρm),

where m = ∞ when n is odd and m = n−2
2 when n is even, and where ∆−

was dened in (4.33).

This corollary and Proposition 4.3 imply the statements in Corollary 1.1.
Note that for null Ricci Walker metrics we have that LXO = ∇XO = 0 for
all X ∈ N . A construction method for metrics satisfying the assumptions is
provided by Proposition 4.2. Explicit examples will be constructed in the
next section.

Finally we show an example for which the condition (4.30) is not satised
and analyse its Feerman-Graham equations. It turns out that they are not
linear in h.

Example 4.1. We consider the following Walker metric in signature (2, 2)
on M = R

4 ∋ (x1, x2, y1, y2):

g = 2dx1dy1 + 2dx2dy2 + 2(x1dy1)2 + 2(x2dy2)2 − 4x1x2dy1dy2

= 2

Θ

1
Θ

1̄ +Θ
2
Θ

2̄

,

where in our notation above we have a co-frame and its dual frame given by

Θ1 = dx1 + (x1)2dy1 − 2x1x2dy2, e1 =
∂

∂x1 ,

Θ2 = dx2 + (x2)2dy2 − 2x1x2dy1, e2 =
∂

∂x2 ,

Θ1̄ = dy1, e1̄ =
∂

∂y1 − (x1)2 ∂
∂x1 + 2x1x2 ∂

∂x2 ,

Θ2̄ = dy2, e2̄ =
∂

∂y2 − (x2)2 ∂
∂x2 + 2x1x2 ∂

∂x1 .

This is a Walker metric with parallel null distribution K = K⊥ =
span(e1, e2). Indeed, we have

∇e1 = 2(x1dy1 − x2dy2)⊗ e1 − 2x2dy1 ⊗ e2,

and

∇e2 = −2(x1dy1 − x2dy2)⊗ e2 − 2x1dy2 ⊗ e1.

Then by direct computation or using Proposition 4.2 we see that the Ricci
tensor of g is given by

Ric = −12

(x1Θ1̄)2 − 4x1x2Θ1̄

Θ
2̄ + (x2Θ2̄)2


,
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and hence g is null Ricci Walker. The curvature tensor has the following
non-vanishing terms

R11̄1̄1 = −R11̄2̄2 = R22̄2̄2 = 2.

Moreover, the Bach tensor, which in dimension 4 is the obstruction tensor,
does not vanish,

O = −144

(x1Θ1̄)2 − 4x1x2Θ1̄

Θ
2̄ + (x2Θ2̄)2


.

Hence, there is no smooth Ricci-at ambient metric and we can only nd an
ambient metric whose Ricci tensor is of rst order in ρ. From Theorem 4.1
we know that the ambient metric is of the form g = 2dt d(ρt) + t2(g + h),
where h = h(x1, x2, y1, y2, ρ) is of the form

h = A(x1, x2, y1, y2, ρ)(Θ1̄)2 − 2B(x1, x2, y1, y2, ρ)Θ1̄
Θ

2̄)

+ C(x1, x2, y1, y2, ρ)(Θ1̄2)2,

with Aρ=0 = Bρ=0 = Cρ=0 = 0 and

0 = div(h) =

∂A
∂x1 − ∂B

∂x2


Θ

1̄ +

∂B
∂x1 − ∂C

∂x2


Θ

2̄.

A direct computation shows that the Feerman-Graham equations for
this example remain non-linear. For example, the 1̄1̄-component of equa-
tion (4.29) is

ρÄ− Ȧ− 2A−+1
2A

∂2A
(∂x1)2 −B ∂2A

∂x2∂x1 + 1
2C

∂2A
(∂x2)2 + 1

2


∂A
∂x1

2
− ∂A

∂x2

∂B
∂x1

+ 1
2


∂B
∂x1

2
+ (x1)2 ∂2A

(∂x1)2 − 4x2x1 ∂2A
∂x2∂x1 − ∂2A

∂y1∂x1 + 4x2 ∂A
∂x2 − 4x1 ∂A

∂x1

+ (x2)2 ∂2A
(∂x2)2 − ∂2A

∂y2∂x2 − 4x1 ∂B
∂x2 − 12(x1)2.

In this example our ansatz (1.7), i.e., that

(4.35) Le1
h = Le2

h = 0,

does not yield a solution to the Feerman-Graham equations, i.e., to
Ric(g̃) = O(ρ). Indeed, the ansatz (4.35) is equivalent to the components
A, B and C being independent of x1 and x2, and hence the Ricci tensor of
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g̃ has the components


ρÄ(y1, y2, ρ)− Ȧ(y1, y2, ρ)− 2A(y1, y2, ρ)− 12(x1)2


(Θ1̄)2

+2

ρB̈(y1, y2, ρ)− Ḃ(y1, y2, ρ)− 2B(y1, y2, ρ)− 12x1x2


Θ

1̄
Θ

2̄

+

ρC̈(y1, y2, ρ)− Ċ(y1, y2, ρ)− 2C(y1, y2, ρ)− 12(x2)2


(Θ2̄)2,

which cannot be of the form ρQ for Q a tensor on M . Instead, a solution is
for example given by

h = −12ρ

(x1Θ1̄)2 − 4x1x2Θ1̄

Θ
2̄ + (x2Θ2̄)2


,

which is divergence free but does not satisfy the ansatz (1.7). With this h

the ambient metric g = 2d(ρt)dt+ t2(
0

g + h) has Ricci tensor

Ric(g) = −144ρ(3ρ− 1)

(x1Θ1̄)2 − 4x1x2Θ1̄

Θ
2̄) + (x2Θ2̄)2


= ρ(3ρ− 1)O.

5. Examples with explicit ambient metrics

In this section we will provide examples of conformal classes of null Ricci
Walker metrics for which we nd explicit solutions to equation (4.32) ob-
taining explicit examples of Ricci-at ambient metrics.

5.1. Solving the homogeneous equation

Equation (4.32) is a linear, inhomogeneous PDE for each of the functions
hāc̄ given by the linear dierential operator

∆− = 2ρ∂2
ρ + (2− n)∂ρ −

0

∆.

In the section we will nd metrics for which we get an explicit solution
of (4.32). Before this, we start by providing the solution to the homogeneous
equation.

Lemma 5.1. Let M be a smooth manifold of dimension n and D some
linear dierential operator on M . For a function F ∈ C∞(M) we dene the
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functions F± ∈ C∞(M × (−ϵ, ϵ)) as

F± :=

∞∑

k=1

Dk(F )

k!
∏k

i=1(2i± n)
ρk,

where F− is only dened when n is odd or D
n

2 (F ) = 0. Moreover, dene the
following linear dierential operators on C∞(M × (−ϵ, ϵ))

D± := 2ρ∂2
ρ + (2± n)∂ρ −D.

Then, for any F ∈ C∞(M) and f ∈ C∞(M × (−ϵ, ϵ)) we have

D±(F±) = D(F ),(5.1)

D−(ρ
n

2 f) = ρ
n

2 D+(f),(5.2)

D−(ρ
n

2 F+) = ρ
n

2 D+(F+) = ρ
n

2 D(F ),(5.3)

D−(ρ
n

2 (F + F+)) = 0.(5.4)

In particular, for each F ∈ C∞(M), the function f = ρ
n

2 (F + F+) is a so-
lution to the homogeneous equation D−(f) = 0.

Proof. To verify equations (5.1) and (5.2) is a straightforward computation.
Both together imply (5.3) which yields (5.4). □

5.2. Extensions of nilpotent Lie algebras

Let k be a two-step nilpotent Lie algebra of dimension q and let z be its
centre of dimension p < q. We x a complement m of z,

k = z⊕m

Then [m,m] ⊂ z and we can x a basis (ea)a=1,...,p of z and (eA)A=p+1,...,q of
m such that

[ea, eb] = 0, [ea, eB] = 0, [eA, eB] = rcABec,

where rcAB denote the structure constants of k. Note that there are no further
conditions on these numbers other than rcAB = −rcBA. Denote by der(k) the
derivations of k which comes with a canonical Lie algebra structure induced
from gl(k). Note that derivations leave the centre invariant.
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Furthermore, let H be a Lie group with Lie algebra h and of dimension
p = dim(z) and ϕ : h → der(k) a Lie algebra homomorphism from h to the
derivations of k. By xing a basis (eā)ā=q+1,...,p+q of h, we can write ϕ as

ϕ(eā)eb = rdbāed, ϕ(eā)eB = rdBāed + rEBāeE ,

with some constants rdbā, r
d
Bā and rEBā. Finally, with respect to this basis

denote the structure constants of h by rc̄
āb̄
, i.e.,

[eā, eb̄] = rc̄āb̄ec̄.

Now we dene the Lie algebra g to be semi-direct sum g = h⋉ϕ k of h and
k with respect to ϕ of dimension n = p+ q. Clearly, the structure constants
of g are given by the numbers

rcAB, r
d
bā, r

d
Bā, r

E
Bā, r

c̄
āb̄,

which are subject to the conditions rkij = −rkji and

reABr
d
ec̄ = −2rCc̄[Ar

d
B]C ,

i.e., that ϕ(ec̄) is a derivation, as well as

rc̄āb̄r
e
dc̄ = 2rcd[ār

e
b̄]c, rc̄āb̄r

d
Ac̄ = 2rcA[ār

d
b̄]c + 2rBA[ār

d
b̄]B, rc̄āb̄r

B
Ac̄ = 2rCA[ār

B
b̄]C ,

which ensure that ϕ : k → der(h) is a Lie algebra homomorphism. The frame
e1, . . . , en on the Lie group G corresponding to g satises the bracket rela-
tions of Proposition 4.2 with the parallel distribution K given by k. Now we
dene a left invariant metric by formula (3.4)

g = gac̄(Θ
a ⊗Θ

c̄ +Θ
c̄ ⊗Θ

a) +
0

gABΘ
A ◦ΘB,

where the Θi’s are again the algebraic duals of the ei’s, the gij are constants

with gac̄ and
0

gAB non degenerate and
0

gAB symmetric. If the signature of
0

gAB

is (s, t), then the signature of the metric g is (p+ s, p+ t) or (p+ t, p+ s),

so for example if
0

gAB is denite, the signature of g is (p, q) or (q, p). The
distribution K⊥ is given by z. Then Proposition 4.2 implies that (G,g) is a
null Ricci Walker manifold of dimension n, which, in general is not Ricci-at.
Its possibly non vanishing components are given by constants Rāc̄.

In order to determine the ambient metric for the conformal class given
by g on G, we have to solve equations (4.32) in this setting, i.e., nd a
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functions h ∈ C∞((−ε, ε)×G), such that

(5.5) 2ρḧ+ (2− n)ḣ−∆(h) + C = 0, with initial condition h|ρ=0 ≡ 0,

with ∆(h) = gAB∇A∇Bh, and for constants C that are given by the com-
ponents of the Ricci tensor Rāc̄. Equation (5.5), when taken along ρ = 0
implies

ḣ|ρ=0 ≡
C

n− 2
.

Clearly, the problem (5.5) has a linear solution

h =
C

n− 2
ρ,

but Lemma 5.1 shows that there are more solutions. From Corollary 4.1
we obtain Theorem 1.4 from the introduction. More precisely, we get the
following.

Theorem 5.1. Let k be a two-step nilpotent Lie algebra of dimension q with
centre z of dimension p ≤ q, and let H be a Lie group of dimension p and
with Lie algebra h. Let ϕ : h → der(k) a Lie algebra homomorphism into the
derivations of k and G be the n = q + p-dimensional Lie group corresponding
to the Lie algebra g that is given as the semi-direct sum

g = h⋉ϕ k,

of h and k by ϕ. Fix a basis (eā)ā=1,...,p of h, a basis (ea)a=1,...,p of z and
complement it with (eA)A=1,...,q−p to a basis of k. Let (Θi)i=1,...,n is the dual
basis to (ei)i=1,...,n and

g = 2 gac̄Θ
a ◦Θc̄ + gABΘ

A ◦ΘB

be the left-invariant semi-Riemannian metric g on G dened by real numbers
gac̄ and gAB. Then the conformal class of g on G admits Ricci-at ambient
metrics given by

g = 2d(ρt)dt +

+ t2

g +

 2ρ

n− 2
Rāc̄ + ρ

n

2


Fāc̄ +

∞∑

k=1

0

∆

k
(Fāc̄)

k!
∏k

i=1(2i+ n)
ρk


Θ
ā
Θ

c̄

,

where Rāc̄ = Ricg(eā, ec̄) are the components of the Ricci tensor of g and
Fāc̄ = Fc̄ā are functions on G with dFāc̄(ea) = 0. In particular, when n is
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odd, Fāc̄ ≡ 0 gives the unique analytic Ricci-at Feerman-Graham ambient
metric.

Note that in general the metrics g as in the theorem are neither Ricci-at
nor do they admit parallel null vector elds (see also Remark 4.2).

5.3. Generalised pp-waves

Another class of examples to which our Corollary 4.1 applies are the
Lorentzian pp-waves for which we have determined the analytic ambient
metric in [25]. The acronym “pp” stands for plane fronted with parallel rays.
A Lorentzian pp-wave metric in dimension n is locally given by

g = 2dudv +Hdu2 +

n−2∑

i=1

(dxi)2,

where H = H(xi, u) is a function that does not depend on v.
Here we generalise this class and the results in [3, 25] to higher signature

and, more importantly, determine all solutions to the Feerman-Graham
equations including the non-analytic ones, and determine the obstruction
tensor in the case of Lorentzian pp-waves.

We will use the same index conventions as in the previous sections
(a = 1, . . . p, B = p+ 1, . . . n− p, c̄ = n− p+ 1, . . . , n), and dene a mod-
ied Kronecker delta as

δāb =

{
1, if ā = b+ n− p,
0 otherwise.

Denition 5.1. Let U ⊂ R
n ∋ (x1, . . . , xn) be an open set, and Hāc̄ and

GAB smooth functions on U satisfying det(GAB) ̸= 0 and ∂a(Hāc̄) = 0 and
∂a(GAB) = ∂c̄(GAB) = 0. Then the semi-Riemannian metric

(5.6) g = 2δābdx
ādxb +Hāb̄dx

ādxb̄ +GABdx
AdxB,

is called a generalised pp-wave, or for short, a gpp-wave.
If all the GAB’s are constants, we call g plane fronted wave with parallel

rays, or for short, pp-wave.

To obtain Lorentzian gpp-waves, one sets p = 1 and GAB positive def-
inite. For all p, gpp-waves admit p parallel vector elds ∂a and hence are
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Walker metrics, however in general not null Ricci Walker metrics. As in
Proposition 4.1, for gpp-waves we have the frame and dual co-frame

ea := ∂a, eB := E A
B ∂A, ec̄ := ∂c̄ −Hāc̄δ

āb̄∂b,

Θ
a = dxa +Hāc̄dx

c̄, ΘB = FB
Adx

A, Θ
c̄ = dxc̄,

where E B
A is a matrix such that E B

A GBCE
C

D = δAD and FB
A is the inverse

of E B
A . Note that, since GAB does not depend on the xa’s or the xc̄’s neither

does E B
A . The gpp-wave metric in this frame is

g = δab̄Θ
a
Θ

b̄ + gABΘ
A
Θ

B,

with gAB = ϵAδAB. The only non vanishing brackets for this frame are

[eA, eB] = −E C
[A E D

B] dF
E

D (∂C)eE ,

[eA, eb̄] = −dHb̄c̄(eA)δ
c̄d̄ed,

[eā, eb̄] = 2dHc̄[ā(∂b̄])δ
c̄d̄ed,

Hence, the assumptions of Proposition 4.2 are satised whenever the GAB’s
are constant, i.e., whenever g is a pp-wave.

The Levi-Civita connection ∇ of a gpp-wave g is given by

∇AeB = ∇G
A eB,

∇āeB = dHāc̄(eB)δ
c̄b̄eb,

∇āeb̄ = −2dHā[b̄(∂c̄])δ
c̄d̄ed − gradG(Hāb̄),

in which ∇G is the Levi-Civita connection of the metric G = GABdx
AdxB

and gradG the corresponding gradient. This allows us to compute the curva-
ture, which satises Raijk = 0, and the Ricci-curvature, whose only possibly
non-vanishing terms are given as

RAB = RG
AB,

Rāc̄ = −1
2g

BDg(∇B(grad(Hāc̄), eD) = −1
2g

BD∇G
B∇G

D(Hāc̄) = −1
2∆G(Hāc̄).

Lemma 5.2. The dened gpp-waves satisfy Raijk = 0 and they are null
Ricci Walker metrics if the metric G is Ricci-at. In particular, pp-waves
are null Ricci Walker metrics.

Remark 5.1. If we drop the assumption on a pp-wave that the ea’s are par-
allel, i.e., that ∂aH ̸= 0, then the Ricci tensor is no longer two-step nilpotent.
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For example in the Lorentzian case, i.e., when p = 1 and ϵi = 1, if ∂1H ̸= 0
we get that

Ric (∂1, ∂n) = ∂2
1(H), Ric (∂A, ∂n) = ∂A∂1(H),

which shows that Ric cannot be two-step nilpotent (see also [23]).

Remark 5.2. Using the necessary conditions that were derived in [20] for
conformal Einstein metrics, a straightforward computation of the Weyl, Cot-
ton and Bach tensors as in [25] shows that in general gpp-waves are not
conformally Einstein. In fact, in [25] we gave explicit examples of Bach at
pp-waves that are not conformally Einstein.

When determining the ambient metric for a gpp-wave for which the met-
ric G is Ricci-at, we can apply Theorem 4.2 and Proposition 4.3. Moreover,
since all the ea = ∂a are parallel, the curvature terms Raijk vanish, but also
the Θā’s are parallel. We obtain

Corollary 5.1. Let G = GABdx
AdxB be a Ricci-at metric on R

n−2p and
Hāb̄ functions of (n− p) variables (xA, xb̄) that dene the gpp-wave

g = 2δābdx
ādxb +Hāb̄dx

ādxb̄ +GABdx
AdxB

on R
n. Then an ambient metric for [g] is given by g = 2dt d(ρt) + t2(g +

h(ρ)), where h = hb̄d̄dx
b̄dxd̄ and whose components satisfy ∂a(hb̄d̄) = 0 and

(5.7) 2ρḧb̄d̄ + (2− n)ḣhb̄d̄ −∆G(hb̄d̄)−∆G(Hb̄d̄) = O(ρm),

with m = ∞ when n is odd and m = n−2
2 when n is even and where ∆G is

the Laplacian of G.

This corollary shows that in order to obtain Ricci-at ambient metrics,
for a function H = H(xp+1, . . . , xn) we have to solve the equation

(5.8) 2ρḧ+ (2− n)ḣ−∆G(h)−∆G(H) = 0,

for a function h = h(ρ, xp+1, . . . , xn). This can be solved by standard power
series expansion, noticing that its indicial exponents are s = 0 and s = n/2.
We extend our results in [3, 25], by the following more general existence
statement for gpp-waves.
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Theorem 5.2. Let G be a semi-Riemannian metric on R
n−2p. Then the

following functions h = h(ρ, xp+1, . . . , xn) are solutions to equation (5.8)
with h(ρ) → 0 when ρ ↓ 0:

When n is odd:

(5.9) h =

∞∑

k=1

∆k
GH

k!
∏k

i=1(2i− n)
ρk + ρn/2


α+

∞∑

k=1

∆k
Gα

k!
∏k

i=1(2i+ n)
ρk

,

where α = α(xp+1, . . . , xn) is an arbitrary function of its variables. In par-
ticular, if α ≡ 0 this gives an analytic in ρ solution in a neighbourhood of
ρ = 0 with h(0) = 0.

When n = 2s is even:

h =

s−1∑

k=1

∆k
GH

k!
∏k

i=1(2i− n)
ρk + ρs


α+

∞∑

k=1

∆k
Gα

k!
∏k

i=1(2i+ n)
ρk


(5.10)

+ cnρ
s

(
∞∑

k=0

(log(ρ)− qk)
∆

s+k
G H

k!
∏k

i=1(2i+ n)
ρk

)
,

where α = α(xp+1, . . . , xn) and q0 = q0(x
n−p+1, . . . , xn) and

qk(x
n−p+1, . . . , xn) := q0(x

n−p+1, . . . , xn) +

k∑

i=1

n+ 4i

i(n+ 2i)
,

for k = 1, 2, . . ., are arbitrary functions of their variables and the constant
cn is given as follows

cn := −
1

(s− 1)!
∏s−1

i=0 (2i− n)
.

In particular, when ∆s
GH ≡ 0 there are solutions that are analytic in ρ in a

neighbourhood of ρ = 0 and with h(0) = 0. These solutions are parametrized
by the functions α.

Proof. That the given function satisfy equation (5.8) can be checked directly.
In the case n odd it follows from Lemma 5.1. For n even, the situation is
a bit more subtle. We give the formulas for each term, ignoring the term
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(ρ
n

2 (α+ α+)), for which we have seen that it is in the kernel of D−:

D−

(
s−1∑

k=1

∆k
GH

k!
∏k

i=1(2i− n)
ρk

)

= ∆GH −
∆s

GH

(s− 1)!Πs−1
i=1 (2i− n)

ρs−1,

D− (ρs∆s
G (log(ρ)(H +H+)))

= nρs−1
∆

sH +
n+ 4

n+ 2
ρs∆s+1

G H

+

∞∑

k=1

(n+ 4(k + 1))

(k + 1)!Πk+1
i=1 (2i+ n)

∆
s+k+1H ρs+k

D−

(
ρs∆s

G

∞∑

k=0

qk
∆k

GH

k!
∏k

i=1(2i− n)
ρk

)

= (q1 − q0)ρ
s
∆

s+1
G H

+

∞∑

k=1

(qk+1 − qk)(n+ 2(k + 1))

k!Πk+1
i=1 (2i+ n)

∆
s+k+1
G H ρs+k.

Looking at the ρs−1-terms in these formulas we determine cn as in the the-
orem by

−
1

(s− 1)!Πs−1
i=1 (2i− n)

+ ncn = 0.

Moreover, looking at the ρs-terms, we determine q1 by

n+ 4

n+ 2
− (q1 − q0) = 0

as given in the theorem, and nally the other qk’s by

n+ 4(k + 1)− (qk+1 − qk)(n+ 2(k + 1))(k + 1) = 0.

This proves the theorem. □

Summarising, we obtain

Corollary 5.2. Let

g = 2dxā(δābdx
b +Hāb̄dx

b̄) +GABdx
AdxB
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be a gpp-wave with Ricci-at metric G = GABdx
AdxB. Then ambient met-

rics in the sense of Denition 2.1 for the conformal class [g] are

g = 2d(ρt)dt+ t2g

+ t2
 m∑

k=1

∆k
G(Hāb̄)

k!
∏k

i=1(2i− n)
ρk

+ ρn/2

Fāb̄ +

∞∑

k=1

∆k
G(Fāb̄)

k!
∏k

i=1(2i+ n)
ρk


dxādxb̄


in which m = ∞ when n is odd and m = n−2
2 when n is even, and Fāc̄ = Fc̄ā

are arbitrary functions on M , with ∂a(Fāc̄) = 0. Moreover,

(1) When n is odd, Fāc̄ ≡ 0 gives the unique analytic Ricci-at Feerman-
Graham ambient metric.

(2) When n is even and ∆

n

2

G(Hāc̄) = 0, then the metric g is Ricci-at.

(3) When n is even and ∆

n

2

G(Hāc̄) ̸= 0, then Ricci-at but non analytic
ambient metrics are given by formula (5.10).

5.4. Ambient metrics for Lorentzian pp-waves

Finally we consider Lorentzian pp-waves, i.e., gpp-waves with p = 1 and
GAB = δAB. Since p = 1 we use a dierent convention as names for the vari-
ables: we replace coordinates x1, xA, A = 2, . . . , n− 2, and xn by v := x1,
yi = xi+1, i = 1, . . . , n− 2, and u = xn. We have seen solutions of equa-
tion (5.8) in Theorem 5.2. For Lorentzian pp-waves these are all of the so-
lutions. Here ∆G = ∆ is just the at Laplacian and we can use the Fourier
transform to transform equation (5.8) into an ODE. In fact, in [3] we proved
the following

Theorem 5.3 ([3]). Let ∆ be the at Laplacian in (n− 2) dimensions.
When n is odd, the most general solutions h to equation (5.8) with

h(ρ) → 0 when ρ ↓ 0 are given by formula (5.9) in Theorem 5.2 and
parametrized by arbitrary functions α = α(x1, . . . , xn−2, u). In particular,
there is a unique solution that is analytic in ρ in a neighbourhood of ρ = 0
with h(0) = 0. This solution is given by α ≡ 0.
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When n = 2s is even, the most general solutions h to equation (5.8) with
h(ρ) → 0 when ρ ↓ 0 are given by

h =

s−1∑

k=1

∆kH

k!
∏k

i=1(2i− n)
ρk + ρs


α+

∞∑

k=1

∆kα

k!
∏k

i=1(2i+ n)
ρk


(5.11)

+ cnρ
s

∞∑

k=0

1

k!
∏k

i=1(2i+ n)


(log(ρ)− qk)∆

s+kH +Q ∗∆s+kH

ρk,

where α = α(yi, u) and Q = Q(xi, u) are arbitrary functions of their vari-
ables, ∗ denotes the convolution of two functions with respect to the yi-
variables, cn is the constant dened in Theorem 5.2, and the other constants
are given as follows

q0 := 0, qk :=

k∑

i=1

n+ 4i

i(n+ 2i)
, for k = 1, 2, . . . .

In particular, only when ∆sH ≡ 0 there are solutions that are analytic in
ρ in a neighbourhood of ρ = 0 and with h(0) = 0. These solutions are not
unique but parametrized by the functions α.

With the results of Corollary 1.1, in particular with the formula for the
obstruction tensor, for Lorentzian pp-waves we get the complete picture in
Theorem 1.5:

Corollary 5.3. Let

(5.12) g = 2dudv +H du2 +

n−2∑

i=1

(dyi)2

be a Lorentzian pp-wave metric with H = H(y1, . . . , yn−2, u) a function not
depending on v. Let ∆ be the at Laplacian in n− 2 dimensions.

(1) If n is odd, the unique Ricci-at ambient metric that is analytic in ρ

is

g = 2d(ρt)dt+ t2g ++t2

(
∞∑

k=1

∆k(H)

k!
∏k

i=1(2i− n)
ρk

)
du2.
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Moreover, all non-analytic solutions are parametrized by arbitrary
functions α = α(y1, . . . , yn−2, u) and given by formula (5.9) in The-
orem 5.2, in which ∆G is replaced by the at Laplacian.

(2) If n = 2s is even the obstruction tensor for [g] is a constant multiple
of ∆n/2(H)du2. If it vanishes, all Ricci-at ambient metrics that are
analytic in ρ are given by

g = 2d(ρt)dt+ t2g

+ t2

(
s−1∑

k=1

∆k(H)

k!
∏k

i=1(2i− n)
ρk +

∞∑

k=0

∆k(α)

k!
∏k

i=1(2i+ n)
ρ

n

2
+k

)
du2,

where α = α(y1, . . . , yn−2, u) is an arbitrary smooth function. Indepen-
dently of the vanishing of the obstruction tensor, non-analytic ambient
metrics can be obtained from formula (5.11) in Theorem 5.3.
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