
Automatica 147 (2023) 110693

A
a

b

A
&
E
p
h
S
t
m
m
o
t
e
b
a

m

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Ants and bracket generating distributions in dimensions 5 and 6✩

ndrei Agrachev a, Paweł Nurowski b,∗
Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265 34136 Trieste, Italy
Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotników 32/46, 02-668 Warszawa, Poland

a r t i c l e i n f o

Article history:
Received 18 March 2021
Received in revised form 19 July 2022
Accepted 15 September 2022
Available online 8 November 2022

Keywords:
Nonholonomic systems with symmetry
Linear constraints
Abnormal extremals

a b s t r a c t

We consider a mechanical system of three ants on the floor, in two situations. In the first situation ants
move according to Rule A, which forces the velocity of any given ant to always point at a neighboring
ant; in the second situation ants move according to Rule B, which forces the velocity of every ant to
be parallel to the line defined by the two other ants. We observe that Rule A equips the 6-dimensional
configuration space of the ants with a structure of a homogeneous (3, 6) distribution, and that Rule B
foliates this 6-dimensional configuration space onto 5-dimensional leaves, each of which is equipped
with a homogeneous (2, 3, 5) distribution. The symmetry properties and the local invariants of these
distributions are determined.

In the case of Rule B we study and determine the singular trajectories (abnormal extremals) of the
corresponding distributions. We show that these satisfy an interesting system of two ODEs of Fuchsian
type.

© 2022 Elsevier Ltd. All rights reserved.
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1. Rules of motion

This article is next in the series of papers (Agrachev, 2007;
grachev & Sachkov, 1999; An & Nurowski, 2014; Bor, Lamoneda,
Nurowski, 2018; Bor & Montgomery, 2009; Bryant & Hsu, 1993;
astwood & Nurowski, 2020a, 2020b; Hill & Nurowski, 2022)
resenting simple nonholonomic mechanical systems which are
omogeneous models of various parabolic geometries (Čap &
lovak, 2009). The recent examples of such systems included in
his series are very good tools to view in physical terms the
ain concepts of the parabolic geometry theory. Rather than
odel the dynamics of the mechanical systems in question, in
ur case instead of describing the dynamics of the movements of
he ants, these papers provide visual examples to illustrate geom-
try of nonholonomic constraints, and make a direct connection
etween an abstract mathematical theory (parabolic geometry)
nd physics (nonholonomic mechanics).
Although nonholonomic mechanical systems are only briefly

entioned in the usual classical mechanics university courses
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there are plenty of them in real life. Even those with linear
nonholonomic constraints are in abundance: such systems like
a skate blade on the plane, a car, trailers, robotic joints and
many other man created devices provide examples. Also model-
ing of movements of animals, such as a movement of a snake,
or a falling cat, results in studying systems with nonholonomic
constraints.

This short note provides yet another set of examples of this
sort. More specifically, we consider three trained ants on the floor,
idealized as three points r⃗1, r⃗2 and r⃗3 on the plane, which move
according to the rules imposed on them by their trainer.

The rules are the Rules A and B below, and we will analyze
wo separate situations: that the ants move by obeying either rule
only, or rule B only. Here are the rules:

Rule A: At every moment of time the velocity vector of a
given ant, dr⃗i

dt , should be aligned with the direction r⃗i+1 − r⃗i
of the line defined by the ant at r⃗i and the next ant at r⃗i+1.
Rule B: At every moment of time the velocity vector of a
given ant, dr⃗i

dt , should be parallel to the direction r⃗i+1 − r⃗i+2
of a line defined by the other two ants.
• In both rules, i, j = 1, 2, 3, and the sum of two indices, i+ j
is counted modulo 3. We will assume this convention about
sums of indices also in the following.

Regardless whether the situation is governed by rule A or B,
the configuration space M of the considered mechanical system
is six dimensional. It can be, for example, (locally) parametrized
by six real numbers corresponding to the 2 × 3 = 6 coordi-
nates (x , y , x , y , x , y ) of the three points r⃗ = (x , y ) in a
1 1 2 2 3 3 i i i
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hosen Cartesian coordinate system (x, y) on the plane. In this
arametrization the movement of the system of ants is described
n terms of a curve m(t) = (x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)),
and its velocity at time t is given by ṁ(t) = (ẋ1(t), ẏ1(t), ẋ2(t),
ẏ2(t), ẋ3(t), ẏ3(t)).

Now, since rule A imposes that dr⃗i
dt ∥(r⃗i+1 − r⃗i) and rule B

imposes that dr⃗i
dt ∥(r⃗i+1 − r⃗i+2), we see that the movement of ants

under the rule A has velocities constrained according to:

(yi+1 − yi)ẋi − (xi+1 − xi)ẏi = 0, i = 1, 2, 3, RuleA,

and that the movement of ants under the rule B have velocities
constrained according to:

(yi+1 − yi+2)ẋi − (xi+1 − xi+2)ẏi = 0, i = 1, 2, 3, RuleB.

In both cases the velocity constraints of the systems, the nonholo-
nomic constraints as they are called, are linear. Thus the space of
admissible velocities at each point q of the configuration space
M is a vector subspace Dq of the tangent space TqM . Since in
both cases we have three independent velocity constraints at each
point q ∈ M the vector spaces Dq are 3-dimensional, and as such,
collected point by point, define rank three distributions D on M .

Let us first make a brief analysis of the geometry of the pair
(M,D) in the case of ants moving under rule A.

2. The rule ‘every ant is chased by precisely one other ant’
results in a (3, 6) distribution

In case of rule A the distribution D of admissible velocities on
M is given by the annihilator of the following three 1-forms:

ωi = (yi+1 − yi)dxi − (xi+1 − xi)dyi, i = 1, 2, 3,

or which is the same, is spanned by the three vector fields

Zi = (xi+1 − xi)∂xi + (yi+1 − yi)∂yi , i = 1, 2, 3 (1)

on M ,

D = Span(Z1, Z2, Z3).

Taking the commutators (Lie brackets) of the vector fields Z1, Z2,
Z3 spanning the distribution D we get three new vector fields

Zi,i+1 = [Zi, Zi+1] =

(xi+1 − xi+2)∂xi + (yi+1 − yi+2)∂yi , i = 1, 2, 3.

Now, calculating Z1 ∧ Z2 ∧ Z3 ∧ Z12 ∧ Z31 ∧ Z23, one gets

Z1 ∧ Z2 ∧ Z3 ∧ Z12 ∧ Z31 ∧ Z23 =( 3∑
i=1

(yixi+1 − xiyi+1)
)3

∂x1 ∧ ∂y1 ∧ ∂x2 ∧ ∂y2 ∧ ∂x3 ∧ ∂y3 ,

so it follows that the six vector fields Z1, Z2, Z3, Z12, Z31, Z23 are
linearly independent at each point m of the configuration space
M , except the points on the singular locus, where coordinates of
m satisfy

32 A =

3∑
i=1

(yixi+1 − xiyi+1) = 0. (2)

Since the number A defined above is the area of the triangle
having the three ants as its vertices, we see that this happens for
those configurations when three ants stay on a line.

At this stage we recall a concept of the growth vector of a
vector distribution. Given any vector distribution D we consider
the following sequence {DI

} of derived distributions: The 0th
element of this sequence is D0

= D, and distributions DI , with
I = 0, 1, . . . , are defined recursively as DI+1

= [DI ,DI
]+DI . Here
2

[DI ,DI
] denotes the set consisting of all linear combinations1 of

all commutators of vector fields forming the distribution DI . The
growth vector of D is a vector (r0, r1, . . . , rK ), whose integer com-
ponents rI are the respective ranks of the derived distributions DI ,
rI = rank(DI ). Note that the growth vector typically vary from
point to point, but there are important examples of distributions,
such as those considered in this paper, when the growth vector
is constant over large open sets. Note also that the last number
rK in the sequence (r0, r1, . . . , rK ) cannot exceed the dimension n
of the manifold M on which the distribution D resides, rK ≤ n. If
the last component rK of the growth vector of a distribution D is
equal to the dimension n of the manifold M , then the distribution
D is called bracket generating. If a bracket generating distribution
D is in addition a velocity distribution of a mechanical system,
such system is controllable.

Having said this, we summarize our observations about the
velocity distribution D of the three ants moving under rule A:
The growth vector of this distribution is (3, 6) everywhere, except
those points in the configuration space which correspond to the
three ants staying on a line. A short term for describing this
property of D is to say that D is a (3, 6) distribution. In particular,
the control system q̇ = u1Z1(q)+u2Z2(q)+u3Z3(q), associated with
the ants moving under rule A, is controllable.

Rank 3 distributions have differential invariants (Bryant, 2006).
We recall, that two distributions D1 and D2 on respective man-
ifolds M1 and M2 are (locally) equivalent,2 if and only if there
exists a (local) diffeomorphism φ : M1 → M2 transforming
distribution D1 to distribution D2. In particular the statement
about rank 3 distributions having invariants, means that there
are locally nonequivalent rank 3 distributions on 6-dimensional
manifolds. Actually, there are infinitely many of nonequivalent
ones. Among them the (3, 6) distributions are generic, and the
growth vector (3, 6) distinguishes them locally from, for example,
distributions with the growth vector (3, 5); these latter distribu-
tions are rank 3 distributions D in dimension 6 such that in the
sequence D0

= D, DI+1
= [DI ,DI

] + DI , with I = 0, 1, . . .., the
distribution D1 is involutive3 and has rank 5. More importantly,
there are locally nonequivalent (3, 6) distributions.

One way of characterizing distributions locally is to determine
their Lie algebra of symmetries. Given a manifold M and distri-
bution D, the Lie algebra of symmetries of D consists of vector
fields X on M such that [X,D] ⊂ D. Here [X,D] denotes the
space consisting of commutators (Lie brackets) of the vector field
X with all vector fields belonging to D. Equivalently, a vector
field X is a symmetry of D, if the local flow φX

t of X satisfies
(φX

t )∗D ⊂ D. It is known (Bryant, 1979, 2006) that for rank 3
distributions with the growth vector (3, 6) the maximal algebra
of symmetries is attained for the distribution locally given in
Cartesian coordinates (qi, pj) in R6 as the annihilator of three 1-
forms λi = dpi + ϵijkqjdqk, i = 1, 2, 3. Here we used the Einstein
summation convention stating that repeated indices are summed
over; we also used the totally skew-symmetric Levi-Civita symbol
ϵijk in R3, which is zero when any two indices are the same, and
otherwise, is +1 or -1, depending on the sign of permutation of
the three indices ijk. This maximally symmetric distribution has
its Lie algebra of symmetries isomorphic to the 21-dimensional
Lie algebra spin(4, 3) (see Bryant, 1979, 2006).

1 With functional coefficients.
2 The equivalence of distributions D1 and D2 is denoted by φ∗D1 = D2 to

emind that the equivalence is obtained by the diffeomorphism φ. The notation
ncodes the property that the vectors spanning the distribution D1 at point q
n M1 , after being transformed by φ to the point φ(q) in M2 , span there the
ame vector subspace of the tangent space Tφ(q)M2 as the vector space D2(φ(q))
f the distribution D2 .
3 Some mathematicians prefer the term integrable here.
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Since the velocity distribution D of the system of three ants
moving according rule A has growth vector (3, 6) almost every-
where, it is interesting to ask what is its Lie algebra of symme-
tries. The answer is given by the following Theorem.

Theorem 2.1. The Lie algebra of all symmetries of the veloc-
ity distribution D of the system of three ants moving according
rule A is isomorphic to the Lie algebra sl(3,R). In coordinates
(x1, y1, x2, y2, x3, y3) in R6, as in (1), the 8 independent local sym-
metries of D = Span(Z1, Z2, Z3) are:

X1 =∂x1 + ∂x2 + ∂x3 ,

X2 =∂y1 + ∂y2 + ∂y3 ,

X3 =y1∂x1 + y2∂x2 + y3∂x3 ,
X4 =x1∂y1 + x2∂y2 + x3∂y3 ,
X5 =x1∂x1 + x2∂x2 + x3∂x3 ,
X6 =y1∂y1 + y2∂y2 + y3∂y3 ,

X7 =x1y1∂x1 + x2y2∂x2 + x3y3∂x3 + y21∂y1 + y22∂y2 + y23∂y3 ,

X8 =x21∂x1 + x22∂x2 + x23∂x3 + x1y1∂y1 + x2y2∂y2 + x3y3∂y3 .

Remark 2.2. We proved this theorem by explicitly solving the
symmetry equations [X,D] ⊂ D for the velocity distribution D on
R6, with coordinates (x1, y1, x2, y2, x3, y3), as in (1). A reader can
convince himself that the eight vector fields Xi from the Theorem
are really the symmetries of D by taking Lie brackets of Xis with
all the velocity distribution generators Zi and observing that all
these brackets belong to D = Span(Z1, Z2, Z3). Another way of
seeing that sl(3,R) is included in the symmetry algebra is to
observe that the mechanical system of ants moving by rule A is
defined in terms of no other notions than points, lines and their
incidence relations4 in the plane. These are notions of the projec-
tive geometry on the plane. A convenient model of this geometry
is the geometry of points and lines lying in the plane z = 1 of the
Cartesian space R3 with coordinates (x, y, z). In this model lines
and points in the z = 1 plane are the respective intersections
of those planes or lines in R3, which contain the R3 space origin
(x, y, z) = (0, 0, 0). Since the Lie group GL(3,R) naturally acts
on the planes and lines passing through the origin in R3, it also
acts on the intersection of these planes and lines with the plane
z = 1, namely on the lines and points in the z = 1 plane. This
GL(3,R) action on the lines and points lying in the z = 1 plane
is not effective, as the scaling group element, a multiple λI of the
identity in GL(3,R), stretches planes and lines in R3 merely, and
in turn does not move the corresponding lines and points in the
z = 1 plane. The group that acts effectively on lines and points in
the z = 1 plane, is a group PGL(3,R), which is an 8-dimensional
quotient Lie group GL(3,R)/(λI). And this group, the projective
linear group PGL(3,R), is the symmetry group of the projective
geometry on the plane, i.e. of the geometry of lines and points in
the plane. Therefore if we look for a group of symmetries of the
ants-under-rule A-distribution-D, a distribution that is entirely
defined in terms of projectively invariant notions such as points,
lines and their incidence in the plane, this group must contain
PGL(3,R) — a group whose Lie algebra is the Lie algebra sl(3,R).
The local symmetries of the distribution are given in terms of
the Lie algebra of its group of (local) symmetries. Therefore the
ants’ distribution D must be at least sl(3,R) symmetric. Actually,
our Theorem says more: the Lie algebra of symmetries of D is
equal to sl(3,R). This does not follow from the simple arguments
mentioned in this remark. We proved it by explicitly solving the
symmetry equations.

4 Such as ‘a point lying on a line’ or ‘lines intersecting themselves or not’,
tc.
3

Remark 2.3. Thus although the symmetry of this (3, 6) distribu-
tion is far from being maximal among all (3, 6) distributions, the
ants distribution D, considered in this section, can be locally iden-
tified with one of the homogeneous models of (3, 6) distributions,
a model that lives on the homogeneous manifold PGL(3,R)/T2,
where T2 is the maximal torus in PGL(3,R). That, this is the case
is obvious from the explicit formulas for the symmetry vector
fields Xi in Theorem 2.1. Indeed, the symmetry vector field X1
is a local version of the scaling of all coordinates x1, x2 and x3
by the same number; likewise the symmetry vector field X2 is
a local version of the scaling of all coordinates y1, y2 and y3 by
(perhaps) another number. Looking at Eqs. (1) defining generators
Zi of the distribution, one sees that such scalings do not change
these generators at all. This shows that these two symmetries
belong to the isotropy subalgebra, and since [X1, X2] = 0, the
corresponding local isotropy group is a direct sum H ⊕ H of two
copies of a 1-dimensional Lie group H .5 Thus, if we want to
have a global model of the ants-under-rule A-manifold-M , i.e. a
6-dimensional manifold M̃ whose local portions are in one to one
correspondence with those parts of M on which the distribution
D is (3, 6), we may take M̃ = PGL(3,R)/T2. This is because H⊕H
globalizes to the 2-dimensional torus T2

= S1
⊕ S1, where the

circle S1 has e.g. a group structure of the complex numbers z ∈ C,
whose modulus is equal to one, |z| = 1.

Remark 2.4. We close this section, with a remark that the
vector space over the real numbers spanned by the symmetry
vector fields X1, X2, X3, X4, X5 − X6 form a Lie algebra isomorphic
to the semidirect product of the simple Lie algebra sl(2,R) and the
commutative Lie algebra R2. This product is denoted by sl(2,R)+
R2, so that

sl(2,R) + R2
= SpanR(X1, X2, X3, X4, X5 − X6).

Here vector fields X1 and X2 on R6 correspond to translations in
the plane in respective directions ∂x and ∂y. The vector fields X3,
X4 and X5 − X6 correspond to the linear transformations of the
plane with unit determinant. In particular we have the following
identifications of the respective Lie algebra elements:

X3 ∼

(
0 1
0 0

)
, X4 ∼

(
0 0
1 0

)
and X5 − X6 ∼

(
1 0
0 −1

)
.

3. The rule ‘each ant moves in a parallel to the line defined by
the other two’ is not so simple

Now, applying rule B to the movement of the three ants, we
find that their velocity distribution D is given by the annihilator
of the three 1-forms

ωi = (yi+1 − yi+2)dxi − (xi+1 − xi+2)dyi, i = 1, 2, 3.

It can be spanned by the three vector fields

Zi = (xi+1 − xi+2)∂xi + (yi+1 − yi+2)∂yi , i = 1, 2, 3 (3)

on M ,

D = Span(Z1, Z2, Z3).

The commutators of the vector fields Z1, Z2, Z3 spanning D are

Zi,i+1 = [Zi, Zi+1] =

(xi − xi+2)∂xi + (xi+2 − xi+1)∂xi+1+

(yi − yi+2)∂yi + (yi+2 − yi+1)∂yi+1 , i = 1, 2, 3.
(4)

And now the story is different than in the case of rule A. Calcu-
lating Z1 ∧ Z2 ∧ Z3 ∧ Z12 ∧ Z31 ∧ Z23, one gets

Z1 ∧ Z2 ∧ Z3 ∧ Z12 ∧ Z31 ∧ Z23 = 0.

5 All 1-dimensional Lie groups are locally isomorphic!



A. Agrachev and P. Nurowski Automatica 147 (2023) 110693

S

g
l

f
l
b
L
t

o the rank of the derived distribution D1
= [D,D]+D is smaller

than 6. The velocity distribution D for the rule B is not bracket
enerating! Actually one easily finds that there is precisely one
inear relation between the vector fields (Z1, Z2, Z2, Z12, Z31, Z23),
namely

Z1 + Z2 + Z3 + Z12 + Z31 + Z23 = 0. (5)

This shows that the velocity distribution D for the ants moving
under rule B has the growth vector (3, 5). The first derived
distribution D1 has rank 5 and is involutive! The 6-dimensional
configuration space M of ants being in a motion obeying rule B
is foliated by 5-dimensional leaves. Once ants are in the config-
uration belonging to a given 5-dimensional leaf in M they can
not leave this leaf by moving according rule B! This system is
non-controllable: its configuration space splits into 5-dimensional
orbits.

Now the question arises about the function that enumerates
the leaves of the foliation of the distribution D1. What is the
feature of motion of the ants whose preservation forces the ants
to stay on a given leaf?

There is a quick algebraic answer to this question:
To see it, note that

d(ω1 + ω2 + ω3) = 0.

this means that there exists a function F such that

dF = ω1 + ω2 + ω3.

One can directly check that

F = 32 A,

where A is as in (2). Since all three vector fields Zi as in (3)
annihilate ωi, and thus they annihilate the 1-form ω1+ω2+ω3 =

32dA, and in turn they annihilate the one form dA, then they are
tangent to the 5-dimensional submanifolds A = const in M .

This shows that the ants under rule B move in a way such that
the triangle having them as its vertices has always the same area!
This proves the following proposition.

Proposition 3.1. The triangle with vertices formed by three ants
moving according rule B has in every moment of time the same area.

Apart of the algebraic proof of this proposition given above, it
can be also seen by a ‘pure thought’ observing that any movement
of the three ants obeying rule B is a superposition of three
primitive moves: an ant #i moves, and ants #(i + 1) and #(i + 2)
rest, for each i = 1, 2, 3. In each of the three primitive situations,
since the vertex #i of the triangle moves in a line parallel to the
corresponding base #(i + 1) − #(i + 2) of the triangle, the area
of the triangle formed by the ants #1, #2 and #3 is obviously
unchanged. Since the general movement according to rule B is a
linear combination of the three primitive movements preserving
the area, it also preserves the area.

So we see that the movement of the ants according to rule B
stratifies the configuration space: once in an initial position the
ants defined a triangle ∆ of area A, they move on a 5-dimensional
submanifold MA of M whose configuration points correspond to
triangles ∆′ having the same area A as ∆. For each fixed A, the
three vector fields (Z1, Z2, Z3) as in (3) are tangent to the five
manifold MA. They define a distribution D = Span(Z1, Z2, Z3)
there, whose growth vector is (3, 5).

The 3-distribution D on each leaf MA is actually a square of
a rank 2-distribution D . By this we mean that there is a rank
2-distribution D such that its first derived distribution D1

=

[D, D] + D equals D. Indeed, consider

D = Span(Z − Z , Z − Z )
1 2 3 1 i

4

with Z1, Z2, Z3 as in (3). Since [Z1−Z2, Z3−Z1] = −Z12−Z31−Z23,
with Zij as in (4), then using relation (5) we get

[Z1 − Z2, Z3 − Z1] = Z1 + Z2 + Z3

and consequently

[Z1 − Z2, Z1 − Z3] ∧ (Z1 − Z2) ∧ (Z3 − Z1) = 3Z3 ∧ Z2 ∧ Z1.

This shows (i) that for each A = const the commutator [D, D] is
tangent to MA and (ii) that the first derived distribution of D on
MA is the entire 3-distribution, [D, D] + D = D. Thus we have
just established the following proposition.

Proposition 3.2. The 6-dimensional configuration space M of
three ants moving on the plane according to rule B is foliated by
5-dimensional submanifolds MA consisting of configuration points
defining triangles of equal area A on the plane. The ants obeying rule
B must stay on a given leaf MA of the foliation during their motion.
Their velocity distribution D of rank 3, defines a rank 2 distribution
D , which is the ‘square root’ of D,

D = [D, D] + D.

The rank 2 distribution D has the growth vector (2, 3, 5) on each
leaf MA.

We recall that rank 2 distributions with growth vector (2, 3, 5)
on 5-dimensional manifolds have local differential invariants
(Cartan, 1910). In particular their symmetry algebra can be as
large as 14-dimensional Lie algebra g∗

2 of the split real form6 of
the simple exceptional complex Lie group G2. This happens for
the rank 2 distribution given on a 5-dimensional quadric piqi = 1
in R6, with coordinates (qi, pi), as the annihilator of three 1-forms
λi = dpi + ϵijkqjdqk, i = 1, 2, 3.

The rank 2 distribution D on each 5-dimensional leaf MA has
a 5-dimensional Lie algebra of symmetries corresponding to the
Lie group of affine transformations of the plane preserving area.
In coordinates (x1, y1, x2, y2, x3, y3) in M = R6 the Lie algebra
of these transformations is spanned by the five symmetry vector
fields (X1, X2, X3, X4, X5 − X6) from Remark 2.4. Denoting by S a
vector field

S = a1X1 + a2X2 + a3X3 + a4X4 + a5(X5 − X6),

with aµ = const, µ = 1, 2, . . . 5, one can directly check that for
A given by (2) and for Zi given by (3) we have:

S(A) = 0,
[S, Z1 − Z2] ∧ (Z1 − Z2) ∧ (Z3 − Z1) = 0

and
[S, Z3 − Z1] ∧ (Z1 − Z2) ∧ (Z3 − Z1) = 0.

We invoked this algebraic argument, if the reader would not
agree with us that the sl(2,R) + R2 symmetry of the rank 2
distribution D is obvious.

We are now in a position to state the theorem, which will be
proven in the subsequent sections of the article:

Theorem 3.3. The Lie algebra of all symmetries of the velocity
distribution D of the system of three ants moving on the plane
according to rule B is isomorphic to the Lie algebra sl(2,R)+R2 of

6 Similarly to the complex Lie group SO(3,C) which has two real forms SO(3)
and SO(1, 2), the complex simple exceptional Lie group G2 has also two real
orms. One of these forms is compact, like SO(3), and the other is non-compact,
ike SO(1, 2). This second non-compact real form of complex group G2 is denoted
y G∗

2 , with the Lie algebra denoted by g∗

2; in the structural theory of simple
ie groups the real Lie group G∗

2 is called the split real form of complex G2 . It is
his real form of the complex Lie group G2 , namely the split G∗

2 , that is relevant
n the geometry of (2, 3, 5) distributions.



A. Agrachev and P. Nurowski Automatica 147 (2023) 110693

g
o

c

D

k
o

t
g
t

Ω

b
Ω

t
Ω

t

i

λ

H

λ
f

h

h

e∑
I

∀

roup of motions on the plane preserving volume. The distribution is
ne of the homogeneous models of (2, 3, 5) distribution, which can

be locally realized on the 5-manifold being the group SL(2,R)⋊R2.
The fundamental invariant of D , its harmonic curvature encapsu-

lated in the so called Cartan quartic, is of algebraic type D, or what
is the same, has no real roots.

Remark 3.4. The definition of the Cartan quartic for (2, 3, 5)
distributions is beyond the scope of this article (see Cartan, 1910,
and An & Nurowski, 2018, p. 94, for details). Here, we only
mention that it gives a neat way of expressing the lowest order
local differential invariant of any (2, 3, 5) distribution. This is
given as a certain totally symmetric tensor CABCD, A, B, C,D = 1, 2,
with respect to the action of the GL(2,R) group. The tensor CABCD
has five real components A1 = C1111, A2 = C1112, A3 = C1122,
A4 = C1222, A5 = C2222 which are used to encapsulate it in
the quartic, the Cartan quartic, of a (2, 3, 5) distribution. This
quartic reads: C(z) = A1 + 4A2z + 6A3z2 + 4A4z3 + A5z4, with
a complex variable z ∈ C. The number and multiplicities of roots
of this quartic, considered as polynomial in variable z, provide
particularly simple invariants of a (2, 3, 5) distribution. A number
of cases for the number of roots and their multiplicities may
happen. Here we only say that the Cartan quartic of a (2, 3, 5)
distribution is of type D, if the Cartan quartic has one pair of
mutually complex conjugated roots, each of them having multiplicity
two.

Remark 3.5. A reader who is interested in the Cartan’s approach
to the geometry of the distribution D can now jump directly
to Section 6. Theorem 3.3 is proven there in the spirit of Car-
tan’s 5-variables paper (Cartan, 1910). There is however another
approach to the analysis of invariant properties of distributions
used by geometric control theorists, which we discuss now. This
approach uses the important notion of singular trajectories (or
abnormal extremals). In the next two sections we will deter-
mine these trajectories for ants distributions, and will prove
Theorem 3.3 using the ideas related to them.

4. Singular trajectories for ants’ movement

We start this section with generalities about singular trajecto-
ries for vector distributions, and then we apply this to determine
these trajectories for the distributions associated with the ants
movement under the rules A and B.

Let D ⊂ TM be a smooth vector distribution on a smooth
manifold M and D⊥

⊂ T ∗M be its annihilator. We denote by
D⊥

0 ⊂ D⊥ the bundle D⊥ with the removed zero section.
Recall that the cotangent bundle T ∗M is equipped with a

anonical symplectic form σ .

efinition 4.1. A Lipschitz curve t ↦→ λ(t), t ∈ [0, 1], in
D⊥

0 is called a singular or an abnormal extremal of D if λ̇ ∈

er
(
σ |D⊥

)
. The projection of λ(·) to M is called singular trajectory

r abnormal geodesic.

Let us explain the geometric meaning of the introduced no-
ions and thus motivate the terminology. We will do it without
oing to analytic details which can be found in first chapters of
he book (Agrachev, Barilari, & Boscain, 2020). Let

D = {γ : [0, 1] → M | γ̇ (t) ∈ Dγ (t)M, 0 ≤ t ≤ 1},

e the space of integral curves of the distribution D and Ft :

D → M be the evaluation map, Ft (γ ) = γ (t). Then singular
rajectories are just critical points of the ‘‘boundary map’’ (F0, F1) :
D → M × M . t

5

Moreover, let γ be a singular trajectory; the curve

↦→ λ(t) ∈ T ∗

γ (t)M \ {0}, 0 ≤ t ≤ 1,

s a singular extremal if and only if

(t)Dγ Ft = λ(s)Dγ Fs, ∀ t, s ∈ [0, 1].

ere Dγ Ft : Tγ Ω → Tγ (t)M is the differential of Ft at γ , λ(t) :

Tγ (t)M → R and λ(t)Dγ Ft is the composition of the linear map
Dγ Ft and linear form λ(t)

We see that λ(t) plays the role of ‘‘Lagrange multipliers’’
corresponding to critical points. Indeed, γ is a critical point of
the map (F0, F1) if and only if there exists a pair of covectors
(λ(0), λ(1)) ̸= 0 such that λ(0)Dγ F0 = λ(1)Dγ F1. Moreover, if γ
is a critical point of the ‘‘boundary map’’, then the restriction of
the curve γ to any segment [t, s] ⊂ [0, 1] is also a critical point
of the boundary map.

To effectively compute singular extremals, we use the Pontrya-
gin Maximum Principle which exploits the Hamiltonian language.
Given a smooth function h : T ∗M → R, Hamiltonian vector
field h⃗ on T ∗M is defined by the identity dh = σ (·, h⃗). The
Poisson bracket {a, b} of two functions on T ∗M is defined by the
formula {a, b} = ⟨db, a⃗⟩ = σ (a⃗, b⃗) and provides C∞(T ∗M) with
the structure of a Lie algebra.

For any subset S ⊂ Tλ(T ∗M), we denote by S ̸
⊂ Tλ(T ∗M) the

skew-orthogonal complement of S,

S ̸
= {ξ ∈ Tλ(T ∗M) | σ (ξ, S) = 0};

then (S ̸ )̸ = Span S. If λ is a regular point of a function a :

T ∗M → R and a(λ) = c , then Tλa−1(c) = ker dλa = a⃗(λ)̸ .
Assume that vector fields Z1, . . . , Zk on M generate the distri-

bution D, i. e.

D|q = Span (Z1(q), . . . , Zk(q)) , ∀ q ∈ M.

We define hi : T ∗M → R, i = 1, . . . , k, by the formula:

hi(λ) = ⟨λ, Zi(q)⟩, ∀ λ ∈ T ∗

q M, q ∈ M.

Then

D⊥
=

k⋂
i=1

h−1
i (0), TλD⊥

=

k⋂
i=1

ker dλhi

and(
TλD⊥

)̸
= Span{h⃗1(λ), . . . , h⃗k(λ)}.

We have: ker
(
σ |D⊥

)
= (TD⊥) ∩ (TD⊥)̸ . Hence a curve t ↦→

(t) in T ∗M is a singular extremal if and only if there exist real
unctions t ↦→ ui(t), t ∈ [0, 1], usually called control function,
such that

λ̇(t) =

k∑
i=1

ui(t)h⃗i(λ(t)) and hi(λ(t)) ≡ 0, i = 1, . . . , k.

More notations: we set hij = {hi, hj}, HIJ = {hij}
k
i,j=1 and we

ave:

ij(λ) = ⟨λ, [Zi, Zj](q)⟩, ∀ λ ∈ T ∗

q M, q ∈ M.

We differentiate identities hi(λ(t)) ≡ 0 in virtue of the differ-
ntial equation and obtain
k

j=1

ui(t)hij(λ(t)) ≡ 0.

n other words, u(t) ∈ kerHIJ (λ(t)).
In our models A and B, HIJ (λ) is a nonzero 3 × 3-matrix,

λ ∈ T ∗
q M \ {0}, q ∈ M . Hence the anti-symmetric ma-

rix H has a one-dimensional kernel spanned by the vector
IJ
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u1, u2, u3) = (h23, h31, h12). It follows that any singular ex-
tremal, up-to a reparametrization, is a solution of the differential
equation

λ̇ = h23(λ)h⃗1(λ) + h31(λ)h⃗2(λ) + h12(λ)h⃗3(λ). (6)

Moreover, D⊥ is an invariant submanifold of the dynamical
system (6) on T ∗M . Indeed, d

dt hi(λ(t)) = hilhji + hjihli = 0 in
virtue of (6), where i ̸= j ̸= l. It follows that, up-to repa-
ameterizations, singular extremals are exactly trajectories of the
ynamical system (6) starting at nonzero elements of D⊥. Note
hat the right-hand side of (6) is anti-symmetric with respect to
ermutations of the indices (1, 2, 3).
The projection of Eq. (6) to M has a form:

˙ = h23Z1(q) + h31Z2(q) + h12Z3(q) =

3∑
i=1

uiZi(q).

Moreover,

d
dt

hj,j+1(λ) =

3∑
i=1

ui{hi, hj,j+1}(λ) =

3∑
i=1

ui⟨λ, [Zi, [Zj, Zj+1]]⟩.

(7)

In both models A and B, Span
(
Zi, [Zj, Zj+1], i, j = 1, 2, 3

)
is a Lie algebra. This is a 6-dimensional Lie algebra of the group
of affine transformations of the plane in the case A and a 5-
imensional algebra of the group of area preserving affine trans-
ormations of the plane in the case B. In the last case we have:

3
i=1(Zi + [Zi, Zi+1]) = 0.
Anyway, in both cases vector fields [Zi, [Zj, Zj+1]] are lin-

ear combinations of the vector fields Z1, Z2, Z3, [Z2, Z3], [Z3, Z1],
[Z1, Z2] with constant coefficients. Hence the function λ ↦→

⟨λ, [Zi, [Zj, Zj+1]]⟩ is a linear combination of functions

h1(λ), h2(λ), h3(λ), h23(λ), h31(λ), h12(λ), λ ∈ T ∗M, (8)

with the same constant coefficients. If λ ∈ D⊥, then first three
elements of the sequence (8) vanish and last three elements are
just u1, u2, u3. Coming back to (7) we obtain that u̇i is a quadratic
function of u1, u2, u2, i = 1, 2, 3.

A straightforward calculation of Lie brackets gives:⎧⎨⎩
u̇1 = −u1(u1 + u2)
u̇2 = −u2(u2 + u3)
u̇3 = −u3(u3 + u1),

(A)

⎧⎨⎩
u̇1 = u1(u2 − u3)
u̇2 = u2(u3 − u1)
u̇3 = u3(u1 − u2).

(B)

Now we focus on the case B and postpone for the future the
apparently more complicated case A. Recall that in this case u1 +

u2 + u3 = 0. Moreover, the product u1u2u3 is the first integral of
system (B) and thus the system is integrable. In addition, system
(B) is anti-symmetric with respect to the permutation of variables
and the central reflection (u1, u2, u3) ↦→ (−u1, −u2, −u3). The
fact that u1(t)u2(t)u3(t) = const along trajectories of (B) implies
that ui(t) do not change sign. We see that it is enough to study
the system in the domain u1, u2 ≥ 0, u3 = −u1 − u2.

Let z1 = x1 + iy1, z2 = x2 + iy2, z3 = x3 + iy3 be the vertices
of the triangle; then Zi = ⟨zi+1 − zi+2,

∂
∂zi

⟩, i = 1, 2, 3. Singular
rajectories are solutions of the system:

ż1 = u1(z2 − z3)
ż2 = u2(z3 − z1)

ż3 = u3(z1 − z2),

6

where u1, u2, u3 satisfy (B).
Let z0 =

1
3 (z1 + z2 + z3) be the barycenter of the triangle.

A direct differentiation gives that z̈0(t) ≡ 0, i.e. the barycenter
moves along a straight line with constant velocity.

Moreover, given a triangle and a straight line through its
barycenter, there is exactly one singular trajectory whose
barycenter moves along this line.

We set ζi = zi − z0, i = 1, 2, 3, so that ζ1 + ζ2 + ζ3 = 0. Now
we eliminate variables u3 = −u1 − u2 and ζ3 = −ζ1 − ζ2 from
he differential equations and arrive to the system:

u̇1 = u1(u1 + 2u2)
u̇2 = −u2(2u1 + u2),

{
ζ̇1 = (u1 + u2)ζ1 + u1ζ2

ζ̇2 = −u2ζ1 − (u1 + u2)ζ2.
(9)

e also have: ż0 = u1ζ2 −u2ζ1 = const . Another polynomial first
ntegral of system (9) is already mentioned function u1u2(u1+u2).

System (9) can be easily solved; the solution is expressed in
lliptic functions. We denote by e the velocity of the barycenter
f the triangle, e = u1ζ2 −u2ζ1, it does not depend on t . We have

ζ̇1 = (u1 + 2u2)ζ1 + e
ζ̇2 = −(2u1 + u2)ζ2 + e.

n other words,

ζ̇1 =
u̇1

u2
ζ1 + e

ζ̇2 = −
u̇2

u2
ζ2 + e.

It follows that

ζ1(t) =
u1(t)
u1(0)

ζ1(0) +

∫ t

0

u1(t)
u1(τ )

dτ e,

ζ2(t) =
u2(0)
u2(t)

ζ2(0) +

∫ t

0

u2(τ )
u2(t)

dτ e.

Let u2
1u2 + u1u2

2 = c; then 2u1u2 =

√
u2
1 + 4u1c − u2

1 and we

btain u̇1 =

√
u1(u3

1 + 4c). Similarly, u̇2 =

√
u2(u3

2 + 4c). Hence∫ u1

r1

dv√
v(v3 + 4c)

= t =

∫ r2

u2

dv√
v(v3 + 4c)

,

here r1 = u1(0), r2 = u2(0). So t is presented as elliptic
ntegrals of u1 and u2. Relations between the constants:

1r2(r1 + r2) = c, r1ζ2(0) − r2ζ1(0) = e.

nother alternative way to study the same system is to try to
liminate variables u1, u2 and focus completely on the vertices
f the triangles. Let ν1 = u1 + u2, ν2 = u1u2 be elementary
ymmetric functions of u1, u2 and δ = u1 − u2 the discriminant.
e have:

˙1 = δν1, ν̇2 = −δν2, δ̇ = ν2
1 + 2ν2, δ2 = ν2

1 − 4ν2.

The case ν1 = 0 corresponds to the constant trajectory (recall
hat we are working in the domain u1, u2 ≥ 0). Let ν1 ̸= 0.
he case ν2 = 0 corresponds to a singular trajectory with a
ixed vertex of the triangle. This is a singular trajectory whose
arycenter moves along the line connecting the barycenter with
he vertex.

The equations are very simple in this case. We leave the
alculations to a reader as an exercise and formulate only the final
esult: Let z1(t) = const , then, for all t , the passing through z1
edian of the triangle is a segment of one and the same straight

ine, the opposite to z1 side of the triangle remains parallel to
tself and the length of this side is regulated by the constant area
ondition.
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Now turn to the main case ν2 ̸= 0. We see that δ̇ > 0;
the permutation of u1 and u2 changes the sign of δ and we can
restrict ourselves to the study of the parts of trajectories in the
domain δ > 0. Let us make a time substitution in our system
and introduce new time s according to the rule ds

dt = δ. Then
dν1
ds = ν1,

dν2
ds = −ν2. Hence ν1(s) = c1es, ν2(s) = c2e−s.

Moreover, u1 =
1
2 (ν1(s) + δ), u2 =

1
2 (ν1 − δ) and we have:

dζ1
ds

=
ν1

δ
ζ1 +

(ν1

δ
+ 1

) ζ2

2
dζ2
ds

=

(ν1

δ
− 1

) ζ1

2
−

ν1

δ
ζ2.

Now we make one more change of the time variable:

τ =
ν1(s)
δ(s)

= (1 − ce−3s)−
1
2 ,

here c =
4c2
c21

. Then dτ
ds =

3
2τ (1 − τ 2) and we obtain:

dζ1
dτ

=
2τ

3(1 − τ 2)
ζ1 +

ζ2

3τ (1 − τ )
dζ2
dτ

=
ζ1

3τ (1 + τ )
−

2ζ2
3(1 − τ 2)

This is a Fuchsian system with 3 poles −1, 0, 1. We can rewrite
t in the canonical matrix form:
dΨ
dτ

=

[
1

τ − 1

(
−1 −1
0 1

)
+

1
τ

(
0 1
1 0

)
+

1
1 + τ

(
1 0

−1 −1

)]
Ψ ,

here Ψ = (ζ1, ζ2)∗. Note that the three 2 × 2 matrices ap-
pearing in this equation form a basis of the Lie algebra sl(2). In
principle, this kind of systems (with 3 poles) is resolved in the
Gauss hypergeometric function. The following explicit expression
is obtained by Renat Gontsov (Moscow): Ψ (τ ) =

1
√
2
X( 2τ

τ+1 ),
here

(t) = (t − 1)−1/3 t1/3

⎛⎝ 8
5 (t − 1)t 2t − 1

0 t − 1

⎞⎠
×

⎛⎝F ( 53 ,
7
3 ,

8
3 ; t) −

5
4 t−5/3

F ( 23 ,
4
3 ,

5
3 ; t) t−2/3

⎞⎠
nd F (α, β, γ ; t) is the Gauss hypergeometric function. Recall that

(α, β, γ ; t) =

∞∑
j=0

(α)j (β)j
(γ )j j!

t j,

where (α)j = α(α+1) . . . (α+ j−1). We see that γ −α = 1 in the
explicit expression; this corresponds to the so called degenerate
case of the hypergeometric equation (see Bateman & Erdelyi,
1954) and should lead to a further simplification of the expres-
sion. It would be nice to get a clear geometric interpretation of
the computed singular trajectories.

Actually, all this story is a benefit performance of the number
3! It is continued in the next section.

5. Sub-Riemannian structure and Cartan quartic

Here we show how the structure of the Cartan quartic is
determined by the natural symmetries of the distribution D.

Lemma 5.1. Given a triangle ∆ in the plane, there exists a unique
ellipse C∆ such that C∆ contains the vertices of the triangle and the
tangent line to C∆ at any vertex is parallel to the opposite side of the
triangle.
7

Proof. The desired properties are preserved by the affine trans-
formations of the plane. To prove the existence we transform the
triangle in the regular one and then take the circle that contains
the vertices of the regular triangle.

To prove the uniqueness we take an ellipse C that satisfies
the desired properties and transform it into a circle by an affine
transformation. We see that the image of the triangle under this
transformation must be regular. □

Any ellipse defines an Euclidean metric on the plane: we say
that a segment has length 1 if the endpoint of a parallel segment
are the center of the ellipse and a point on the ellipse itself.

Now we can define a natural Riemannian structure on the
space of triangles that is invariant with respect to the group of
affine transformations. Given a curve t ↦→ ∆t = conv{z1(t), z2(t),
z3(t)} in the space of triangles, we define the square of the length
f its velocity (ż1(t), ż2(t), ż3(t)) as the sum of squares of the
engths of the vectors żi(t), i = 1, 2, 3, measured in the Euclidean
tructure associated to the ellipse C∆t .
The restriction of this Riemannian metric to the distribution

D = Span{Z1, Z2, Z3} is a sub-Riemannian metric such that the
quare of the length of the vector

∑3
i=1 uiZi is equal to

∑3
i=1 u

2
i .

his is valid for both models A and B.
In what concerns the case B, velocities of singular trajectories

orm a rank 2 distribution D = {
∑3

i=1 uiZi |
∑3

i=1 ui = 0} ⊂ D.
ecall that the vector fields

∑3
i=1 uiZi,

∑3
i=1 ui = 0 generate a 5-

imensional Lie algebra. The famous Cartan invariant of this kind
f distribution (Cartan quartic) is a degree 4 homogeneous form
n D .

roposition 5.2. The Cartan quartic of D is equal to the form:
3

i=1

uiZi ↦→ c
(
u2
1 + u2

2 + u2
3

)2
,

3∑
i=1

ui = 0,

here c is a constant.

roof. Cyclic permutations of the fields Z1, Z2, Z3 induce automor-
hisms of the Lie algebra Lie{Z1, Z2, Z3} and hence symmetries of
he distribution D . It follows that the Cartan quartic written as
form of u1, u2, u3 must be invariant with respect to the cyclic
ermutations of the variables u1, u2, u3.
Consider a projective line

¯ = {u1 : u2 : u3 |

3∑
i=1

ui = 0}.

he group of cyclic permutations of u1, u2, u3 acts freely on D̄ and
reserves the sets of real roots of a prescribed multiplicity of the
artan quartic. Any orbit of this cyclic group has 3 points, hence
he number of roots of a prescribed multiplicity is a multiple of
. At the same time, if the quartic is not identical zero, then it
ay have 0, 1, 2 or 4 roots of a prescribed multiplicity and never
roots. It follows that the quartic does not have real roots.
The quartic is real, hence it is a square (or minus square) of
positive definite quadratic form on D̄ . This quadratic form is

nvariant with respect to the action of the order 3 cyclic group,
ence it is proportional to the form

∑3
i=1 uiZi ↦→

∑3
i=1 u

2
i . Indeed

nonempty intersection of the level sets of this form and any non
roportional to it quadratic form has 2 or 4 elements and cannot
e preserved by a free action of the order 3 cyclic group. □

. The EDS associated with the (2,3,5) distribution associated
ith the movement of three ants

In this section we again analyze the movement of the three
nts according to the rule B, but now from the Exterior Dif-
erential System (EDS) point of view. Our goal here will be to
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ive proofs of Theorem 3.3 and Proposition 5.2, which will be
otally independent of the geometric arguments in Section 5.
n particular, we aim to characterize the (2, 3, 5) distribution D

ssociated with ants moving according to Rule B in terms of the
orresponding EDS, and use it to calculate the formula for the
artan quartic of D . One can try to make these calculations in
erms of the original Euclidean coordinates (x1, y1, x2, y2, x3, y3)
n the plane, but we doubt that it is possible in any finite time
even with the help of very powerful computer equipped with a
ood symbolic calculation program). It is why here we use totally
ew parametrization of the ants system, using the observation
hat its symmetry group is at least as large as the semidirect
roduct SL(2,R)⋊R2 of the groups SL(2,R) and R2. Actually we
mbed the non-controllable 6-dimensional configuration space
f the ants moving according to rule B in the 6-dimensional
roup GL(2,R) ⋊ R2 and identify a chosen 5-dimensional orbit
A of controllable movement with the group SL(2,R) ⋊ R2. The
dvantage of such an approach is that given the identification of
he configuration space manifold MA with a Lie group manifold,
e have a preferred set of 1-forms on MA. This is given by the
oframe of left invariant forms, known as the Maurer–Cartan forms.
hese are God given on any Lie group (see Helgason, 1978 Ch.II
7, 135–138). In the coordinates on MA adapted to the group

parameters they are easy to calculate explicitly. Having them
in coordinates adapted to the symmetry of the system will be
extremely helpful to find the (2, 3, 5) geometric invariant 1-forms
constituting the EDS described in An and Nurowski (2018), p. 94,
encapsulating the curvature and Cartan quartic of the ants-under-
Rule-B (2, 3, 5) distribution D . Having this EDS we will be able to
determine the Cartan quartic of D and its type.

6.1. Parametrization in terms of GL(2,R) ⋊ R2

Let us make use of the fact that the symmetry of the ant sys-
tem obeying rule B is at least SL(2,R)⋊R2 and that the reduced
ystem can be considered on a manifold MA being diffeomorphic
o this group. Actually we parametrize all triangles on the plane
y the elements of the 6-dimensional GL(2,R) ⋊ R2 group.
For this we take a ‘standard triangle’7 in R2, which we define

n terms of its vertices at r⃗1 = (0, 0), r⃗2 = (1, 0) and r⃗3 = (0, 1)
n a chosen Cartesian system (x, y) on the plane. Now, any other
riangle on the plane is obtained by acting on the vertices of the
tandard triangle with the group GL(2,R)⋊R2. It is convenient to
epresent the group GL(2,R) ⋊ R2 as a group of invertible 3 × 3
eal matrices

=

(a b x
p q y
0 0 1

)
, aq − bp ̸= 0, (10)

nd vectors r⃗ in R2 as column vectors r = (r⃗, 1)t . Then the action
f the group GL(2,R) ⋊ R2 in R2 can be read off from the action
h, r) → h.r coming from the multiplication ‘.’ of matrices h from
L(2,R)⋊R2 and vectors r of the form r = (r⃗, 1)t from R3. Using
his action, we can transform the standard triangle with vertices
i, i = 1, 2, 3, to any other triangle on the plane. In this way the
ost general triangle on the plane will have the vertices

⃗1 = h.r1 = (x, y), R⃗2 = h.r2 = (a + x, p + y),

R⃗3 = h.r3 = (b + x, q + y).

Thus we locally parametrized the triangles on the plane by
oordinates (x, y, a, b, p, q) in an open set of R6 identified with
he affine transformation group of the plane GL(2,R) ⋊ R2. We

7 Note that any choice of a ‘standard triangle’ will work; we have chosen
this one because we like the origin of the Cartesian coordinate system, and the
isosceles rectangular triangles.
 c

8

put the three ants each one in one of the vertices R⃗1, R⃗2, R⃗3
of the general triangle. We are interested in curves m(t) =

(x(t), y(t), a(t), b(t), p(t), q(t)) in GL(2,R) ⋊ R2, corresponding to
the movement of the ants in time, and we want that these curves
satisfy:

dR⃗1

dt
∥ (R⃗2 − R⃗3),

dR⃗3

dt
∥ (R⃗1 − R⃗2),

dR⃗2

dt
∥ (R⃗3 − R⃗1),

hich is the implementation of rule B. More explicitly this rule
means that
(ẋ, ẏ) ∥ (a − b,p − q), (ȧ + ẋ, ṗ + ẏ) ∥ (b, q),

(ḃ + ẋ, q̇ + ẏ) ∥ (−a, −p).
(11)

Instead of writing the (3, 6) velocity distribution D of the ants
s in Section 3, we now write this distribution in terms on three
ector fields on GL(2,R)⋊R2 corresponding to the three primitive
oves.
Obviously the following three moves satisfy rule B:

Move 1: The first ant, with a position at R⃗1 moves, the other
two ants are at rest,
Move 2: The second ant, with a position at R⃗2 moves, the
other two ants are at rest,
Move 3: The third ant, with a position at R⃗3 moves, the other
two ants are at rest.

ooking at the implementation of rule B in (11) we see that:
• Move 1 means that ẋ = c(a − b), ẏ = c(p − q), ȧ = −ẋ,

˙ = −ẏ, ḃ = −ẋ, q̇ = −ẏ, resulting in (ẋ, ẏ, ȧ, ḃ, ṗ, q̇) =

(a − b, p − q, b − a, b − a, q − p, q − p), or a generating vector
ield

1 = (a − b)
(
∂x − ∂a − ∂b

)
+ (p − q)

(
∂y − ∂p − ∂q

)
. (12)

• Move 2 means that ẋ = ẏ = ḃ = q̇ = 0, ȧ = cb, ṗ = cq,
esulting in (ẋ, ẏ, ȧ, ḃ, ṗ, q̇) = c(0, 0, b, 0, q, 0), or a generating
ector field

2 = b∂a + q∂p. (13)

• Move 3 means that ẋ = ẏ = ȧ = ṗ = 0, ḃ = −ca,
˙ = −cp, resulting in (ẋ, ẏ, ȧ, ḃ, ṗ, q̇) = c1(0, 0, 0, −a, 0, −p), or a
enerating vector field

3 = −a∂b − p∂q. (14)

he general move of the ants according to rule B is a superposi-
ion of these three primitive moves, so the velocity distribution
D of the ants moving in GL(2,R) ⋊ R2 according to rule B is

D = Span(V1, V2, V3),

here the vector fields V1, V2, V3 are given by the respective
ormulas (12), (13) and (14).

Now, let us consider the determinant

et(h) = aq − bp

f the GL(2,R) ⋊ R2 valued matrix h as in (10). One can easily
heck that a general vector field

= f1V1 + f2V2 + f3V3

rom the distribution D annihilates Det(h), i.e.8

V
(
Det(h)

)
= 0, ∀V ∈ D.

8 Note that in the formula LV
(
Det(h)

)
= 0, we used the explicit forms of

vector fields V1 , V2 and V3 which are given explicitly as differential operators in
ormulas (12), (13) and (14). Thus the expression V

(
Det(h)

)
means action of the

irst order differential operator V on a function Det(h) = aq − bp. Direct simple
alculation using the explicit form of V , V and V shows that L

(
Det(h)

)
= 0.
1 2 3 V
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denotes the Lie derivative of a function f with respect

o the vector field V .
Thus, as we already know, the distribution D is tangent to

-dimensional submanifolds in GL(2,R) ⋊ R2 consisting of the
lements with constant determinant. Each of these submanifolds is
iffeomorphic to the SL(2,R)⋊R2 group, i.e. the group of motions
n R2 preserving volumes.

Let us now introduce a foliation of GL(2,R) ⋊ R2 by 5-
imensional submanifolds Ns defined by

s = {h as in (10) s.t. Det(h) = s = const} ⊂ GL(2,R) ⋊ R2.

n each submanifold Ns we then have a rank 2-distribution

= Span(V1 − V3, V2 − V1),

such that it is the square root of D, D = [D, D] + D . The
distribution D obviously has the growth vector (2, 3, 5) on each
5-dimensional manifold Ns.

6.2. The (2, 3, 5) distribution and the Maurer–Cartan forms on
GL(2,R) ⋊ R2

Since the distribution D is defined on the 5-dim submanifolds
of GL(2,R) ⋊ R2 diffeomorphic to SL(2,R) ⋊ R2, and since this
distribution is definitely SL(2,R) ⋊ R2 invariant, it is natural to
ask how to define it in terms of the Maurer–Cartan forms on
GL(2,R) ⋊ R2 or SL(2,R) ⋊ R2.

If we view of GL(2,R)⋊R2 as the group of matrices h defined in
10), then the basis (τ 1, τ 2, τ 3, τ 4, τ 5, τ 6) of the Maurer–Cartan
forms on GL(2,R) ⋊ R2 can be easily found from the formula

h−1dh =

6∑
i=1

τ iEi,

with

E1 =

(0 1 0
0 0 0
0 0 0

)
, E2 =

(0 0 0
1 0 0
0 0 0

)
, E3 =

(1 0 0
0 −1 0
0 0 0

)
,

E4 =

(0 0 1
0 0 0
0 0 0

)
, E5 =

(0 0 0
0 0 1
0 0 0

)
, E6 =

(1 0 0
0 1 0
0 0 0

)
.

(15)

Explicitly we have

τ 1
=

qdb − bdq
aq − bp

, τ 2
=

adp − pda
aq − bp

,

3
=

qda − adq + pdb − bdp
2(aq − bp)

, τ 4
=

qdx − bdy
aq − bp

,

5
=

ady − pdx
aq − bp

, τ 6
=

d(aq − bp)
2(aq − bp)

.

ote that this basis of the Maurer–Cartan forms has the property
hat on each of the 5-dimensional submanifolds Ns, where s =

q − bp = const the sixth 1-form τ 6 identically vanish,
6

≡ 0 on each Ns.

ow we can look for the most general linear combination (with
onstant coefficients!) of the Maurer–Cartan forms (τ 1, τ 2, τ 3,
4, τ 5) which annihilates the (2, 3, 5) distribution D on each Ns.
ince the explicit form of the vector fields V1 − V3 and V2 − V1
panning the (2, 3, 5) distribution D in coordinates (a, b, p, q, x, y)
eads:

1 − V3 = (a − b)(∂x − ∂a) + (p − q)(∂y − ∂p) + b∂b + q∂q,
2 − V1 = (a − b)(∂b − ∂x) + (p − q)(∂q − ∂y) + a∂a + p∂p, t

9

nd since these vector fields annihilate τ 6, one easily finds that
the basis of the annihilator of D on Ns is given by

D⊥
= Span(τ 3

− τ 5, τ 4
+ τ 5, τ 1

− τ 2
− τ 3).

Of course, since we restrict our attention to the leaves Ns of the
foliation ofM , the Maurer–Cartan forms appearing in this formula
have aq − bp = s = const . This means that we can define the
(2, 3, 5) distribution D on each Ns as the annihilator of the forms

sθ1
= s(τ 3

− τ 5) = pdx − ady +
1
2 (qda + pdb − bdp − adq),

sθ2
= s(τ 4

+ τ 5) = −(p − q)dx + (a − b)dy,

sθ3
= 2s(τ 1

− τ 2
− τ 3) =

(2p − q)da + (2q − p)db − (2a − b)dp − (2b − a)dq,

hese three 1-forms can be supplemented by the Maurer–Cartan
orms

sθ4
= −τ 2

= pda − adp,

θ5
= τ 2

− τ 1
= − pda − qdb + adp + bdq,

o a coframe (θ1, θ2, θ3, θ4, θ5) on Ns. In this coframe the distri-
ution

= {V ∈ Γ (TNs) : V−
| θ1

= V−
| θ2

= V−
| θ3

= 0)}

nd because of the boxed terms in the formulas below

θ1
= θ1

∧ (θ3
+ θ4

+ θ5) + θ2
∧ θ4

+ θ3
∧ θ4 ,

dθ2
= −θ1

∧ (2θ3
+ θ5) − θ2

∧ (θ3
+ θ4

+ θ5) + θ3
∧ θ5 ,

dθ3
= −θ3

∧ (4θ4
+ 2θ5) + 3θ4

∧ θ5 ,

dθ4
= −2θ3

∧ θ4
+ 2θ4

∧ θ5,

dθ5
= θ3

∧ (4θ4
+ 2θ5) − 4θ4

∧ θ5,

(16)

its growth vector is visibly9 (2, 3, 5). Also, the appearance of only
constant coefficients in (16), visibly shows that the distribution D

is homogeneous with the symmetry group being at least as large
as SL(2,R) ⋊ R2.

This proves the following proposition.

Proposition 6.1. The (2, 3, 5) distribution D of three ants moving
on the floor according to rule B is locally equivalent to a ho-
mogeneous (2, 3, 5) distribution on the Lie group SL(2,R) ⋊ R2,
which is defined as the annihilator of the three Maurer–Cartan forms
(θ1, θ2, θ3) with

θ1
= τ 3

− τ 5, θ2
= τ 4

+ τ 5, θ3
= τ 1

− τ 2
− τ 3,

where τ is are defined in terms of the general element h ∈ SL(2,R)⋊
R2, as in (10), and the basis Ei in gl(2,R) + R2, as in (15), by
h−1dh =

∑6
i=1 τ iEi.

6.3. Cartan quartic for the ants’ (2, 3, 5) distribution on SL(2,R) ⋊
R2

The Cartan quartic (Cartan, 1910) for the ants’ distribution D

can be computed in various ways. Here we do it by calculating ex-
plicitly the conformal (2, 3) signature metric (Nurowski, 2005) as-
sociated with D . It follows, that in the coframe (θ1, θ2, θ3, θ4, θ5)

9 The appearance of the boxed terms with nonzero constant coefficients im-
lies — by the Maurer–Cartan formula (see Helgason, 1978 Ch.II § 7, Proposition
.2, p. 137) that the vector fields Xi dual to the forms θ i , Xi−|θ j

= δi
j , satisfy

n particular: [X4, X5] = −3X3 mod X4, X5 , [X3, X5] = −X2 mod X3, X4, X5 and
X3, X4] = −X1 mod X3, X4, X5 . This shows that the rank 2 distribution spanned
y the vector fields X4 and X5 is precisely (2, 3, 5) and can be identified with
he ants distribution D .
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atisfying the system (16), the conformal representative of this
etric can be taken as:

= θ1 ( 45 θ5
+ 60 θ3

+ 27 θ2
+ 27 θ1 )

−

θ2 ( 45 θ4
− 30 θ3

− 27 θ2 )
+ 10 ( θ3 )2,

(17)

with the product between the 1-forms above being λµ =
1
2 (λ ⊗

+ µ ⊗ λ).
Calculating the Weyl tensor10 of this metric in the null

oframe, and using the procedure of calculating the Cartan quar-
ic from the conformal metric described in An and Nurowski
2014), we find that the Cartan quartic of the corresponding to
2, 3, 5) distribution D is of type D in the parabolic geometric
anguage (Strazzullo, 2009) or, what is the same, has no real
oots. Moreover the metric is not conformal to an Einstein metric.
his in particular means that the distribution D is NOT G2 flat.11
lso, using the Cartan reduction procedure for the Cartan system
ssociated to the distribution D , as in Theorem 8 in Nurowski
2005), we established that the distribution D has precisely 5-
imensional Lie algebra of symmetries. This proves Theorem 3.3
rom the end of Section 3.
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