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Abstract

We noticed a discrepancy between Elie Cartan and Sigurdur Helgason about the lowest
possible dimension in which the simple exceptional Lie group Eg can be realized.
This raised the question about the lowest dimensions in which various real forms of
the exceptional groups E; can be realized. Cartan claims that Eg¢ can be realized in
dimension 16. However Cartan refers to the complex group Eg, or its split real form E.
His claim is also valid in the case of the real form denoted by E;y . We find however that
thereal forms E;; and E;; of Eg can not be realized in dimension 16 ala Cartan. In this
paper we realize them in dimension 24 as groups of CR automorphisms of certain CR
structures of higher codimension. As a byproduct of these two realizations, we provide
a full list of CR structures (M, H, J) and their CR embeddings in an appropriate CV
which satisfy the following conditions:

o they have real codimension k > 1,

o the real vector distribution H proper for the action of the complex structure J is
suchthat [H, H]|+ H=TM,

o the local group G; of CR automorphisms of the structure (M, H, J) is simple,
acts transitively on M and has isotropy P being a parabolic subgroup in G,

e the local symmetry group G of the vector distribution H on M coincides with the
group G ; of CR automorphisms of (M, H, J).

Because all the CR structures from our list satisfy the last property we call them
accidental. Our CR structures of higher codimension with the exceptional symmetries
Ej; and Ejj; are particular entries in this list.
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1 Introduction

In the German version of his PhD thesis [2] Elie Cartan gives a realization of the simple
exceptional Lie group F4 as a symmetry group of a certain rank eight vector distribution
in dimension fifteen. Sigurdur Helgason in [4] reports on this fact as follows:

Cartan represented Fy4 (...) by the Pfaffian system in R (...). Similar results for
Eg in R'®, E7 in R?7 and Eg in R? are indicated in [2]. Unfortunately, detailed
proofs of these remarkable representations of the exceptional groups do not seem
to be available.

Nowadays the information invoked by Helgason is in principle understood in the
context of parabolic geometries [3]. We used the phrase ‘it is understood in principle’
because:

e Cartan’s paper has a misprint, and his R?? as a space for a realization of Eg, which
is written in the third sentence before the end of his paper, should be R>’; Helgason
in [4] copied this misprint without confronting it with the last sentence of Cartan’s
paper! which gives the correct space R>’;

e Helgason’s use of the word ‘similar’ in the phrase Similar results for Eg in
R!9[...Jare indicated in [2] is not particularly appropriate, as it will be clear in
the sequel;

e more importantly, the explicit realizations of E¢, E7 and Eg really similar to Car-
tan’s realization of Fy are still missing.

Looking at Cartan’s description of the realization of F4 in R!3 given at the bottom of
page 418 and the top of page 419 in [2], one sees that Cartan speaks about a realization
of the split real form®> F; of the complex simple exceptional Lie group F4 in R as
a symmetry group of a rank 8-distribution H in R!> defined as the annihilator of the
following 1-forms

AV = du' 4 x'dx! + ykdyl,

4
A =du’ + Z yidxt.
i=1
Here u'/ with 1 <i < j <4,u’,x" withi = 1,2,3,4,and y’ withi = 1,2, 3, 4,
are coordinates in R1>, and indices k, [ in the first formula above are such that the
quadruple of indices (ijkl), with i < j, is an even permutation of numbers 1, 2, 3, 4.

! Ich habe eine einfache G7g im Rjg und eine G133 im Ry7 gefunden. Die G7g enthilt die 16 infinites-
imalen Transformationen nullter Ordnung, pp, ..., p1g, 16 homogene Transformationen erster Ordnung
und 16 homogene Transformationen zweiter Ordnung. Die G133 enthilt die 27 infinitesimalen Transfor-
mationen nullter Ordnung, p1, ..., p27, 79 homogene Transformationen erster Ordnung und 27 homogene
Transformationen zweiter Ordnung.

Endlich habe ich eine einfache 248-gliedrige Beriihrungstransformationsgruppe Go48 im Rpg gefunden.
Diese drei Gruppe sind ihre eigenen dualistischen Gruppen.

Die fiinf speciellen einfachen Gruppen mit 14 bez. 52, 78, 123, 248 Parametern konnen in weniger als 5
bez. 15, 16, 27, 57 Verinderlichen nicht existiren.

2 In this paper we use the same notation for the real forms of the simple exceptional Lie groups as the
notation presented in Table B.4 on pages 612-615 of [3].
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Thus, Cartan is very explicit with providing a realization of the split real form Fy
of the complex simple exceptional Lie group Fy:
It is the local symmetry group of a distribution

H={[(TR®)>5 X : XAV =x,27=0,V1i<i<j<4),

i.e. it is the local transformation group on R!3 whose Lie algebra is spanned by all
real vector fields ¥ on R satisfying

(LyrAT) ArZAAB A ADP AR AL AL =0, 1<i<j<4,

(LyaT) A AL A ARB AR A AL =0,

Cartan’s detailed description of the F4 realization, is in contrast with his discussion
of realizations of real forms of Eg, E7 and Eg in the respective R'%, R?7 and RY7. In
these cases Cartan only specifies the commutation relations between generators of the
corresponding real Lie algebras, and observes, that in each of the E; cases, £ = 6,7, 8,
they include real subalgebras of respective real dimensions 62, 106, 191. This only
means that there are E,-homogeneous spaces of dimension 16, 27 and 57 for the
respective £ = 6, 7, 8. That is all that Cartan says! In particular, he says nothing about
that what are the geometric structures on these spaces which are E;, homogeneous.
And a closer look at his 62, 106 and 191 dimensional subalgebras of these E;s shows
that the corresponding geometric structures are very different from the structure of the
rank 8 bracket generating distribution in dimension 15, which realizes the real form
F of Fy as its local symmetry.

In short: Cartan’s geometry with symmetry F4 in dimension 15, viewed as a
parabolic geometry, is two-step graded, whereas Cartan’s homogeneous spaces with
symmetry Eg in dimension 16, with symmetry E7 in dimension 27, and with symmetry
Eg in dimension 57, viewed as parabolic geometries, are one-step graded. In particular,
his geometry in dimension 16 with symmetry E¢ is an RSpin(5, 5) geometry.

If somebody is interested in the details of these F4, E¢, E7 and Eg realizations,
we direct her to a paper [9]. What is important for our current paper is that, as far
as the Eg¢ realization in dimension 16 is concerned, Cartan in [2] realized one par-
ticular real form of Eg only, namely the split real form Ej, with the Satake diagram

The parabolic geometry he considered was of type (E;, RSpin(5, 5)), which cor-

responds to the following crossing

on this diagram [3]. Cartan in the last sentence of [2] writes:

Die fiinf specielle einfachen Gruppen mit 14 bez. 52, 78, 133, 248 Parametern
konnen in weniger als 5 bez. 15, 16, 27, 57 Verinderlichen nich existiren>.

3 In this statement there is another misprint of [2], since the correct number 133 of the dimension of E7 is
erroneously printed as 123.
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So he claims, in particular, that the lowest dimension in which the group Eg is realized
is 16. This is however true only if he does not care about which real form of E¢ he wants
to realize. If he wanted to realize the real form E;; or Ej;; of Eg in dimension 16, his
method of realization of E; would not work. This is quite visible in the Satake diagrams
of Ej; and Ejj;: Because the first and the last nodes of these diagrams are complex
conjugated, when crossing one of them, one has to cross the conjugated one as well;
therefore no 62-dimensional parabolic subgroup corresponding to one cross exists in
these groups. If we want to make a realization of E;; and Ej;; in the way Cartan
did it for E; we should cross the lateral root in the Satake diagrams of these groups.
This results in the automatic cross on the opposite lateral root, which corresponds
to a choice of a parabolic subgroup of 54 dimensions, and giving the realization in
dimension 24. We display this result in the following corollary,

Corollary 1.1 The real forms E; and Ej; of the simple exceptional Lie group Eg can
be realized in dimension 24. The realizations are given by the groups Ejj and Ejj;
being automorphisms groups of rank 16 bracket generating distributions with growth
vectors (16, 24) defined in our respective Corollaries 1.4 and 1.5. These realizations
happen to be the same as Ej; and Ejj; being groups of CR automorphisms of the
accidental CR structures described in our respective Theorems 1.2 and 1.3.

These respective realizations of E7; and Ejyj in R are very much in the spirit of
Cartan’s realization of the real form F; of F4 as a symmetry of a bracket generating
distribution. As explained below in Corollaries 1.4 and 1.5, the groups E;; and Ejj;
can be realized as symmetries of certain rank 16 bracket generating distributions
in dimension 24, and the realizations of these groups as symmetries of parabolic
geometries are 2-step graded. These groups also accidentally turn out to be symmetries
of certain CR geometries of higher codimension naturally associated with these 2-
step rank 16 distributions. As such, they were our main motivation for writing this
paper. More specifically, the Eg realizations as symmetries of CR structures of higher
codimension as presented in our Theorems 1.2, 1.3, are examples of a positive answer
to the following problem:

Consider a parabolic geometry totally defined in terms of an even-rank real distri-
bution H on a real manifold M. Is it possible that H admits an integrable complex
structure J compatible with this geometry? Compatibility here means that the geom-
etry of H itself defines a unique complex structure J on H in a canonical way; in
particular that means that all the local differential invariants of H on M coincide with
all the local differential invariants of the structure (H, J) on M?

This problem arose during our discussions with Katja Sagerschnig, and in this
paper we answer it in the affirmative in the case of parabolic geometries with 2-step
gradings. The full list of parabolic geometries having these properties is contained in
Theorems 1.2, 1.3, 3.1, 3.3 and 3.5. The relevant maximal groups G of symmetries
are respectively Ery, Err;, SO — 1, £ + 1) with £ > 4, SO*(4m + 2) withm > 2
andSU(t +s,r +¢t+s)with (r, 1) #0,7r >0, > 0,s > 2.

In all these five cases we describe a CR structure (M, H, J) corresponding to
the flat model of the corresponding parabolic geometry. We do it by finding explicit
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embeddings of each of these CR structures in an appropriate C". We state their CR
dimension n and CR codimension k. Forgetting about the complex structure J on
the CR distribution H we define H totally in real terms, and due to our setting, we
may say that the symmetry of the distribution itself is the same as the group of CR
automorphisms of (M, H, J).

We also compared our list of 2-step parabolic ‘accidental CR’ geometries with
K. Yamaguchi’s list [14] of nonrigid parabolic geometries. It turns out (see our
Theorem 5.8 in the last section of this article) that the only nonrigid geometries on our
list are those with the group G being any of the SU (t +s,r +t+5),5s > 2,(r,t) #0
graded by the second and second last roots. We stress that these nonrigid parabolic
geometries correspond to CR manifolds of higher codimension (i.e. they are not of
hypersurface type).

Our results are in conformation with the classification of semisimple Levi-Tanaka
algebras and their corresponding CR manifolds by Medori and Nacinovich [7, 8]. We
compare our approach with theirs in Section 5. Our techniques are different.

Returning to our list of 2-step parabolic geometries with an ‘accidental” CR struc-
ture, we find on it very interesting geometric realizations of simple Lie groups
SU(p, q), SO — 1, ¢ + 1), SO*(4m + 2) and, in particular, the above mentioned
two real forms Ej; and Ejp; of the exceptional simple complex Lie group E¢. We
describe them in our Theorems 1.2, 1.3, 3.1, 3.3 and 3.5. Here, in this introduction, as
two highlights, we focus on the two Eg-homogeneous examples.

The case of E;; symmetry
Consider C1© with holomorphic coordinates (u)l, w2, wd 2, 18), and its
subset M%‘j[ C C'° defined by:

M%‘}[ = [(le’a(wl,wz,...,wg,zl,zz,...zg) s.t.
Swi = Re (2174 +2273)
Swy = Re (2176 + 2275)
Sws = I (2177 +2523)
Swy = 3(1227+Z3Z6—Z524—zs21)
Sws = Re (2227 4+ 2376 — 2524 — 2821)
Swe = I (2278 +2624)
Sw7 = Re (2378 +2477)

Swg = Re (2578 + 2627) }

We have the following theorem.

Theorem 1.2 The set MIZ;L C C'% is a real 24-dimensional embedded CR manifold,
acquiring the CR structure of CR dimension n = 8 and CR codimension k = 8 from
the ambient complex space C'°. Its local group of CR automorphisms is isomorphic
to the real simple exceptional Lie group Ej; with the Lie algebra having the Satake
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diagram H‘ii_/"o_o It is locally CR equivalent to the flat model E1/P) of a 24-

>_v
dimensional parabolic geometry of type (E 1, P(2y), where the real parabolic subgroup
Py in Ejj is determined by the following crossing on the corresponding ec Satake
diagram: @—@
The case of E;;; symmetry

Consider C'® with holomorphic coordinates (w!, w?

conwd Zh 2200 28, andits

subset M%‘;” C C'% defined by:
24 _ 16 12 8 1 2 8
Mgy, = {(C 5w, wh .., w2z, 25,2 st

Im(wl) = Re(z1z8 + 2224 + 2327 + 2526)
Im(w?) = Re(z124 — 2278 — 2326 + 2577)
Im(w3) = Re(z127 + 2226 — 2328 — 2425)
Im(w?) = Re(i(z122 4 23%5 + 7428 + 2627))

Im(ws) = Re(z126 — 2227 + 2324 — 2528)

Im(w®) = Re(i(z1Z5 + 2273 — 2427 + 2678))
Im(w7) = Re(i (2123 — 2225 + 2426 + zﬁg))
m@®) = [2112 + 222 + 12312 + 24 + Iz + Iz + |27 + lzs P |

We have the following theorem.

Theorem 1.3 The set M%‘r” C C19 is a real 24-dimensional embedded CR manifold,
acquiring the CR structure of CR dimension n = 8 and CR codimension k = 8 from
the ambient complex space C'°. Its local group of CR automorphisms is isomorphic
to the real simple exceptional Lie group Ejj; with the Lie algebra having the Satake

diagram . It is locally CR equivalent to the flat model E;j1/Pqy of a

V\_/V
24-dimensional parabolic geometry of type (Ejj;, P(1)), where the real parabolic

subgroup Py in Epj; is determined by the following crossing on the corresponding

¢ Satake diagram: ®—0—i—0—®

V\_/V

A CR structure on a manifold M is a triple (M, H, J) where H is rank £ = 2n
vector distribution on M and J : H — H, such that J2 = —idpy, is an integrable
complex structure on H. CR structures have their invariants, one of them being their
symmetry group G j, also called the group of CR automorphisms. If this group acts
transitively on M the CR structure (M, H, J) is called homogeneous. A CR structure
(M, H, J) may be viewed as an additional structure, a decoration, on the distribution
structure (M, H), i.e. a manifold equipped M with a rank ¢ = 2n vector distribution.
The distribution structures (M, H) also have invariants, also allowing for the notion
of their symmetry group G, and their homogeneity.
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In this paper we focus on CR structures (M, H, J) which are accidental. These
are homogeneous CR structures (M, H, J) for which the undecorated distribution
structure (M, H) is also homogeneous and the corresponding symmetry groups G
and G coincide. It follows that the embedded CR structures given in Theorems 1.2
and 1.3 are accidental (see Section 2.4 and Definition 2.8 for more details). Because
of their accidentality, the CR structures involved in Theorems 1.2 and 1.3 provide also
nice realizations of the real exceptional simple Lie groups E;; and Ej; in purely real
terms. Actually these two theorems imply the following two corollaries. In them these
groups are identified as transformation groups of symmetries of two particular vector
distributions near the origin of R%*.

Corollary 1.4 Consider a 24-dimensional manifold MIZ? locally parametrized by real

coordinates (ul, u2, e, u8, xl, xz, e, x8, yl, yz, R yS) and the Pfaffian system

of I-forms [A', 22, ..., 23 on MIZ;‘ given by
A= du'+ %(xldy4+ xzdy3+x3dy2+ )c4dy1 — yldx4— yzdx3— y3dx2— y4dx1)
A% =du’+ %(xldy6+ xzdy5+ x5dy2+ )c6dy1 - yldx6— yzdxs— yde2— y6dxl)
A =duP+ %(xldx7— da® + x0dxd — xTdx 4 yldy” — 3y + yOdyP - y7dy1)
A = dut+ %(x]dxg—i— x2dx+ 3 dxf4 x*dx® — x2dx* — x0dad — x7dx? — xBdx!
+yldy 4 y2dy" + yidy®+ ytdy  — y2dy*— y0dy? — y7dy? — yBdy!)
A =du’+ %(yldx8— y2dx7— y3dx®+ y4dx5+ ysdx4— y6dx3— yTdx? 4 yBdx!
— x'dy®+ x2dy’+ x3dy® — x*dy’ — x2dy? + x0dy’ + x7dy? — x¥dy!)
A8 = dul+ F(x?2dx®— x¥dx®4 x0dxt — xBdx?+ y2dy® — y*dyC+ yOdyt — yBdy?)
A =du’+ %(x3dy8+ x4dy7+ x7dy4+ xsdy3— y3dx8— y4dx7— y7dx4— y8dx3)
A8 = dub 4+ 1 (x°dy®+ x0dy” + x7dy® + x¥dy® — y dx® — yOdx7 —y7dxC — y¥dx?).

Then the rank 16 distribution H defined on MIZ;‘ via
H={TM?} > X st. XJA =0, Vi=1,2,...,8}

has the real exceptional simple Lie group Ey as its group of symmetries.
We also have:

Corollary 1.5 Consider a 24-dimensional manifold Mﬁ locally parametrized by real

coordinates (ul, uz, e, u8, xbox? X8, yl, y2, . y8) and the Pfaffian system

of 1-forms [A', 22, ..., A3 on M,z‘,1 given by

Al =dul + xldy8 + )czdy4 + )c3dy7 + x4dy2 + xsdy6 + )cﬁdy5 + x7dy3 + xsdy1
A2 = du® + x'dy* 4+ y8dx? + y0dx® + x*dy! + xX2dy” + y3dx® + x7dy’ + y2dx®
23 =dud 4+ xldy” + x2dy® 4 y8dx® + y2du* + y*dx 4+ x0dy? + x7dy! 4 y3da®
A= dut + x2dx! + x0dx? 4 x8dx? + x7dx® + y2dy! + y3dy? + y3dyt + y7dyS
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20 = du’ + x'dy® + y7dx? 4+ x3dy* + x*dy? + y8dxd + x0dy! + y2dx7 + ydx®
28 = du 4+ dx! + x3dx? + x¥dx” + x8dx0 + Y dy! + y3dy? + y*dy” + y8dy®
AT = du” 4+ x3dx! + x2dx 4+ x0dxt + xBdx” + y3dy! + y2dyd + yOdy* + yBdy’
A8 =dud + xldy1 + xzdy2 + )c3dy3 + x4dy4 + xsdy5 + xﬁdy6 + x7dy7 + xgdyg.

Then the rank 16 distribution H defined on Mlz;‘ ; via
H={TM?, 5 X st. XA =0, Vi=1,2,...,8}

has the real exceptional simple Lie group Ej as its group of symmetries.

We close this Introduction to focus reader’s attention on the questions we address
in this paper:

(1) Can a homogeneous bracket generating real distribution H, of rank £ = 2n on a
real manifold M = G/ P, admit an integrable complex structure J on H, such that
the associated CR structure (M, H, J) on M is homogeneous, having the same
group G of CR automorphisms as the group of automorphisms of the naked distri-
bution H? According to our terminology, which was briefly introduced between
Theorem 1.3 and Corollary 1.4, this question asks if there exist accidental CR
structures?

(2) There is a large class of homogeneous bracket generating distributions H which
define flat models of various parabolic geometries. In this context, the above
question can be restricted to: do there exist accidental parabolic CR structures?

(3) The most geometrically studied CR structures (M, H, J) are the hypersurface
type CR structures with nondegenerate Levi form. They are examples of parabolic
geometries. All these are not accidental, since their distributions H are contact
distributions having infinite dimensional group of automorphisms, whereas their
groups of CR automorphisms can not be larger than finite dimensional simple Lie
groups SU(p, g).

(4) There are also known nontrivial classes of non-accidental CR structures asso-
ciated with other parabolic geometries than those of hypersurface type Levi-
nondegenerate CRs. For example one can take the exceptional simple G, parabolic
geometry associated with a generic rank 2 distribution H on a five manifold M.
Here, at least locally one can always find J on H so that the real codimension three
and complex dimension one CR structure (M, H, J) has lower symmetry than the
14-dimensional group G». Actually it is well known [9] that on the G, flat rank
2 distribution H in dimension 5, one can put a CR structure J with group of CR
automorphisms of dimension no larger than 7. Such examples are however easy
to make, because in them the distribution H has rank 2, i.e. the only requirement
J has to fulfill is the algebraic constraint J 2 =i H, and one does not need to
worry about the integrability of J in H.

(5) When n > 1, given a rank £ = 2n distribution on M, to put J on H, apart from
the algebraic constraint J2 = —idy, one needs to impose nonlinear differential
constraints on J, which may be incompatible with H. One therefore may think,
that if the parabolic geometry associated with rank £ = 2n distribution H admits
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an integrable complex structure J in H, then it must be accidental. This brings
yet another question: is it true that if a flat distribution H of rank £ = 2n > 4
defining a parabolic geometry of type (G, P) on a manifold M = G /P admits
an integrable J, then the associated CR structure (M, H, J) is accidental?

We believe that our explanations and examples included in this paper clarify all the
issues enumerated above.

2 Basic Notions and Motivation
2.1 Distribution Structure on a Manifold

This is a pair (M, H), where M is a smooth manifold, and H is a vector distribution
on M. We recall that a rank € vector distribution H on an m-dimensional smooth
manifold M, or an {-distribution H on M, for short, is a smooth assignment M >
p — Hp C T,M of an £-dimensional vector subspace H, of T, M, to each point
p € M. In the spirit of Felix Klein, one associates a geometry with such objects
by saying that two £-distributions H; and H on M are (locally) equivalent if there
exists a (local) diffeomorphism ¢ : M — M on M such that ¢.H; = H,. It follows,
that if the distributions are not integrable, i.e. if they do not satisfy the Frobenius
condition [H, H] C H, then starting from dimension m = 5 of M, there exist locally
nonequivalent £-distributions. From now on we will only consider nonintegrable £-
distributions on M.

Let us introduce the simplest local invariant of an {-distribution H, namely its
growthvector. Itis determined by considering a sequence of distributions on M defined

inductively as follows: D_j := H, D_;_1 := [D_1, D_;] + D_; fori € N. The
growth vector of H is related to the ranks of these distributions. Explicitly, it is the
nondecreasing sequence of integers (r_1,r_3,...,r—;, ...), with each r_; being the
rank of the corresponding distribution D_;, r_; = rank(D_;). In particular r_; = £.

In general the growth vector can vary from point to point on M, but in this paper,
we will only consider distribution structures (M, H) with (locally) constant growth
vector. We further mention that the distribution H from the structure (M, H) is bracket
generating if r—; = m = dim(M) for some s € N. In the case of bracket generating
£-distributions with constant growth vector, to give more information about them,
one includes the growth vector (¢, r_», ..., m) in their name. One therefore has such
names as e.g. a (2, 3, 5)-distribution, which denotes a rank 2 distribution in dimension
5, with a constant growth vector (2, 3, 5).

Another simple (local) invariant of an £-distribution H on M is its (local) group of
automorphisms G. This consists of those (local) diffeomorphisms ¢ : M — M, called
symmetries, which preserve H, i.e. are such that ¢, H = H. The group multiplication
in G is the composition of the symmetries as diffeomorphisms. For short the (local)
group G of automorphisms of (M, H) is called the group of (local) symmetries of the
rank {-distribution H. If a (local) group G of symmetries of H acts transitively on
(M, H), then the ¢-distribution H is called (locally) homogeneous. In such case, the
manifold M is locally diffeomorphic to M = G/ P, where P is the isotropy subgroup
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of G, which preserves H), at a point p € M. It is known that there exist locally (and
globally) nonequivalent homogeneous ¢-distributions on manifolds. From the local
point of view, and in particular in the homogeneous case, to see that the group G of
symmetries of two distributions are different, it is enough to consider the algebraic
structure of the space of vector fields Y on M such that [Y, H] C H. These are called
infinitesimal symmetries of H and form a Lie algebra g of symmetries of the pair
(M, H). The Lie algebra g is obviously a local invariant of an ¢-distribution H on M.
It is the Lie algebra of G.

One can locally define an ¢-distribution H on M by distinguishing a rank (m — ¢£)
subbundle H+ C T*M of the cotangent bundle T*M and saying that H consists of
all vector fields X on M which annihilate H-, H := {X € TM | X2 H+ = 0}.

Example 2.1 As an example of a distribution defined in this way let us consider the
following 4-distribution H in dimension m = 7.
Let M = R7 with Cartesian coordinates (x!, x2, x3, x*, x°, x®, x7) and let
H* = Span(p!, 22, 1%),
with the 1-forms A',i = 1,2, 3, being defined by:

Al =dxd 4 xldxt + xzdx3,
22 = dx® + 3dxt + xldxz, 2.1
A3 =dx” + dx! + x2dxt

The corresponding 4-distribution H is
H = Span(X1, X2, X3, X4), (2.2)

with the four vector fields X;, i = 1,2, 3, 4 annihilating H*, given by

X1 =0 —x387,
Xp =00 — x186,

5 2.3)
X3 = d3 — x“0s,

X4 =84 — x'3s — x386 — x?97.
One checks, that the 4-distribution H is not integrable, actually
[H,H]+H=TM,
because
[X3, Xo] = [X4, X1] = 05,

[X2, X1] = [X4, X3] = 06, 24
[X1, X3] = [X4, X2] = 07.
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Thus, the distribution structure (M, H) is enforced on M = R’ by a (4, 7) distri-
bution H.
Moreover, after solving the symmetry equations

Y, Xi)AXiAXoAX3AX4=0, for i =1,2,3,4,

one finds that the Lie algebra g of infinitesimal symmetries of H is isomorphic to the
simple Lie algebra sp(1, 2). Thus this distribution has a 21 dimensional Lie algebra
of symmetries. In particular, as can be easily checked, vector fields:

Yio = x381 +x482 — xlag — x284 + (Jclx2 — x3x4)85
+3(@H?+ @2 = (@) = H?)ar,
Yo =04

are infinitesimal symetries of (M, H).

It follows [3] that the distribution structure given by a pair (M = R”, H), as above,
is locally diffeomorphic to the flat model M = Sp(1,2)/P of a parabolic geometry
of type (Sp(l,2), P), where P is a parabolic subgroup in Sp(1,?2) related to the
following crossed Satake Diagram: e—s=s. It gives an example of a nonintegrable,
bracket generating, homogeneous distribution on a manifold with a simple symmetry
group G (in this case G = Sp(1, 2)).

2.2 Tanaka Prolongation and Symmetry

We only provide the minimal information, as regards our needs, about the Tanaka
theory, refering a reader interested in details to the original paper [13].

In the context of distributions, the Tanaka theory is mainly applied to the case
when a vector distribution H on a real N-dimensional manifold M" defines a p-step
filtration

Dlcp?c...cD?=TM" 2.5)

of the tangent bundle of M ¥, with the filtered components D~ defined by:
D'=H, and D*¥'=D ', D*1+D* Vk<p, k,peN. (26)
This defines a graded vector space
n=n,00pHd - Ony
via
ng =Dk /prH,

which, at every point x € MY defines a p-step nilpotent Lie algebra (n.(x), [-, -1x)
with the Lie bracket [-, -], induced by the Lie bracket of vector fields on M N The Lie
algebra (n_(x), [, -1x) is called the symbol algebra (or the nilpotent approximation) of
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the distribution H. It serves as a local algebraic differential invariant of the distribution
H around x € MV,

Let us, from now on, restrict to the case of distributions whose symbol algebras
n.(x) are constant over MV, i.e such that n_(x) = n_ forall x € M"V. In particular,
homogeneous distributions are examples of those.

Every distribution with a constant symbol, has therefore a unique p-step nilpotent
Lie algebra (n., [+, -]) associated to it. This characterizes it algebraically.

Although (even locally) there exist nonequivalent distributions with the same con-
stant symbol, they are all sort of a perturbation of, or better to say, they are modelled
on a standard distribution with this symbol. This standard distribution is called the flat
model for distributions with a given symbol n_. It is naturally defined on a manifold
Nil, which is the Lie group of the symbol algebra n_, as follows:

A gradationn. = n_, @ n_(p.1) ® - - - ® n.; in the symbol algebra n_, is mirrored in
the Lie algebra

il — n{\;’il o “{\(,;;1-1) EEN n{\lh'l
of the left invariant vector fields on Nil/, which is isomorphic to n.. Then this defines the
filtration in Nil, with the filtered components D ¥ spanned over all smooth functions
f € F(Nil) on Nil, by those left invariant vector fields on Nil, which belong to

Nil Nil Nil
gt @ngl, @ @nj”, namely

Dk = Spanj_-(Nil)(nf)’C” @ n_Nkfﬁl @ - ®nlh.

It follows that the first step H = D~ in this filtration is the distribution on Nil with
the symbol n_. This serves as a flat model for all the distributions with the constant
symbol n._.

The symbol algebra n. of the distribution H is, as its alternative name suggests, its
algebraic approximation. In particular, it captures information about the local proper-
ties of the maximal possible group of automorphisms of all distributions with a given
constant symbol n_.

It is not a surprise that the maximal symmetry for all distributions with a constant
symbol algebra n._, is realized for the natural distribution structure (Nil, H = D! ) on
the nilpotent Lie group Nil associated with n_. Moreover, the algebraic structure of the
maximal group of automorphisms of distributions H with a constant symbol n_, namely
the maximal Lie algebra of the automorphisms aut(H) for all these distributions
H, is obtained from the symbol n_, by an algebraic procedure called the Tanaka
prolongation. This goes as follows:

We start with a symbol algebra n_, which is a p-step nilpotent Lie algebra, i.e. a
real Lie algebra n_, which is p-graded in the sense that it is a direct sum

n=n,®n,Hd - dng

of p vector spaces n.j, j = 1,2,..., p, and that it is equipped with a Lie bracket

[+, -], such that
T LG if2<i+j<p
o {0} iftp<i+j
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The Tanaka prolongation of n. is a graded Lie algebra given by a direct sum
grn)=n&ndn & - &n;d---, (2.7)

with

m:{gyww®@aAsnAwJ1=MXJLHxAn} (2.8)

j<0

for each k > 0. In particular, ng is the Lie algebra of all derivations of n. preserving
its direct-sum-of-vector-spaces-n._; structure. Setting [A, X] = AX for all A € ny
with k > 0 and for all X € n_ makes the condition in (2.8) into the Jacobi identity.
Moreover, if A € ng and B € ny, k,I > 0, then their commutator [A, B] € ngy; is
defined on elements X € n. inductively, according to the Jacobi identity. By this we
mean that it should satisfy

[A, B]X =[A, BX] —[B, AX],

which is sufficient enough to define [A, B]. The Tanaka prolongation gr(n.) is
uniquely determined by the nilpotent Lie algebra n_. It may happen that, given n._,
the sum in its Tanaka prolongation (2.7) is infinite. There are however n. for which
the Tanaka prolongation is finite. In particular, there are known situations when the
Tanaka prolongation

g=gr(g.)
of the p-step nilpotent part
9-=9-p@"'®g.1

is symmetric, in the sense

gr(@) =g, D - g1 Do DgI D Dgp,
with
dim(g—x) =dim(gr), k=1,2,...,p,

and when the so defined Lie algebra gr (g.) is simple. In such case the Tanaka prolon-
gation defines a gradation of this simple Lie algebra, and the subalgebra

P=00091D--Dgp,

in such gr(g.) is parabolic.
The following theorem is due to Noboru Tanaka:

Theorem 2.2 Consider distribution structures (M" , H), with distributions H defining
a p-step filtration as in (2.5)-(2.6) and having the same constant symbol n_. Then

o The most symmetric of all of these distribution structures is (Nil, H = D~"), with
Nil being a nilpotent Lie group associated of the symbol algebra n., and with H
being the first component D~ of the natural filtration on Nil associated to the
p-step grading in n..
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o The Lie algebra of automorphisms aut(H) of the flat model structure (Nil, H =
DY is isomorphic to the Tanaka prolongation g (n.) of the symbol algebra n.,
aut(H) >~ gr(n).

Let us now return to Example 2.1.

Example 2.3 Note that in Example 2.1, the vector fields X1, X», X3, X4 and X5 = 05,
X6 = d¢, X7 = 07 span a 2-step nilpotent Lie algebra

n = Spang (X1, X2, ..., X7) =np2 @ n.
Here the graded components are

n.; = Spang (X1, X2, X3, X4)
n. = Spang (X5, X6, X7).

According to our discussion above, we can now built a flat model of rank 4 dis-
tributions H in dimension 7 with symbol n. This model distribution can be identified
with the original distribution H, as in (2.2) in Example 2.1. Using the commutation
relations for the basis (X1, X2, ..., X7) and the definition of the Tanaka prolongation
discussed above, we find that the Tanaka prolongation for n and, as a consequence,
the Lie algebra of automorphisms of H is,

aut(H) = gr(n) =n, @ny & np @ ny @ ny,
with the submodules ny of respective dimensions

dim(nyy) =3
dim(nil) =4
dim(ng) = 7.

One can recognize that in this Tanaka prolongation of n the homogeneity 0 compo-
nentng = R@2s1u(2), and that the full Tanaka prolongation is g7 (n) =~ sp(1, 2). This,
via the Tanaka Theorem 2.2, confirms the claim that the local group of automorphisms
of the distribution structure (M, H) form Example 2.1 is Sp(1, 2) as claimed before.

2.3 Decorated Distributions

Distribution structures are perhaps the simplest geometric structures one can define on
a smooth manifold. Note, for example that any smooth manifold is naturally equipped
with an m-distribution structure (M, H), where m is the dimension of M and the
distribution m-plane H), at each point p € M is the entire tangent space T, M at p.
One obtains more exciting geometries when one decorates a distribution structure
(M, H), or the distribution H, with the same kinds of geometric objects at each point
p € M. Such objects can be, for example a metric g on H, or a skew symmetric form
w on H, or more generally a tensor Y, or families of tensors such as e.g. pencils of
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tensors, on M. Then the distribution structure (M, H) decorated in this way, is given
by a triple (M, H, Y'), where Y is an appropriate object defined on H. Frequently
some integrability conditions for the decorating object field T on H are also required
(see below).

Given a distribution structure (M, H, Y') decorated by a tensor field Y on H
one defines a (local) equivalence of two such decorated structures (M, Hy, Y1) and
(M, Hy, Y2) on M, by saying that they are (locally) equivalent if they are (locally)
equivalent as distribution structures and if the distribution structure equivalence dif-
feomorphism ¢ : M1 — M> transforms the tensor field Y| from the first distribution
H; to the corresponding tensor field Y on H,, ¢* Y, = Y. Obviously, one can speak
about the (local) group Gy of automorphisms of a decorated distribution structure
(M, H, ), as well as about the corresponding Lie algebra gy of infinitesimal sym-
metries of (M, H, Y): this is generated by those vector fields Y from the Lie algebra
g of infinitesimal symmetries of the distribution structure (M, H), which additionally
preserve YT on H. It is also obvious that in most of decorations the group Gy will
be a proper subgroup of G, and the Lie algebra gy will be a proper subalgebra of
g. We further discuss more specific issues associated with the decorations of distri-
bution structures on a particular class of decorations (M, H, J), which are termed
Cauchy-Riemann structures, or CR structures, for short.

2.3.1 CR Structures of Type (n, k)

An almost CR structure of CR dimension n and CR codimension k = (m — 2n) on an
m-dimensional manifold M equipped with a bracket generating (2n)-distribution H
is a decoration (M, H, J) of the structure (M, H) with a linear operator J : H — H,
suchthat J2 = —id| . Analmost CR structure of CR dimension 7 and CR codimension
k is called a CR structure of CR dimension n and CR codimension k if and only if the
integrability conditions are satisfied for the pair (H, J), i.e. if and only if, for every
two vector fields X and Y belonging to H, X, Y € H, the following two conditions
are satisfied:

e the difference of the commutators [X, Y] and [JX, JY]isin H,
(IX,Y]-[JX,JY]) € H; (2.9)
o the vanishing Nijenhuis tensor condition is satisfied, namely
J([X,Y]—[JX,JY])=[JX,Y]+[X,JY]. (2.10)
For further use let us introduce a convenient terminology: An (almost) CR structure
(M, H, J) of CR dimension n and CR codimension k will be called an (almost) CR
structure of type (n, k). For these structures we obviously have that the rank £ of H is
£ = 2n and the dimension of the manifold M is m = 2n + k.

An almost CR structure of type (n, k) can be also defined via the dual picture,
i.e. starting from the codistribution H- which is annihilated by H. For this, in the
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complexification (T*M )€ we need a subbundle Z* of complex rank (n + k) such that
(HHC c z* c (T*M)C and (HHC A Z* A ZF = ACHO (T 1) C;

here Z* = {(T*M)C > u s.t. ji € Z*}. Now, J is defined in H by saying that it is a
real operator in H such that when it is complexified, it acts as JZ = i Z on all vector
fields Z in the annihilator of Z*.

Since this is a bit complicated, let us return to our example 2.1.

Example 2.4 Continuation of Example 2.1: In Example 2.1 we have the distribution
H defined as the annihilator of H' spanned by the three forms A!, A2, A3 as given in
(2.1). We define Z* = (H+)C + W* with W* = Span(u!, u2), where

ul = dx! + idx4,
5 s .3 (2.11)
e =dx* —idx’.

Here i denotes the imaginary unit,i = +/—1, and Span is taken over the complex-
valued functions on M = R”. This results in

H* C Z* = Span(A', 3%, 2%, u!, u?),

where again the Span is taken over the complex-valued functions in R’

The flag (HH)C c Z* c (T*M)C defines Z* = Span(A!, 22, A3, ', 4?), with
the ‘bar’ operator on complex 1-forms denoting the usual complex conjugation, as for
example in /11 = dx! — idx*. Furthermore, we have

(HHCAZ* AZ* = Span(dx' Adx? Adx® Adx* Adx® Adx® Adx”) = AT(T*R7)C.

Thus, according to the brief procedure above, we have an almost CR structure of
type (2,3) in M = R’. To see how the complex structure operator in H looks like,
note the following:

The annihilator of Z* is

Z = Span(Z, Z»),

with

Z1=X1—iX4 and Zr, = Xy +iX3,
where we have used the basis (X, X5, X3, X4) for H with the vector fields X; as
defined in (2.3). We therefore have JZ; = iZ; and JZ> = i Z>. Looking at the real

and imaginary parts of these equations we find out the following action of the real
operator J on the basis (X1, X2, X3, X4) of H:

JX1 =Xy, JXo=-X3, JX3=X,, JX4=-X;.

It is visible that J2 = —id on H, so we really have an almost CR structure (R7, H,J)
of type (2, 3) in R7.
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Interestingly this almost CR structure is actually an honest CR structure of type
(2, 3). One easily checks that the Nijenhuis integrability conditions (2.9)-(2.10) are
satisfied.

Returning to the general case of an almost CR structure of type (n, k) we note the
following usefulness of our formulation of a CR decoration of a distribution H in
terms of the flag (H)C ¢ Z* ¢ (T*M)C. The Nijenhuis integrability conditions
(2.9)-(2.10) of an almost CR structure defined on M by such a flag are equivalent to
a single condition:

differentials of all forms from Z* are in the ideal
generated by forms from Z*.
The ideal here is in the Grassmann algebra of all (complex-valued) skew symmetric
forms on M, whose multiplication is the wedge product of forms.

This leads to the following operational and easy to use way of checking the Nijenhuis
conditions (2.9)-(2.10) for (M, H, J):

Let(Al, Az, Ak) be abasis of 1-formsin H~L, and let (Al, Az )J‘, Ml, [,L2, R
1) be its extension to a basis of 1-forms in Z*. Then the almost CR structure
(M, H, J) corresponding to the flag (HHC ¢ z* c (T*M)C satisfies the Nijen-
huis integrability conditions (2.9)-(2.10) if and only if

A AMARA A AR ABEA A =0, forall i=1,2,...k,
and
dp A AR A AMA U AP A A =0, forall a=1,2,...,n.
(2.12)

In particular, using these conditions, one can easily check that the almost CR struc-
ture from Example 2.4 is an integrable CR structure of type (2,3) on M = R’.

Using the flag (H L)€ < z* ¢ (T*M)C formulation of the concept of an almost
CR structure, we can also easily define the concept of (local) equivalence of almost
CR structures and the concept of (local) symmetry group:

We say that two almost CR structures given by the respective two flags (H f‘)(c -
Zy C (T*M)C and (Hzl)(C C Z; C (T*M)C on M are (locally) equivalent, if and
only if there exists a (local) diffeomorphism ¢ : M — M transforming one flag to the
other, i.e. such that

¢*(HH® c 25 ¢ (T"M)©) = (HH)C c 7 < (T*M)©.
We further say that a (local) diffeomorphism ¢ : M — M is a (local) CR automor-
phism for an almost CR structure (M, H, J) defined by (HH)C ¢ Z* ¢ (T*M)C if
and only if it satisfies

¢*(HH® c z* ¢ (T*M)°) = (HH® c z* < (T*M)".

Note that, in terms of the bases (A, A2, ..., A)in HL-and (A!, A2, ... Ak, ul, w2,
.., ') in Z*, the (local) CR automorphism can be equivalently defined as a (local)
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diffeomorphism ¢ : M — M satisfying:

(MY AR AR A ARR =0, forall i=1,2,...k
and

() AU AREA AR AN AR A AN=0,  forall a=1,2,...n.

Consequently, the (local) group G ; of CR automorphisms consists of all such ¢p’s on
(M, H, J) with the composition of CR automorphisms as the group multiplication. If
the group G ; of CR automorphisms acts transitively on M then (locally) M = G /P,
with isotropy P, and the CR structure (M, H, J) is called homogeneous.

The infinitesimal symmetries of an almost CR structure (infinitesimal CR auto-
morphisms) are real vector fields ¥ on M which preserve the flag (H+)C ¢ z* ¢
(T*M)C. Their most convenient equivalent definition is again given in terms of the
bases (A1, 22, ..., A% in HL and (AY, 22, ... A%, wd, W2, ..., ) in Z*. We note
that a vector field Y on M is an infinitesimal symmetry of an almost CR structure
given on M by (HH)C ¢ z* ¢ (T*M)C if and only if Y satisfies the following PDEs
with respect to the bases (Al, A, Xk) in H+ and (Al, A2 Ak ,ul , ,uz, o1
in Z*:

(LyM) AL ARZ A Ak =0, forall i=1,2,...k,
and

(Lyp®) At ApP A AR AM AR A A =0, forall a=1,2,...n.
(2.13)

Of course the Lie algebra gy of infinitesimal symmetries of (M, H, J) is an R-
linear span of the above vector fields ¥ with the Lie bracket of vector fields as the Lie
algebra g bracket.

It is worthwhile to note that the basis related flag (HH)C c Z* ¢ (T*M)C defi-
nition of an (almost) CR structure (M, H, J) is particularly useful when we want to
compare the geometry of a structure of a naked distribution (M, H) with that of a deco-
rated distribution structure (M, H, J). For example the Lie algebra of the infinitesimal
symmetries of the naked (M, H) structure consists of real vector fields Y on M such
that

(LyA) AR AR A AR =0,  forall i=1,2,...k, (2.14)

holds, whereas the Lie algebra of infinitesimal symmetries of an (almost) CR structure
(M, H, J) decorating the structure (M, H) will be its subalgebra which, in addi-
tion to (2.14), satisfies also the second part of integrability conditions from (2.13),
namely all conditions involving (Lyu*)s. We will return to this (trivial) observation
in Section 2.4, where it will be crucial to motivate our main object of study in this
paper.

Example 2.5 Continuation of Examples 2.1 and 2.4: In Example 2.1 we have a
distribution structure (M, H) on M = R’ given in terms of the real bundle H L=
Span(kl, A2, 23) as in (2.1). And in Example 2.4 we decorated it with an almost
CR structure (M, H, J) by complexifying H' to (H+)C and by considering Z* =
Span(c(kl, 22,23, ul, uz). As we noticed already the almost CR structure (M, H, J)
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defined by (HH)C ¢ Z* c (T*M)C is integrable, which can be easily checked by
seeing that

A AR AR A A AP =0,

A2 AN AR A AR Ap? =0,

AP AN ARZAB AR ApZ =0,

dul A Al /\)LZA)PAMI /\MQ:O,

dp> A A A AR A =0.

Furthermore, we know that the structure (M, H) has the 21-dimensional group
Sp(1, 2) as the group of its local symmetries, with the 21-dimensional Lie algebra g
of infinitesimal symmetries Y,,, v = 1,2, ..., 21, as in Example 2.1. By solving the
CR symmetry equations (2.13) for the CR structure (M, H, J), namely by solving the
equations

(Lya') Art ARE AL =0,

(Lyr?) Art A2 A =0,

(Ly2?) Art ARZ AR =0, (2.15)
Ly ) At Ap2 Art ARE ALY =0,

(Lyp®) At AP AR ART ALY =0,

or by choosing only these symmetries Y,,,v = 1,2, ..., 21, of (M, H), which in addi-
tion to the first three equations in (2.15), also satisfy the last two, we find that the Lie
algebra g of infinitesimal CR symmetries of (M, H, J) has dimensiondim(gy) = 12,
only. So the dimension of the Lie algebra g of symmetries of the distribution structure
drops from 21 to the dimension 12 of the Lie algebra g; of infinitesimal symmetries of
the decorated structure (M, H, J). In particular, the infinitesimal distribution struc-
ture symmetry generator Y19 from Example 2.1 does not satisfies the CR symmetry
equations

(Lyp' ) At Ap2 At ARE ALY =0,

(Lyp®) At A2 AR ART AR =0,
and thus it is not a CR symmetry generator. On the other hand the distribution struc-
ture symmetry Y1, from Example 2.1 satisfies all five conditions for being the CR
symmetry, and generates a local CR automorphism. So in this example we see explic-
itly the typical situation, in which the symmetry algebra g, of a decorated structure
(M, H, J),is aproper subalgebra of the algebra g of symmetries of the naked structure
(M, H).

2.3.2 Embedding a CR Structure of Type (n, k) in C"+K)
Let us, from now on, assume that all our CR structures are real analytic.
Consider then a CR structure (M, H, J) of type (n,k) defined on a (2n)-

distribution H via the flag (HHC c z* c (T*M)C. Let (A\!,A2,..., %) and
(kl, A2k, /ﬂ, /ﬁ, ..., W) be the respective bases in H+ and Z*. A CR function
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z: M — C is a complex-valued differentiable function on M such that
dz A AR A A AR AP A AT =0,

We say that CR functions z1, 22, ..., z; are functionally independent in an open
set U if and only if
dzi Adzp A---Adz; #0  in U.

It is well known [1] that an analytic CR structure of type (n, k) always admits
(n + k) independent CR functions z1, z2, . . . , Z(+k)- They provide a local embedding

M3 p— (21(p). 22(P), - - - 2oy (p)) € CHHR, (2.16)

Once a CR structure (M, H, J) is embedded like that it provides a CR structure
(«(M), 1 .H, 1*J) of type (n, k) embedded as a submanifold of real codimension k in
C™+h) | As a real submanifold it also acquires a CR structure of type (n, k) from the
canonical complex structure / (multiplication by an imaginary unit) in the ambient
space C"*+%)_ This is defined by noting that (,H = IT(t(M)) N T(t(M)) and that
t*J = I, g. Thus both these CR structures on ((M) are CR equivalent, and are
equivalent to the original abstract CR structure (M, H, J) on M. Therefore knowing
(n 4 k) independent CR functions of (M, H, J) we have a nice model of an abstract
CR structure: one embeds it by (2.16) as a real submanifold of higher codimension
and gets the CR structure on it from the ambient complex space CV .

A particular class of embedded CR manifolds M>"**k < C"+h can be defined
in terms of graphs of k real functions ® = ® (21,22, ..., 20, 21,22, .., Zn), I =
1,2, ..., ksuchthatdd! AIDZA- - - AQDK # 0, where the linear differential operators
9 and 9 act on real-valued differentiable functions f = f(z, Z) as

n n
af _ of _
0 _—E —d do _—E ——dz,.
f P oz Zq and 0 f P e Za

To describe embedded CR manifolds, let us denote holomorphic coordinates in
Crtk by (w, z) = (wy, w2, ..., Wk, 21, 22, - - -, Zn)- Then the CR structures from this
particular class are defined by the following embeddings:

M2 = (C s (w, 2) st Im(wy) — D (2,2) =0 Vi=1,2,...k}. (2.17)
In such case the distribution H on M2"t* is defined as the annihilator of k real

1-forms _ B _
A =dRe(w;) +i(0—0)®', i=1,2,... k,

Thus in such case we have

H=({TM>*k 5 X st. XaA =0 Vi=1,2,... k).
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Writing w;s and z;s in terms of their real and imaginary parts, w; = u’ + iv',
Zq = x% 4+ iy%, we then have that ®' = O (k! x2, ..., X", yl, y2, ..., y") and, in
particular, that

n

. . P! P!
A = du +Z(a—ady°‘—a—adx°‘), Vi=1,2 ... .k (2.18)
x y

a=1

Now the CR manifold M 21tk can be conveniently parametrized by (2n + k) real
parameters (u', x*, y*) in which the distribution H is spanned as

H = Span(Xy, Y,)

by the 2n real vector fields X, and Y, given by

k .
3CDZ 0P’
a_axot+ E 8 o IA' Yazaya— E Waui, 0[:1,2,...,n.
i—1

This H is invariant with respect to the complex structure / from the ambient complex
space C"*X Indeed, it follows that I X, = Yy and 1Y, = — X, foralla = 1,2,...,n
It also follows that the bundle Z is spanned as

Z = Span(Zy)
by thew = 1,2, ..., n complex-valued vector fields
koo
Zo=3(Xo —i¥e) =0 +i ) —0,.
= aZa
and is automatically integrable since [Zy, Zg] = Oforalla, B =1,2,...,n

The complex bundle Z* is spanned over the complex functions by all A’’s and u%’s
where u* =dz%, a=1,2,...,n

Example 2.6 Continuation of Example 2.4: One easily checks that the CR functions
equation
dz A Al /\A%\)f/\;ﬂ /\,u2=0

written in terms of the generators (Al,kz, 23, ,ul, ,uz) of Z* for the CR structure
(M, H, J) of Example 2.4 has the following five independent solutions:
wy =x' +ix*, wy=x%—ix3, w3 = x>+ %((xl)2 - (xz)z),

71 = X0+ ix1x3, = x4 i()c2 — ixs)xz.
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iminating variables x*, x=, x°, x”, x°, x°, x’ from (wy, w2, w3, 21, 22) We get a
El t bl 1 .2 .3 .4 .5 .6 7f t

real codimension k£ = 3 submanifold

C3 3 (wy, wy, w3, 21, 22) S.L.
Im(w) = 3((Re(z1))* — (Re(22))%)
Im(w2) = —Re(z1)Im(z2)
Im(w3) = Re(z1)Re(22)

(M) = c C3,

which gives a CR embedding of («(M), H, J) in Co.

According to our formulas above, this (¢(M), H, J) CR structure, provides a dis-
tribution structure (¢(M), H) having H L= Span(kl, A2, A3) given by the 1-forms
ALz a3

Al =du! —i—)cldy1 — xzdy2,
A2 =du’ — yzdy1 + x'dx?,
Al =du? +)62dy1 +x1dy2.

We leave to the reader to check that this distribution structure on R’ with coordinates
(x], y1 L x2, y2, ul, u?, u3) is locally equivalent to our distribution structure (M, H)
from Example 2.1. We also leave to the reader to check that the CR structure on
the embedded manifold ((M) given by the flag (H-)® ¢ z* ¢ (T*M)C in which
(HH)C is the complexification of the above real H-, and the complex bundle Z* is
Z* = (H)C +Span(u', n?) with 1! = dx' +idy" and u? = dx? +idy?, is locally
CR equivalent to the CR structure (M, H, J) from Example 2.4.

2.4 Accidental Decorations

The CR decoration (M, H, J) in Example 2.4, which was put on the distribution
structure (M, H) from Example 2.1 was by no means canonical. Let us consider
the following deformation of the CR structure (M, H, J) defined, on the distribution
structure (M, H) from Example 2.1, in Example 2.4.

Example 2.7 Let us return to Example 2.4 and consider three real constants a, b, c
such that

a?+ b+ =1. (2.19)
If b2+ 2 # 0, instead of Z* from Example 2.4, we take Zz(a,b,c) = (HJ-)(C + W(*a’b’c),
with W(*; b.c) SPanned by the 1-forms

—dx! —iadx? —icdx? + ibdx4,

!
uz =iadx! + dx* — ibdx> — icdx*.
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Ifb =c =0, wetake Z, oo = (HHE + W, o) with W ) spanned by the

1-forms
w' =dx! —iadx?,

2 3, . 14 a =+l
u =dx’ 4+ iadx”.

Then it follows that every choice of three constants (a, b, ¢) as in (2.19), via the flag
(HHC ¢ Zz"a by C (T*M)C, decorates the distribution H from Example 2.1 with an
integrable CR structure (M, H, Jia,p,¢))- The one from Example 2.4 corresponds to
the choice (a, b, c¢) = (0, 1, 0). This shows that a distribution structure (M, H) may
have many integrable CR decorations.

We further note that all CR structures (M, H, J(4,»,¢)) have the local group of CR
automorphisms G, , ., With symmetry dimension not larger than 12. So we are in
the rypical situation: the dimension 12 of the local symmetry group G, ., of the
CR structure (M, H, J(4 p,¢)) is smaller than the dimension 21 of the local symmetry
group G of the naked distribution structure (M, H).

In this paper we focus on quite different situations. Roughly, we aim to give exam-
ples of distribution structures (M, H), which are such that they canonically define
nontrivial decorations on H. We want that the geometry of the distribution structure
alone imposes, without any additional input, some decoration. Such decorations we
will call accidental.

Leaving the precise formulation of the notion of an accidental structure in the most
general situations to subsequent studies, here in this paper, we will focus on accidental
CR structures (M, H, J) on homogeneous distribution structures (M, H).

Recall that a typical situation for the respective groups of symmetries G and G ; of
a distribution structure (M, H) and a CR structure (M, H, J) is that G; C G. The
notion of an accidental (M, H, J) requires equality here:

Definition 2.8 A CR structure (M, H, J) on a homogeneous distribution structure
(M, H) is called accidental if and only if the group G ; of CR automorphisms of the
CR structure (M, H, J) is equal to the group G of symmetries of the distribution
structure (M, H).

In case of (M, H) with an accidental CR structure (M, H, J) the addition of the
complex structure J to (M, H) does not diminish the symmetry of (M, H). Saying
it differently, the complex structure J is in a way compatible with the distribution
structure, or is somehow cannonically defined by it.

Our two Eg homogenous CR structures from the introduction are examples of
accidental CR structures. In the next sections we present many more of them. Actually
we provide a full list of accidental CR structures (M, H, J) for which the distribution
H satisfies

(1) [H,H]+H =TM and
(2) the geometry of (M, H, J) is a flat model for a parabolic geometry associated
with the distribution H.

On the other hand, there are many nonaccidental homogeneous CR structures. First,
all the hypersurface type CR structures, i.e. real hypersurfaces in CV which acquire
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their CR structure from the ambient complex space and have nondegenerate Levi form,
are not accidental: Their distribution structure (M, H) is a contact structure and as
such has infinite dimensional group G of local symmetries; in contrast the group G
of local CR automorphisms for them is always finite dimensional. As our Example 2.7
shows there is also plenty of nonaccidental homogeneous CR structures of higher
codimension.

We emphasize that the notion of an accidental structure on a distribution is not
solely reserved to the integrable (or almost) CR structures. This however goes beyond
the present work, and we move discussions of this issue to a subsequent paper.

2.5 A note on a Method for Approaching the Problem

The restriction of our considerations to accidental CR structures (M, H, J) on distri-
bution structures (M, H) being flat models for parabolic geometries, makes the task
of finding a full list of them to be manageable. This is due to the following;

First, all parabolic geometries are classified, so one way of finding the suspects, is
to search within the available lists.

Second, the accidental feature of the objects we search for, requires that the symbol
algebra of the searched distribution structures is such that its n.j part is naturally
equipped with an almost structure J. This is because this J should naturally induce
an almost complex structure J Nil on H = nf\{”, which in turn would define the flat
model distribution H on the group Nil. This immediately excludes all nilpotent Lie
algebras with odd dimension of n_j.

Actually the situation is much better: restricting to the nilpotent p-step Lie algebras
with even dimension of n_q, if a J in n_; was not natural, and we would consider a
corresponding almost CR structure (Nil, H = nN il JJN il ) on Nil, the symmetry of
this almost CR structure would be smaller that the symmetry of (Nil, H = nivil ),
since the Tanaka prolongation of (n., J) would not only preserve the strata ng_ in n_,
but also J in n_;. This would chop ng from the situation without J in n_. It would
chop it to a smaller n({ , making the resulting new Tanaka prolongation g% (n.) smaller
than g7 (n.). For us the crucial information is that in such situation the new n({ should
preserve J, in the natural adjoint action of ng inn_j given by the Lie bracket in g% (n).
Therefore né should naturally be a subalgebra of a unitary algebra su(n.1) for J.

This last observation forces us to restrict to the nilpotent Lie algebras, which on
top of producing flat models of parabolic geometries, should have, in their Tanaka
prolongation, their ng part as a subalgebra of a unitary algebra acting in n.1. This
selects quite a small subset of all n’s defining gradations in simple Lie algebras. The
addition of the requirement that the searched n’s must be 2-step graded, finishes the
job, and one gets the full list. Note, that by this algebraic approach, we are guaranteed
that we found accidental almost CR manifolds. Interestingly, all the found ones, the
ones which appear in our list, are the true CR manifolds, with corresponding J’s
satisfying the integrability conditions (2.9)-(2.10).
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3 Flat Parabolic CR Structures with Symmetry Algebras a;, 04 and ¢¢
3.1 The Case of Ej;; and Ej;; Symmetry

This was discussed in the Introduction in Theorems 1.2 and 1.3. Here we mention that
the explicit formulae for the embedding of CR manifolds depend on the convenience
or, in most cases, on the personal taste of the person who embedds them. In particular,
if one guesses the embeddings of the CR manifold of Theorem 1.3 by analyzing
the structure of the simple roots of an appropriate real form of Eg, a more natural
embedding of the 24-dimensional CR manifold M%‘[L” can be given:

In C3*3 with holomorphic coordinates (z;, w;),i = 1,2, ..., 8, consider
M3, = {Rewr = Re (121 + 1o + I3 + 1aaP?),
Rewz = Re (Jzs5]° + |26l + [271* + [zs[?),
Imws = Im (2127 + 2228 + 2523 + 26 24)»
Rews = Re (2127 4+ 2228 + 2523 + 26 24),
Imws = Im (21 T — 2328 + 2522 — 27 24)
Rews = Re (2126 — 2328 +2522 — 2724),
Imw; = Im (2276 + 2327 — 2521 — 28 74),
Rews = Re (2276 + 2377 — 25271 — 28 24 )} c e,

Then this embedded 24-dimensional CR manifold of CR dimension n = 8 and CR
codimension k = 8 is biholomorphically equivalent to the one from Theorem 1.3, and
as such has the exceptional simple Lie group Ej;; as its group of CR automorphisms.

3.2 The Case of SO(£ — 1, £ + 1) Symmetry

Letl{ > 4and N(¢) = w, and consider C*“~D/2 with holomorphic coordi-

nates (w, z) = (w'/,z5). Herei < j,k=1,2,...,0—1.
Define

MNO — {(CW D25 (w,2) st Imw —77)=0 Vi<j=12,. e—l}

We have the following theorem.

Theorem 3.1 Let £ > 4. The set MN© < CU~=D/2 s g real N(£)-dimensional
embedded CR manifold, acquiring the CR structure of CR dimensionn = { — 1 and
CR codimension k = w from the ambient complex space C*C=D/2_ [ts local

group of CR automorphisms is isomorphic to the real simple Lie group SO (£—1, £+1)

with the Lie algebra having the Satake diagram o—o—o— I with € nodes. It is
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locally CR equivalent to the flat model SO(L — 1, £ + 1)/ Py of an N (£)-dimensional
parabolic geometry of type (SO (L — 1, £+ 1), Py), where the real parabolic subgroup
P1in SO — 1, £+ 1) is determined by the following crossing on the corresponding

%.

Example 3.2 If £ = 4 we have a 9-dimensional CR manifold M°, of CR dimension

n = 3 and CR codimension k = 3, embedded in C® with holomorphic coordinates

(w2, w3, w?, 71, 72, 2%), via k = 3 real equations

0¢ Satake diagram:

1m(w12 _ lez) — 1m(w13 _ Z123) — 1m(w23 _ Z2Z3) =0.

This CR structure has the orthogonal group SO (5, 3) as the full group of its local CR
automorphisms.

Our formulae are also valid for £ = 3. In this case the CR manifold MN®) is
5-dimensional; it has CR dimension » = 2 and CR codimension k = 1. Therefore it
is a CR manifold of hypersurface type in C3. Indeed, with holomorphic coordinates
(w'?, z!, z2) our formulae give the hyperquadric CR structure Im(w'?) = %(1122 —
7'2%) in C3. This has the Levi form of signature (4, —) and is locally equivalent to the
Penrose’s null twistors CR manifold PN = {|Z'|> +|Z?|> — |Z*|?> — |[W|> = 0} in
CP3, with homogeneous coordinates [z!, 72 73, W[5, 10-12]. Restricting to £ > 4
we excluded it from our Theorem, since this flat parabolic CR structure is already on
the classical list of parabolic CR structures of hypersurface type corresponding to
the contact gradation in su(p, ¢). This is due to the low dimensional isomorphism
between the Lie algebras so(4, 2) and su(2, 2).

3.3 Explicit Formulae for the CR Symmetry Generators

We also calculated vector fields of infinitesimal CR automorphisms generating the
symmetry algebra for the SO(¢ — 1, £ + 1) symmetric CR manifolds covered by
Theorem 3.1; see Appendix C for explicit formulae. This was also done for all other
homogeneous CR structures included in this paper, but the formulae are too long to
be included here. They can be found in [6].

3.4 The Case of SO*(2¢), with £ = 2m + 1, Symmetry
Letm > 2,¢ = 2m + 1 and N(m) = m(2m + 3), and consider Cm@m+D) with

holomorphic coordinates (wy, w, z,{) = (wl/, whi, %2 ¢k3) Here I = 1,2, 3, 4
i< j,kikp,ks=1,2...,m.
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Define

MmN — { CmCmtD) 5wy, w, z, Z) s.t.
Im() = Im(2'7 + ¢'¢7)
Imwy) = ImGE +¢'7)
Imwy) = Re(z'7/ +¢'¢)
Im(wy) = Re(z'¢7 +¢'7)
Imw'y = |2/ + |72 Vi=1,2...m }

Vi<j=1,2,...m,|

We have the following theorem.

Theorem 3.3 Let m > 2. The subset MN™ of C"@m+D s q real N (m)-dimensional
embedded CR manifold, acquiring the CR structure of CR dimension n = 2m and CR
codimensionk = m(2m—1) from the ambient complex space C" "+ V) _I1s local group
of CR automorphisms is isomorphic to the real simple Lie group S O* (4m +2) with the

Lie algebra having the Satake diagram

Jj with £ = 2m + 1 nodes. It

is locally CR equivalent to the flat model S O*(4m + 2)/ P, of an N (m)-dimensional
parabolic geometry of type (SO*(4m + 2), P»), where the real parabolic subgroup
P> in SO*(4m + 2) is determined by the following crossing on the corresponding 0y

%.

Example 3.4 Ifm = 2,1 = 3, wehave a 14-dimensional CR manifold of CR dimension

n = 4 and CR codimension k = 6, CR embedded in C!° with holomorphic coordinates

(wiz, wéz, w%z, w}tz, wl, w?, 71, 72, {1, {2), via the k = 6 real equations

Satake diagram:

Im(w}z 2 lfy = Im(wéz A2l =0
Imwi?) — Re(z'2* +¢'8%) = Im(wj?) — Re(z'? +¢'7) =0

Im" — 122 = 1" = Imw?) — |22)* = |£?)* = 0.

This CR structure has SO*(10) as the full group of its local CR automorphisms.

Again, the formulae can be also made valid for m = 1. In this case we have a
5-dimensional CR manifold M> embedded in C? with coordinates (w, z, ¢). The real
manifold is obtained as a hypersurface Im(w) = zz+¢¢ in C3. We thus have again an
embedded hypersurface CR structure, the Heisenberg group, of CR dimension n = 2
and CR codimension £ = 1, but this one with the signature of its Levi form (4, +).
This is again a classical flat parabolic CR structure from the series SU (p, ¢),for p = 3,
g = 1.Ithas SO*(6) as the group of its local automorphisms. It is excluded from our
Theorem in order not to double the classification of the parabolic CR structures, due
to the low dimensional isomorphism s0*(6) = su(3, 1).
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3.5 Flat Parabolic CR Structures with Symmetry Algebra su(p, q)

We end our survey of examples, with a branch of accidental homogeneous CR mani-
folds which generalize, to the accidental setting, the codimension one hyperquadrics
embedded in C"*!. Our accidental ones have symmetries of a SU(p, ¢) group, similar
to the hypersurface ones, but they have higher codimension. We left this discussion
to the end of our survey, because the presentation of all of these higher codimension
accidental CR manifolds with SU(p, ¢) symmetry is quite complicated, due to many
possible choices of parabolic subgroups P in SU(p, ¢), which lead to an accidental
CR structure J on M = SU(p, q)/P.

Since we are always in the homogeneous situation, it is enough to indicate which
choices of parabolic subalgebras p in su(p, ¢) lead to the gradation su(p, g) = g—2 @
g_1 D go ® g1 @ g2 having natural J : g_; — g_; such that J> = —id. These can
be described as follows:

The Lie algebra su(p, g) has £ = p 4+ g — 1 simple positive roots o1, «2,...,0¢. For
reasons which will be clear soon in the examples, for our discussion it is enough to
only consider p < g, when p > 2 and g > 3.

The following two cases should be considered.

e Either 2 < p < ¢, and then the Satake diagram for the real Lie algebra su(p, ¢q)
is

o0—O0—0—+—0O—0—6—  —0—8—0— —0—0—0,

- —

here the black nodes start after the first p white nodes, and became again white
starting at (£ — p + 1) = ¢™ node,
e or p = q, and the Satake diagram for the real Lie algebra su(p, p) is

OO0 O —O0 00— 000,

‘\\‘:_"/'/

In both pictures, the £ = p + g — 1 roots a1, a2, ..., ag are symbolized by the white
or black nodes in the diagram from left to right.

It follows that each parabolic subgroup P, with Lie algebra pg, which leads
to an accidental CR structure on the corresponding homogeneous manifold M =
SU(p, g)/Ps is in one to one correspondence with the choice of a pair of roots
cs = {ag, apig—s}. The choices ¢, of these pairs of roots lead to nonequivalent CR
manifolds M = SU(p, q)/ Ps

for each 1 <p<gq and s=1,2,...,p,

and
for each q=p>2 and s=1,2,...,p— 1.
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It further follows that for each choice of the integers p,q,s as above, the CR
manifold M = SU(p, q)/ Ps has

e real dimensiondim M = s(2p + 2q — 3s),
o the CR dimensionn = s(p + q — 2s) and

e the CR codimension k = s2.

In particular, the familiar codimension one hyperquadrics embedded in C*+!, with
the SU(p, ¢) group of CR automorphisms, corresponds to s = 1 and the choice of the
roots ¢y = {a1, &pyq—1}. Asitis seen from here, if s > 2 these CR structures are not
of hypersurface type. In all cases s > 2 these CR structures are accidental.

To state an appropriate theorem about the accidental CR manifolds with SU(p, ¢)
symmetry we thus need to choose three integers p, g, s with their ranges as discussed
above. It turns out, that to set up the formulas for the embedding of these CR manifolds
in C"** it is convenient to pass from the integers p, ¢, s to the new integers

t=p—s and r=gqg — p.
If p, g, s changes as we discussed above, we have the following ranges of 7, r and

r>0, t>0, s>1

and (r,1) # (0, 0).

Let
N(t,r,s) =sQ2r + 4t +s)

and consider C*2+5) with holomorphic coordinates
(z,u, v, w) = (Zap, UbA, VcB, Wde)

and with 1 < a,b,c,d,e <s, withl < u <r and1 < A, B < ¢, provided that
r # 0andt # 0. If »r = 0 the z variables are not present in (z, 4, v, w), and if t = 0
the u and v variables are not present in (z, u, v, w).

Define
CSUT2H) 5 (z,u, v, w) st
Zal Zel + -+ + Zar Zer
Imwge = Im { +ug1 Ve + -+ - + Uar Vet for 1=a<css,
mN@r.s) +Vgq1 Uel + -0+ Var Ut
Zql1 Zel + -+ Zar Zer
Rewge = Re { 4uyy Ve + -+ + ugr Vet for 1<c=<acxs.
Fvgl Ul + -+ Var Uet

We have the following theorem.

Theorem3.5 Letr > 0,71 > 0, s > 1 and (r,1) # (0,0). The set MN@7-9) <
Csr+2t+5) jo g real N (t, r, s)-dimensional embedded CR manifold, acquiring the CR
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structure of CR dimensionn = s(r +2t) and CR codimension k = s® from the ambient
complex space CSUT2+9) [ts local group of CR automorphisms is isomorphic to the
real simple Lie group SU(t + s,r + t + ). It is locally CR equivalent to the flat
model SU(t + s,r +1t +5)/Ps of an N(t,r, s)-dimensional parabolic geometry of
type SU(t +s,r+1t+5), Ps), where the real parabolic subgroup Ps in SU(t + s, r +
t + ) is determined by crossing the roots ag and o424 on the Satake diagram of
SU(t +s,r+1+9).

Example 3.6 To get an accidental CR manifold with SU(p, ¢) symmetry we need
to have s > 2, since otherwise the CR manifold has codimension one, and is of a
hypersurface type. Knowing that we need s at least as large as 2, and using inequalities
for ¢ and r, it is easy to see that the smallest possible SU(p, ¢) symmetry group
of an accidental CR structure is SU(2, 3). In such case p = 2, ¢ = 3, and the
corresponding choice of a parabolic P; in SU(2, 3) leading to the accidental CR
structure on SU(2, 3)/ Py is, at the level of Lie algebra, given by the following crossings
in the su(2, 3) Satake diagram:

SUR3): exer e (MK =(204),

As indicated in the diagram, this choice of a parabolic P, in SU(2, 3) corresponds
to an accidental CR manifold M3 = SU(2, 3) / Ps. This SU(2, 3) homogeneous CR
manifold has dimension N = 8, CR dimension n = 2 and CR codimension k = 4. It
is embedded in C® as follows:

Cct s (z1, 22, w11, W12, W21, W23) S.t.
w12 — W12 = 2122 — 2122
M® = wi +wi = 22121 ,
wo1 + Wa1 = 2122 + 2122
wo + wap = 22222

and has SU(2, 3) group of CR automorphisms.
Example 3.7 In case of the SU(3, 3) CR symmetry we have p = ¢ = 3,i.e.7r =0
andr = 3 — s > 0, and if we want to have an accidental CR structure we need to take

the only possibility s = 2.
The Satake Diagram for su(3, 3) is

O0—O0—0—0—0

= 7
and the choice of a parabolic leading to the accidental CR structure is:

OO with (n, k) = (4, 4).
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The embedding is given by:

C? 5 (ug, vp, wea), a, b, c,d = 1,2, s.1.
Wi — W12 = U102 + Viily — U1V — V142
M"? = wip +wip = 2(u1vy + viig) ,
w1 + Wa1 = U0y + vaily + i2v1 + Vauy
w2 + wy = 2(uzvz + v2u2)

and provides an accidental CR structure of CR dimension n = 4 and CR codimension
k = 4 in C® with the CR automorphisms group SU(3, 3).

Example 3.8 In case of the SU(2, 4) CR symmetry we have p =2,q = 4,ie.r =2
andt = 2 — s > 0, and an accidental CR structure appears for s = 2 only. In such
caset = 0.

The Satake Diagram for su(2, 4) is

OO0 _-0_-0

=
and the choice of a parabolic leading to the accidental CR structure is:

RO with (n, k) = (4,4).

The embedding is given by:

(CS 3 (Zab, Wed),a,b,c,d =1,2,s.1.
w12 — W12 = 211221 + 212222 — 211221 — 212222
M"Y = w11 + w11 = 2(211211 + 212212)
w21 + Wa1 = 221211 + 222212 + 221211 + 222212
wy + Wy = 2(221221 + 222222)

This provides an accidental CR structure of CR dimension n = 4 and CR codi-
mension k = 4 in C3. It has SU(2, 4) as its group of CR automorphisms.

Example 3.9 If p = 3, ¢ = 4, and the group of CR automorphisms is SU(3, 4) we
haver =4 -3 =1andt = 3 — s > 0, and we encounter the lowest dimensional
situation when we have rwo nonequivalent accidental CR manifolds. This is because
in this case there are two not equal to 1 possible values for s, namely s = 2 and s = 3.
The Satake Diagram for su(3, 4) with the choice of parabolic related to s = 2 is

° ® ° (TL, k) = (6)4)>

e
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and the Satake Diagram for su(3, 4) with the choice of parabolic related to s = 3 is
© ° (n, k) =(3,9).

S~

e Incase of s = 2, r = 1, ¢ = 1, the embedding in C10 of the corresponding
accidental CR structure of dimension N = 16, CR dimension n = 6 and CR
codimension k = 4 is given by:

C'%5 (24, up, Ve, wae), a, b, c,d, e = 1,2, 5.1.
Im(wyp) = Im(mZz +uivy + U1ﬁ2)
M = Re(wi1) = 2121 + u1v1 + viug
Re(wyy) = RC(ZZZ[ +urv1 + vzftl)

Re(w) = 20720 + upva + vaun

By construction this accidental CR structure has SU(3, 4) group of the CR auto-
morphisms.

e Incaseof s = 3, r = 1, ¢t = 0, the embedding in C12 of the corresponding
accidental CR structure of dimension N = 15, CR dimension n = 3 and CR
codimension k = 9 is given by:

C"2 5 (24, wpe).a,b,c =1,2,3,5.1.

wi2 — W2 = 2122 — 2122
w13 — W3 = 2123 — 2123
W23 — W23 = 2273 — 2223
wi +wi = 22121

w21 + W21 = 2221 + 2221
wo + W = 22222

w31 + w31 = 2321 + 2321
w3 + w32 = 7322 + 2322

w33 + w33 = 22323
By construction this accidental CR structure has SU(3, 4) group of the CR auto-
morphisms.

4 Why Examples of Sections 2 and 3 are Flat Parabolic Geometries?

4.1 Proofs of Theorems 1.2 and 1.3

In the rest of this section we give justifications for Theorems 1.2, 1.3, 3.1, 3.3 and 3.5.

Since the idea is the same for all of them, we will only concentrate on the proofs of
Theorems 1.2 and 1.3 related to ¢¢. This is, anyhow, not so important, since the proofs
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of Theorems 1.3, 1.2, 3.1, 3.3 and 3.5 follow directly from our Section 5 and (in full
generality) from the Reference [8].

The basic observation (a nontrivial one!), valid for all Theorems 1.3, 1.2, 3.1, 3.3
and 3.5, is that the entire CR geometry of CR manifolds M" appearing in them, is
totally determined by the mere geometry of the real distribution H. By this we mean
that for all of the CR manifolds from these Theorems, the complex structure J in H
is an object totally determined by the pair (M”, H). Saying it yet differently: for all
the CR manifolds from Theorems 1.3, 1.2, 3.1 and 3.3 the local differential geometry
of the CR structure (M N , H, J) is the same as the local geometry of the structure
(MY, H) of areal manifold of dimension N and a rank 2n (real) distribution H (with
a proper symbol algebra). This is the reason why we call the CR structures from
Theorems 1.3, 1.2, 3.1 and 3.3 as accidental CR structures: these are structures of a
vector distribution H on MV, and the J in H is given as a gift, or an accident, from
the geometric data (M N H).

Of course the statement that the local differential geometry of the CR structures
(MN, H, J) is the same as the local geometry of the structures (M", H) of a real
manifold of dimension N and a rank 27 (real) distribution H, for all the structures in
Theorems 1.3, 1.2, 3.1 and 3.3, requires proofs. We will give them by inspecting all
of these cases separately below.

Proof of Theorem 1.2 In this case, passing to the real variables (u, v’, x', yf), we can
write our CR structure M %‘I‘I in the form (2.17) with 8 defining functions ¢’ given by:

o = 223 +xlxt 4323 £yl
@2 = 25 + x40 4 y2y5 £ y1)0
@ = x7yl —x5y3 £ x3y5 — k)7
0 = x8y! £ x7y? 41093 4 x5yt xS 30 k27 i 1y8
05 = x2x7 + 1350 — x1x® — xS 4 32T 4y — y1y8 45
B0 = x8)2 — xOyt x40 _ 428
o7 = x*x7 + 328 + 4T 438
@8 = x0x7 4 x5x8 £ y6y7 4548,

So now our CR manifold M 125?1 is parametrized by the real coordinates (ui, xt, yi),

i=1,2,...,8,so that the forms A’ anihilating the rank 16 distribution H on Mif;],
according to the formula (2.18), are given by the 1-forms Al i=1,2,...,8, of the
Pfaffian system from Corollary 1.4.

4

Now we have the following Lemma®™.

Lemma 4.1 The Lie algebra of infinitesimal symmetries of the Pfaffian system
[Al A XS] on Mz‘t[, with forms A' as in Corollary 1.4, or what is the same, the Lie

4 Actually, to shorten the expressions for the A’s given here, and to have more symmetric formulas for the
EDS later, we changed the original coordinates u' appearing in (2.18) to more suitable u'’s appearing here,
and slightly rescaled the A’s in (2.18).
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algebra of infinitesimal symmetries of the rank 16 distribution H = [A', A2, ..., A8]L,
is the real form of the simple exceptional Lie algebra eq with Satake diagram

=

Proof of Lemma 4.1 There are at least three ways of proving the Lemma:

e By brute force: solve the PDEs (2.14) for the symmetries Y of the distribution

structure (M, H) defined as the annihilator of the Pfaffian system [A!, A2, ..., A8]
given in the Lemma. This can be done e.g. by I. Anderson’s Differential geometry
package of Maple. This package can also classify the obtained Lie algebra of
symmetries, showing that the algebra is of type es. But for this one needs quite a
powerful computer and the commercial software Maple.

By the Cartan equivalence method applied to forms (1') given on a manifold M!,

up to the transformations A’ > a’ jA/, where the real 8 x 8 matrices (a' ;) belong
to GL(8, R). This is very tedious, and as a result gives 78 linearly independent
1-forms on a certain 78-dimensional manifold G which satisfies the EDS of the
Maurer-Cartan forms on the appropriate real form of the simple exceptional Lie

group Eg.
e By the Tanaka prolongation method, which we will follow in this exposition.

The proof of the Lemma is based on the Tanaka’s Theorem 2.2. To see this we extend
the eight 1-forms A' generating the Pfaffian system from the Lemma to a coframe
(A, A=1,2...24,0n M?;j” by setting

A —dxi, A =gyl =12, ...

We calculate all the exterior derivatives dA* obtaining:

d)nl — )\9 /\)\204_)\10 /\)ng _'_)Lll /\)LIS —G—)le /\)Ll7
da? = 22 A IO AR A A 1 AT

d)»4 — kgAA16+kloAk15+)\ll /\)\.14+)\.12/\)\.13+A17/\)\.24—'_)\.18/\A.23

+ AP AL 4220 A0

d)\.s — —kgAk24+AIOAA23 +)»“ /\)\22 —)»12/\)»21 _)\‘13 /\)»204—)\.14/\)\.19
LIS A I8 16 A 17
d)»é — )\10 A )\16 . AIZ A )\14 —‘1-)»18 A )»24 . )»20 A )»22
D8 = ABAAR LM AN LA AN £ 16 4020
d\* =0, Yu=9,10,...,24.
“.1)
‘We thus have
dat = 3t gpaf ALL, 4.2)
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with all the coeffcients c4gp = —c4pp being constants. Thus our 24-dimensional

manifold M%‘:I with the coframe (1) can be locally consider to be a Lie group, say

N, for which the coframe (A4) is a coframe of Maurer-Cartan forms. Looking at the
structure constants of the Lie algebra n of this group, which can be read off (4.1)
via (4.2), we see that this Lie group is nilpotent. Indeed, taking the vector fields X 4,
A=1,2,...,24 on NV dual to the coframe 1-forms 1B, X418 = (Sf, we see that
they form a 2-step nilpotent Lie algebra

n=n,o,®dn; (4.3)
with
n.1 = Spang (X9, X190, ..., X24), np = Spang (X1, X2, ..., X3g). “4.4)

We used here the commutation relations of vector fields X 4 obtained from (4.1)-
(4.2) via the formula [X 4, Xg] = cE 45 X . Now note that our distribution H from
the Lemma 4.1 is precisely the distrubution spanned, over the functions on NV, by the
left invariant vector fields X, u =9, 10, ..., 24, which span the n_; part of the 2-step
nilpotent Lie algebra n.

So, what is the Lie algebra of symmetries aut(H) of our distribution H from the
Lemma?

Via the Tanaka theory this is a Lie algebra isomorphic to the Tanaka prolongation
gr (n) of the nilpotent Lie algebra n = Spanp (X 4). So to determine the Lie algebra
of automorphisms of our rank 16 distribution H it is enough to calculate g7 (n) for n
in (4.3)-(4.4).

Calculating the Tanaka prolongation gr(n.) is an algorithmic inductive process
involving only linear algebra applied to n. and its successors n;, j > 0. One first
calculates ng, then ny, etc. Here, for brevity we will only show in details how ng for
our n, as in (4.3)-(4.4), is calculated

The elements of ng are derivations A of n preserving the strata n_.; and n., in n.
Thus the matrix elements (Az€) of a linear map A : n — n belonging to ng must
satisfy, in the basis (X 4), the following equations:

(1) A;* =0and Aﬂi =0,fori =1,2,...8, 0 =9,10, ..., 24, (preservation of the
strata)

Q) cEgpAET —cFpeApE +cF ppApE =0,B, D, F =1,2,...,24, (derivation
property).

These linear equations for the matrix entries A 5€, with cBpg given by (4.3)-(4.4),

have a 30-dimensional space of solutions. Explicitly

Al 0

ApSH=|-— —|, (4.5)
0 A,
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where
ay7 + azs + 2az ag ag 2a9 2ay9 ar an 0

ai —a7 +ax + a ary 2a13 2a19 ax 0 arp

az apz —ag +ax +axn  2ax3 2ax4 0 ax —an
(Aid) = az aiy a azx  —axs —ax ax —ag ag

a4 ais an azs + ax aso axy —apg aio

as aie 0 2az; 2axn axg — ax9 +az ary —ag

ae 0 aie —2a14 —2ais a3 ax7 — ax9 +az ay

0 ag —as 2a3 2ay4 —ay ap —az7 — azg

and the real matrix (A,") is:

30

(A") =) acEy, (4.6)

k=1

with 16 x 16 matrices Ex, k = 1, 2, ..., 30 given in the Appendix A. Note that there
are 30 real matrix coefficients ar, k = 1, 2, ..., 30, in the matrix (ABC).

The above matrices (A 4 B ), are closed with respect to the commutator ([A, A']p C)
= (Ap DA/D ¢ _ Ay DAp ©), as they should be, and form the ng of the Tanaka
prolongation gr (n).

What is this Lie algebra? By looking for a symmetric tensor g;; = g;; invariant,
A; kgkj +A; kg,-k = %Tr(A)gij, under the adjoint action of the matrix (A; Jyinng,
we find that (g;;) is a multiple of the numerical matrix

0000 0001
0000 00-10
0000 0100
_looo-foo000
@i)=10000 -1000
0010 0000
0-100 0000
1000 0000

This shows that A acts in n_; as the Lie algebra cso(3, 5). Thus, the Lie algebra ng
is

n=R®cs0(3,5) =RPERPs0(3,5) =2R P O—Q
Further calculation shows that n is a Lie algebra of dimension 16 = dim(n.y), that
dim(ny) = 8 = dim(n_,), and that n; = {0} for all k¥ > 2. This shows that the Lie

algebra of automorphisms of the distribution H from our Lemma, aut(H), being the
Tanaka prolongation g7 (n) = aut(H), has a symmetric gradation

aut(H) =n, ®n.y ®ng @ ny @ ny, 4.7

with its dimension
78 =8+ 16+30+ 16 + 8. 4.8)
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Such a symmetric gradation is typical for a parabolic gradation in a simple Lie
algebra. Comparing the obtained gradation (4.7)-(4.8) with possible gradations in
simple real Lie algebras identifies our aut(H) as the Lie algebra

@OIO® 4.9)

= 7

with the gradation correspondinng to the choice of a parabolic subalgebra indicated
by the crossings in (4.9). Note that if you remove the crossed nodes in (4.9), you will
remain with the Dynkin diagram for so0(3, 5), which together with the crossed nodes,
counting as 2R, gives the calculated ng. This finishes the proof of the Lemma. ]

Returning to the proof of Theorem 1.2, we see from the Lemma that our CR structure
on M%‘:I has locally E;; symmetric Levi distribution H. But the distribution H defines
np which naturally acts in H at every point. We emphasize, that H itself defines ng
and its action. One therefore is tempted to see if there is any object, say a tensor T,
in H which is invariant with respect to this action. So now, we want to see if there
exists a rank (%) tensor J in H preserved by the action of ng in H, which is the same
as asking about the existence of a 16 x 16 matrix (7, ”) such that

T PA, " = A, T," Yiu,v=9,10,...,24. (4.10)

Here the matrix (Au V) is as in (4.5).
We solved the equations (4.10) for an ng invariant tensor 7 in H. It turns out that
there is a 2-parameter family of such invariant T's, parametrized by real numbers say

«a, ﬂ’

T =«idy + BJ,
with _
0 | —idgxs
J=] —— —— = Ey5 — Erg. 4.11)
idgxg | O
Among such invariant 7’s there is a unique (up to a sign) T such that 72 = —idy.

This happens if and only if « = 0, § = £1.

So, although we did not assumed any complex structure J in H, there is a prefered
one in there! It is defined uniquely up to a sign by the requirements that J in H satisfies
J? = —idy and that it commutes with the action of ng. And because ng is also fully
defined by H, this J is defined by the real distribution H alone.

If such J were not ng invariant, then when calculating the Tanaka prolongation
of the composed structure (H, J), one should not only require that ng consisted of
the strata preserving derivations of n, but that ng consists of those strata preserving
derivations in n which in addition preserve J in n_;. In our case, since J commutes
with the ng, the two Lie algebras ‘the strata preserving derivations of n’ and ‘the strata
preserving derivations of n which also preserve J in n.;’ are the same. Thus the entire
Tanaka prolongation of n related to the structure of the distribution H alone, and the
Tanaka prolongation of the structure of the distribution H with J, because it is H-
defined, are also the same. As a consequence, the structure (Miftl , H, J) has the same
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Tanaka prolongation as (M %‘}l, H), and in turn the entire CR structure (M%‘:I L, H, J)
is (locally) Ej; symmetric.
Finally one uses the (M%‘tl, H, J) obtained from (M%‘;I, H), checks that the cor-

responding (H HC ez c (m*M)Cis integrable, and embeds it in C. It follows
that this embedding is CR equivalent to the one given in Theorem 1.2.
This finishes the proof of this theorem. g

We now pass to the proof of Theorem 1.3. Since it is almost the same as the proof of
Theorem 1.2 we only give formulae that are different in this theorem when compared
to the formulae in Theorem 1.2.

Proof of Theorem 1.3 This time, the real distribution H in M ift” is given as the anni-
hilator of the Pfaffian forms [A!, ..., A%], which in the real coordinates (u’, x*, yi ) are

given in Corollary 1.5. Again introducing A'*® = dx/ and A *10 =dy’,i =1,...,8,
we easily see that these forms satisfy the following EDS:
Al = A9 AR 10 A 220 4 11 523 4 512 18 4 13\ 522 4 514, 521
LIS AR 4 a16 A 17
da? = 22 AR A2 AL L AR A A AT A A A AN
LIS A A2 4 a18 A 516
A =22 AAB RO AR LA AT AR AP0 AR A8
+ A AT A1 AR
A = 210 A9 I3 A AN L A16 A AI2 15 A p 14 g 318 17 4 p21 409
A AR AP AR
A5 = A2 AR LB AR L AT AT LRI A A1 42 AR a1 AT
LB A RIS 4321 A 516
da® = AR AR AT AR A AR L AT AR £ A2 AR £ A1 A TS
L2 A 023 42 A2
A7 = AT AR A0 A A A4 A A2 16 A RIS 219 A A17 4 A18 A 52
+ A AR A AR
dA® = A2 AT LRI ARE AT AR A2 AR A AR 4 M AR
+ A ARB A1 AR
d\* =0, VYu=9,10,...,24.
The constancy of the coefficients CApp=—CAppindr? = —%CBD)»B AAD
above, and their algebraic structure, again show that these are the Maurer-Cartan forms

on a nilpotent Lie group, say A/, with the Lie algebra n being 2-step nilpotent

n=np;®dny,
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with
n. = Spang (Xo, ..., X24), no = Spang(Xy,..., X3g),

and X4 A8 = Sg.
The Tanaka prolongation gr (n) of this nilpotent Lie algebra n has ng consisting of
matrices (with commutator in matrices) of the form

AVl 0
ApH=|-— —.
0 ALY

where

asxp ax axg a3 ax; axs aig aj
—ax asp —azl a9y —azp —ai9 di4 as
—azg Azl Ay dl2 ax a4 Adp7 de
(A; ) = —a13 —ag —apz azp —aip —ajp —ag —ai
—az7 axp —ax Al azp a3 aie as
—azs a9 —az4 ajp —axz az dais —as4
—aig —ai4 —ai7 ag —daie —ais azp —az
aj a3 ae —ap as —as —az aip

and the real matrix (A, ") is:

30

(A ") = 3akEx. (4.12)
k=1

with 16 x 16 matrices Ek, k=1,2,...,30 given in the Appendix B. Note that again
there are 30 real matrix coeffcients ar, k =1, 2, ..., 30, in the matrix (Ap C).

The above matrices (A4 ), are closed with respect to the commutator ([A, A’]p ©)
= (Ag PA, € — A PAp ©), as they should be, and form the ng of the Tanaka
prolongation g7 (n).

Asking again the question of ‘what is this Lie algebra?’, by the same argument of
looking for a symmetric tensor g;; = gj; invariant under the adjoint action of the
matrix (A; /) in n., and finding that (g;;) is a multiple of the diagonal matrix of
the form diag(—1, —1, —1, —1, —1, —1, —1, 1), one sees that A acts in n_, as the Lie
algebra cso(1, 7). Thus, the Lie algebra ng is

n=R&cso(l,7 ) =RAERPso(1,7) =2R P o—<

We then calculated nj and ny obtaining, in particular, that n; is a Lie algebra
of dimension 16 = dim(n_;), that dim(ny) = 8 = dim(n,), and that ny = {0}
for all k > 2. This, as in the case of Theorem 1.3, shows that the Lie algebra of
automorphisms of the distribution H from our Lemma, aut(H), being the Tanaka
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prolongation g7 (n) = aut(H), has a symmetric gradation
aut(H) =np ®&ng G nygdng @ny,

with its dimension
78=8+16430+ 16 + 8.

This leads to the conclusion that this Lie algebra is x—o,;j—/o—«x with the choice of a

parabolic as indicated by the crossings.? This proves that the local group of symmetries
of the distribution H from Theorem 1.3 is E;; with the Lie algebra SN at
Now: ‘what about the symmetries of the CR structure on M %‘;” 7. The point is that
again the (Levi) distribution H on its own, by its mere algebraic structure, defines J
in it. Again there exists a unigue (up to a sign) rank (%) tensor J in H preserved by

the action of ng in H and squaring to ‘—idg’. In the basis (Xo, ..., X24) in H it is
given by
0 | _id8><8 B
J=]| —— —— = FE»9.
idgxg | O
24

Thus, again, the structure (M Enp H,J) has the same Tanaka prolongation as

(M%‘i”, H), and in turn the entire structure (M%‘}”, H,J) is (locally) Ej;; sym-
metric.

Also, as in the previous case, one uses the (M %‘}” , H, J) obtained from (M ‘2{}” ,H)

and embedds it in C'°. It follows that this embedding is equivalent to the one given in
Theorem 1.3.
This finishes the proof of this theorem. ]

5 Classification of Accidental CR Graded Simple Lie Algebras

Following the discussion in Section 2.5 about our approach to search for accidental CR
structures, we start out by classifying the corresponding graded simple Lie algebras.

Recall that a real graded Lie algebra (abbreviated as GLA) is a real Lie algebra g
with a direct sum decomposition g = pez 9p suchthateach g, is afinite dimensional
real vector subspace of g and [g,, g4] C gp44 for all integers p, g.

Note that g is a subalgebra of g and that by restriction of the adjoint representation,
there is a natural representation of g on g, for any integer p.

We will denote by n_(g) the nilpotent subalgebra @ ,-og, of g. The maximum d
of the set of integers p for which g_, # 0 is called the depth of the GLA. A GLA
9= Dc; 9y is called fundamental if g, generates n_(g) = €D, 9p-

5 Note that if you remove the crossed nodes, you will remain with the Dynkin diagram for so(1, 7), which
together with the crossed nodes, counting as 2R, gives the calculated ng.
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A real simple Lie algebra g belongs to two disjoint families (see [14]):

(1) Complex type: g is a complex simple Lie algebra g regarded as real. In this case,
the complexification g€ is only semisimple as a complex Lie algebra.

(2) Real type: g is a real form of a complex Lie algebra. In this case, g is simple as
a complex Lie algebra.

In this paper, we are mainly interested in the second case of real type. Note that for
the Killing form « of a simple GLA g, we have (g, g,) #0 <= p+q =0.

Definition 5.1 Let
g=9-adD - - Dg- 1P P D---Dga

be a simple graded Lie algebra of real type. g is said to have an accidental CR structure
if

(1) g is fundamental,

(2) g is the Tanaka prolongation of n_,

(3) g—1 has an almost complex structure J compatible with the go-action, that is, there
exists an R-linear transformation J : g_; — g_; such that

J? = —Idg_,, and adyoJ =Joady, YH € go.

Remark 5.2 The pattern of this definition should be adoptable to define other acciden-
tal structures as discussed above in Subsection 2.5.

The authors of this paper started with this definition and looked to classify such
accidental CR graded simple Lie algebras. Through Maple calculations of many exam-
ples, they came to the realization that such accidental CR structures exist when the
grading roots for the gradation come in pairs in the Satake diagram.

After the realization that their list of such candidate simple Lie algebras are exactly
the same as those in [8, Section 4], the present authors were drawn to the fundamental
works of Medori and Nacinovich [7, 8].

The first paper [7] systematically studied Levi-Tanaka algebras following the
method of N. Tanaka. In the second paper [8], Medori and Nacinovich classified
all semisimple Levi-Tanaka algebras, of both the complex and the real types.

For the reader’s convenience, we recall their basic definitions and compare their
results with our more naive version. For the application to CR geometry, [7, 8] put the
integrability conditions in (2.9) and (2.10) of J in the forefront from the beginning,
as should be.

Definition 5.3 ([8, p. 287]) Let g = @pez gp be a finite dimensional real graded Lie
algebra. g is called a Levi-Tanaka algebra if

(1) g is fundamental;
(2) there is a partial complex structure on g, that is, an R-linear map J : g_1 — g—1
which satisfies

2 _
{J = ~ldg.,. (5.1

[JX,JY]=[X,Y], VX,Y eg_,.
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(3) the adjoint representation gives an isomorphism between go and the algebra of
0-degree derivations of n_(g) whose restriction to g_; commutes with J;

Definition 5.4 ([8, Section 4]) A simple Levi-Tanaka Lie algebra of the real type is a
Levi-Tanaka Lie algebra that is also a simple Lie algebra of the real type.

If we compare our Definition 5.1 and their Definitions 5.3 and 5.4, we see that we
didn’t require the partial integrability condition (5.1). Also a Levi-Tanaka algebra 5.3
is stronger in condition (3) requiring that go is equal to the unitary algebra su(g—1) for
J, while accidental CR structure 5.1 only requires that g is a subalgebra of su(g_1).
On the other hand, for accidental CR structure 5.1, condition (2) explicitly requires
that the simple Lie algebra is the Tanaka prolongation of n_.

The gradations on a simple Lie algebra of the real type in the second case can
be given in terms of the restricted roots or using the Satake diagram [14], with the
latter giving more information. Recall that the nodes on the Satake diagram are black
when the corresponding simple roots are compact (or purely imaginary), or otherwise
white. Some pairs of white nodes are joined by curved arrows if they are conjugate
to each other, modulo the compact roots. The other white ones stand alone. Using the
Satake diagram, a gradation on g is given by a subset 3_; of simple roots represented
by white nodes, where one may choose some standing-alone white nodes or pairs of
white nodes joined by curved arrows.

Theorem 5.5 ([8, Thm 4.1]) Let g be a simple graded Lie algebra of the real type.
Then g admits the structure of a Levi-Tanaka algebra if and only if its Satake diagram
satisfies that the set of grading roots is nonempty and consists of a disjoint union of
pairs of white roots joined by a curved arrow.

Then [8, Section 4] lists all the possible simple Levi-Tanaka algebras of the real
type as follows.

(1) su(p,q),1 < p <gq, p+q =1~{+1 graded by
B_i={aiy, .o, 0y, 0yt 1y ooy Qe—iy+1)

where 1 <ij < --- < i, < p, with depth 2v,
(2) su(p, p), p = 2,2p = £+ 1 graded by

B*] = {a” PRI aiv5 a(*l’,_rf]’ LRI a671|+1}

where | <ij; <--- <iy, < p — 1, with depth 2v,
(3) so(¢ —1,£+4 1), £ > 4 graded by B_1 = {oy_1, ¢}, with depth 2,
(4) s0*(2¢), £ =2m + 1,m > 2 graded by B_1 = {oy_1, ¢}, with depth 2,
(5) Ey; graded by B_| = {1, as}, {a3, as} or {a1, a3, a5, ag}, with depths 2, 4, 6,
(6) Ery graded by B_1 = {«, ag} with depth 2.

Adapting their proof to our situation, we can also get the following result.

W Birkhauser



Parabolic CR Geometries

Theorem 5.6 A simple Lie algebra of real type admits an accidental CR structure iff
it admits a Levi-Tanaka structure other than the case of

su(p.q).1 = p<q,p+q=~L+1gradedby B = {a1, o}, 52)

su(p, p),2 < p,2p =L+ 1graded by B_| = {ay, ay}. '
Therefore the J in the accidental CR structure can be made integrable, and up to a
sign, such integrable J is unique.

Proof of Theorem 1.3 The criterion for a simple graded Lie algebra g to be the pro-
longation of n_ is given in [14, Theorem 5.3]. Then all the simple Levi-Tanaka Lie
algebras have accidental structures except those listed in (5.2), that is, the hypersurface
type CR structure discussed in the introduction.

Now in the other direction, we can show that an accidental CR structure always
implies a Levi-Tanaka structure.

The main technical advantage of the proof in [8] over our original more compu-
tational approach is their theorem 2.4. It states that the partial complex structure J
is induced by a unique element J € go. This part does not require the integrability
condition. All it requires is that the J : g_; — g_; defines a degree O derivation
of n_. In the Levi-Tanaka cases, this derivation is J itself so it belongs to gg. In our
accidental CR structure case, condition (2) would imply that such a derivation belongs
to the degree O part of the Tanaka prolongation and so in our gy.

For a pair of grading roots o, ' € B_ joined by a curved arrow in the Satake
diagram, the corresponding root spaces gq, g,/ belong separately to

g0 = (X —V=1UX X e g1} C g5,

(0” = (X +vV=1JX|X eg_1} C g5,

by [8, p. 290]. We then call the corresponding root to have type (1, 0) or (0, 1) accord-
ingly. The choice of J consists of deciding, among each pair of such roots, which
one has type (1, 0). The integrability condition [J X, JY] = [X, Y] for X, Y € g_4
is spelled out in [8, eqn. (14)] as follows. If Y is a connected subset of the Satake
diagram of gand Y N B_| = {o;, a;} withi < j, then o; and «; have different types.
Therefore, an integrable J, if it exists, is uniquely determined by the type of one root
in B_j, and we just alternate the types for the roots in B_; as we travel through the
Satake diagram.

In our case where B_| consists of pairs of roots «, &’ joined by curved arrows,
conditon (iii) in the proof of Theorem 4.1 in [8] observed that the line connecting «
and o contains an even number of vertices in B_1. This means that our alternation
method would still satisfy that & and o’ have different types. So an integrable J exists
for any of our accidental C R structures, and it is unique up to a sign. ]

Remark 5.7 Medori and Nacinovich [8] also classifies simple Levi-Tanaka Lie algebra
of complex type. There, the gradation root sets are more flexible, and the integrability
condition comes in much more prominently and is the main factor to decide the result.
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We summarize the accidental CR structures with depth 2 that we studied in this
paper in the following theorem. We also find among them the nonrigid ones.

Theorem 5.8 (1) The list of simple Lie algebras of real type with an accidental CR
structure of depth 2 is as follows.

(a) Epy graded by B_| = {a1, ag} corresponding to Theorem 1.2,
(b) Erpy graded by B_| = {ay, ag} corresponding to Theorem 1.3,
(c) so( — 1,¢£ + 1),£ > 4 graded by B_1 = {a¢—_1, ¢} corresponding to
Theorem 3.1,
(d) s0*(2¢),¢ =2m + 1,m > 2 graded by B_1 = {ay—1, a¢} corresponding to
Theorem 3.3,
(e) su(p.q).1 = p <q.p+q=1~+1graded by B_ = {as, g1}, where
2<s<pifp<gq,and2 <s < pif p = q, corresponding to Theorem 3.5.
(2) Among such accidental CR structures with depth 2, the only nonrigid ones are
su(p,q), p+q = €+ 1 graded by B_1 = {oz, a¢—1}, where 2 < p < q or
3<p=q
Proof of Theorem 1.3 Part (1) follows from Theorem 5.5, the list after it, and
Theorem 5.6.

Recall that a parabolic geometry modeled on a graded Lie algebra g with negative
part n_ is nonrigid if the Lie algebra cohomology H?(n_, g) has nonzero components
with nonnegative weights. K. Yamaguchiin [14, Prop. 5.5] listed all such simple graded
Lie algebras. Comparing that list with Part (1), we see that the only common cases are
Yamaguchi’s case (I.8) for £ = 4 and (I.10) for £ > 5, that is Ay graded by {or2, g1}
for £ > 4. This is our Part (2). U

Appendix A
Basis for R @ cs0(3, 5) in 16-dim Representation

First we introduce 16 x 16 real matrices F* , = (F* .4 ?), w,v =1,2,...,16,
o B = 1,2,...,16, with matrix elements F* ,, B — 8585’. Then, the matrices

spanning R @ c¢so0(3, 5) and standing in formula (4.6) are:
E\=F>3+ FO 4+ FP |+ F" 5,
Er=—F 10+ F n+F%,-F5,,
Es=F g+ F g+ F 11+ F8 n—FB | —F%, —FB5 ;- F1%,
Es=—F> |+ FO o+ FT 53— F8y —FP g+ F* g+ F15 | — F'° 5,
Es=—FSo+ F® +F'% —F'%;

Es=F 1 +F + FP g4 F1o,
E;=F s+ Frg+ F' 34+ F12
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Es=F* 13— F' 15— F%5s+F

Eg=—F' 3= F2 14— F 5 F 16+ F s+ FO¢+ F'1 7+ F'2g,
_ 1 2 3 4 9 10 11 12

Ew=—-F 5s+F ¢+ F 7—F g—F 3+F " 14+F 15—F" i,

Eyy=F' 4y —F - F ¢+ F'"y,
Ep=F'74+F g+ F 54+ F

Ez=F 1o+ F 14— F"'5—F%g,
Ey=—Fo9—F' 0+ F 3+ F u+F" 4+ F2, —FP s F'®g
Eis=F 1 —F' +F s —F8 ¢+ F'g— F? g+ F15 53— F'® 4,
Eig=F'9+ F® 35— F'2 | - F'5,
Eyp=—F* 1 —FC 5+ F034+F!",,

Eg=F' 11 +F? - F 5= F®1s—F 35— F'Y4 + F3;+F'"y,
Eg=F'3—F 4+ F 17— FOg+ F? 11 = F'O L + FB 15— F1% g,
Exy=—F' 13— F 1+ F 4+ F"g,

Eyy=F> 1 —F'3—FOs+ FS 74+ FO9— F? 1 = F* 5+ F'% 5,
En=F? g+ F* | +FO 3+ F8 s —F1O - F125 _pl5_plo
En=F'y—F 4~ F ¢+ F g+ F 10— F'' n— FP 4+ FP g,
Ey=—Flio—F n—F 1y—F s+ F 2+ F 4+ FP ¢+ Fy,
Eys=—Flo—F' = FO 1y = F s+ F 1+ F2 4+ F ¢+ F1 5,

Exe=F* 10+ FP 1+ F7 3+ F* = F'" = F'' 3 - FP3 5 — F'0g,
Ex=F3+ F',—F s —FS¢4+ F!' || + F12 5 — F13 53— F%y,
Exy=F? )+ F'y—F s —F 7+ F% 0+ F2 - F? 5-FP s,
Exy=F'| —F'y+ Fs—F s+ F 9g—F'2 p, + FP 13— F'%y,
Exp=F' |+ F2y+ F3 3+ F* 4+ FP o+ FO p+ F!' |1+ F'12 5.

Appendix B
Basis for R & cs0(1, 7) in 16-dim Representation
The matrices spanning R @ c¢so(1, 7) and standing in formula (4.12) are:

Ey=—(Fl o+ FO )+ (F294+F ) —(F 34+ FB3) — (F* 6+ F'© )
F(F 1+ FY ) = (FO s+ FR )+ (F 14+ F¥4 )+ (F8 p+ F12y),
Ey=—F' n+F' D+ (FP 3+ FP )+ (F o+ F3) — (F 4+ F'* )
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—(F 10+ FO5)+(FC o+ F2 ) = (F 16+ F'® ) + (F* 15+ FPy),
Es=(F'4+ F* )=~ (F? s+ F ) —(FP 6+ F03) + (FO 7+ F'5)
+(F? 124 F2 )= (F1° 16+ F'© 1) = (F!' g+ F¥ D+ (FB 5+ FY 13),

Es=—(F' 3+ FP )= (F* 1+ F )+ (F 10+ FO)+F s+ FPy)

+(FPo+F5) = (FC 16+ F'%6) = (F 12+ F2 )+ (F® 4+ Fy),
Es=(F'6+ F° )= (F? 7+ F )+ (F 4+ F*3) = (F s+ F*5)

+ (F? 14+ F% )= (F'0 s+ FY 1)+ (F!' 34+ F'2 1) —(F" 14+ F'° 13),
Ec=(F'7+F )+ (F* 6+ F2) — (FP g+ F83) — (F*s+ F° )

+ (F? 15+ FP )+ (F'0 4+ F" 1) = (F!' 164+ F'0 1) —(F 34+F" 1),

Er=(F's+F¥ )+ (F2 4+ F*) + (F 7+ F 3) + (F3 g+ F®5)

+ (F? 16+ F1O )+ (F1O p4+F2 1))+ (F!' s+ FB 1 )+(FP 4+ F" 13),
Es=—(F's—F )= (F*3-F ) —(F*7-F )+ (FCs— F%¢)

— (F? 13— FB )= (F'0 1 = F" 10) = (F'? 15— F'3 1)+ (F' 16— F1® ),
Eg=(F'16—F )+ (F*1n—F2) —(F 15— FP )+ (F* 10— F"4)

—(F 4= F%5) = (FC 3= FPB o) —(F 1 = F'" )+ (F¥ o — F?g),

Eng=(F'3—F )=~ (F?5s—F3>3) —(F*¢—F°4) — (F' s — F¥9)
+(F° 1= F"1 )= (F' 13— F" 10) = (F'? 4= F" )= (F" 1= F'%5),
Ejy=(F';s—FP D+ F 14— FY )+ (F 16— F3) +(F' 13- FP )
+(F = F2 )+ (F10—FO) +(FTg—F' )+ (F 11 — F'ly),
En=—(Fl gy =F¥ )+ (F?15s—FP )+ (F o —-F2 )4+ (F* 1 —F'1y
—(F7 16— F'%5) = (FCo—F )+ (F 10— F'%7) = (F® ;35— FBy),

Es=—(F' n—F2 )+ (F 1= FO) —(F u—F"3) - (F'9—F )
+(F s —FP5) = (FO 1 —F' )+ (F 15— FP )+ (F® 10— F'y),
Eyg=F' 4y —F* D+ F ;5= FP )+ (F - F2 )+ F 11— F'y)
F(F 16— FO )+ (FCo—F ¢)+ (F 10— F'" )+ (F 13— Fy),
Es=—(F'2—F )= (F5s—F3)+(F's—F )+ (F°7—F'¢)
— (F? 10=F"09)=(F"" 3= FP 1)+(F? 16— F'* 1)+ (F'* 15— F" 1),
Ejg=—(F' 13— F2 )= (F* 1= F'°) + (F 4 —F'"3) - (F'g—F° )
H(F s —FP )+ (FO 1 = Fl )+ (F 13— FP ) — (F® 10— F'0%),

Evg=F"16—F% ) —(F> - F2 )+ (F3 15— FP3) —(F* 10— F'%)
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—(F 4= FY ) = (FC 3= FP o)+ (F' 1 = F' )+ (F o — Fy),
Eig=—(F'1s—FP D4+ (F? 1y —F¥ )+ (F 16— F'3) — (F* 13- FB3 )

—(F 1= F2 )+ (F o= F) —(Flo— F* )+ (F* 11 — F'ly),
Ejg=(F';s—F5 )= (F2 4 —F" )+ (F} 1= F'%3) - (F* 3-FB )

—(F = F25)—(FC 10— FO )+ (FT o= F* )+ (F¥ 11 — F'ly),
Exy=—(F'3—F )= (F*5—F 2)—(F'¢—F°») + (F s — F®7)

—(F? 1= FM )= (F1% 3—FB 10) = (F2 4, —F"Y 1))+ (FY 1= F'® 15),
Ey=(F's—F )= (F*3—F ) —(F*7-F 45— (FC s — F%)

+(F ;3= FP o) —(F'0 [y =F'" 10)—(F'? 15— F" 1) —(F" 16— F'® 1),

Enp=—(F'2—F* )+ (Fs—F3) - (F's—F 2+ (FC 17— F' )
—(F? 10— F )+ (F" 3=FP | )= (F" 16— F'"® 1))+ (F" 15— F" 1),
Eypy=(F' 1¢—F')—(F? = F2 ) —(F ;5= FP3)—(F* 10— F'%)
+(F = FY )+ (FC 3= FP o) = (F' 1 = F' )+ (F o — F ),
Ep=(F' n—F2 )+ (F* 16— FO)+(F 14— F3) + (F'o—Fy)
+(F s = FP )+ (FO 11— F o)+ (FT 13— FR )+ (F¥ 10— F'%y),

Exs=—(F' u—FY)—(F 15— F )+ (F n-F23)+F 1 -F''y

F(F 16— F"%5) = (FCo—F¢) = (FT 10— F"9) + (F* 13- FPy),
Exe=—(F'o—F* )+ (F’s—F 3)+ (F's—F%) — (FC7 - F'¢)

—(F? 10=F0 )+ (F" 3= FP |)+(F'? 16— F'® 1)) —(F'* 15— F" 1),
Ey=—(F's—F )+ (F 3-F ) —(F'7-F )= (FC s - F*)

—(F? 13=FR o)+ (F'0 | = F'" 1) = (F'? 5= F" 15)—(F" 16— F'° 1),
Ex=—(F'3—F )= (Fs—F )+ (F'6¢—F°4») — (F s — F%7)

—(F? 1= F" o) —(F10 3= FB 1) +(F 4= F" )= (F" 15— F'® y5),

with Eag = J asin (4.11), and E3p = idj6x16.

A= d(xg— x— %((xl)z—i- G2+ 2+ (x4)2)>+ %(xzdx1 — xldx?+ x*dx3 - x3dx4)

d2 = d(x8— 27— (D24 @D P24 0H)) + H(a¥dr! — xldxd+ 2det - rdx?)

N
D=

A3 = d(xg— x0— %((xl)z—l— (x2)2+ (x3)2+ (x4)2)>+ %(x“dx1 —xldx*+ x3dx? - xzdx3)

A = d(x8 —x7 4 xb —l—xS) + x2dx! — xldx? 4+ x*dxd — x3dx4,
Ay = d()c8 +xT 4+ x0— xs) +x3dx! — xlda® + x2dx? — x4dx2,

A3 = d()c8 +x7 —x° +x5) + x*dx! — xldx® + 23dx? — x2ddx3.
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Appendix C

Here we present the explicit formulae for the CR symmetry generators of the SO(£ +
1, £ — 1) homogenous CR manifolds described in Theorem 3.1. The notation is as in
this theorem. Thus, in coordinates:

_ ij
and w = (w )1<i<j<e—1’

we have the CR submanifold MY ¢ CH¢=D/2 of Section 3.2 defined by
wh —w =77 -7 (1<i<j<e-n,
with
CRdimM = ¢ -1 and codimM = %(6_2)

As is known, when the CR structure is embedded, the real infinitesimal CR sym-
metries Y, as defined in (2.13), are determined by the holomorphic vector fields:

{—1 €-1
Y = Z Zi(z,w) i+ Y Y Wik(z, w) 3y,
k=1

j=1
whose (double) real part ¥ + Y is tangent to the (extrinsic) CR manifold:
hol(M) := {Y: Y +7 is tangentto M}.

Defining symmetries via this requirement is equivalent to the definition (2.13). In
particular, hol(M) is a real Lie algebra isomorphic to the Lie algebra of symmetries
gy as defined in (2.13).
Below, to save space, only the holomorphic part of the symmetry is written; to get
the real symmetry ¥ one has to add the term ‘+Y”, in the formulae below.
Attributing the weights:

Zi=1=:(Z", [di]:=—1=:[0] [w/*l:=2=[0/F], [d,0]:=—2=:[055]
there is a grading:
hollM)=g_2®Pg_1DPg0Pg1 Dgr=s50x({—1,£+1) with dim g_, =dim g,,

where
@ = {Y ebol(M): [Y]=1r}.
Dimensions are:
g-2 ‘ g-1 ‘ go ‘ g1 ‘ 92
Ll ‘ 2(-1) ‘ C—12+1 ‘ 2(¢—1) ‘ -2
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The (‘5—1)2# generators of g_» are:

-2

il = 0y

The (¢ — 1) + (£ — 1) generators of g_ are:

Yz’_'l = 0, + Z Z* Oyki — Z Z* Oyik

1<k<i i<k<l—1
1v; = vty - Y v+ Y i dm

1<k<i i<k<t—1

The W + -1+ W + 1 generators of g are:

Yi(} =7 9, + Z wk Oyki — Z wik Oyki + Z w'k 0y jk

1<k<i i<k<j j<k<t—1
Yl-? =2z + Z whi Oypki + Z wik 0yyik
1<k<i i<k<t—1
0 . i ki ki ik
Y, = 29, + Z wt By — Z w3,k + Z w'™ 8k,
1<k<y j<k<i i<k<l—1

together with the rotation:
R:=v=1z' 1+ + vz o

The sum of the Yi? equals the dilation:

D = Z o+ Z W™ Y o

1<k<e—1 1<k<m<e—1
The (¢ — 1) + (¢ — 1) generators of g; are:

Yzlizi - Z (& —w) o+ 20, + Z (@ &+ w'*) o
1<k<i i<k<t-1

+ Z w9+ Z 2 wi™im

1<k<i i<m<l—1
* —w

+ Z R awkm + Z

1<k<m<i , 1<k<i

i<m<l—1
+ 25 wik
7m wim

i<k<m<l—1

ki i

7 wim

8wkm

i

awkm 5

(1<i<j<e—1).

a<i<e-0,

a<i<e-,

(A<i<j<e-D,

a<ise-D,

A<j<i<e-1,

IYzliZ,- - Z (ﬁzi Zk_l_ﬁwki) 8Zk+ﬁzizi i+ Z (ﬁzi Zk_ﬁwik) 0.k

1<k<i i<k<t—1
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— U}

+Z J=17 wk’Bwk,—i- Z =iz w””aw,m

km
m oy w
1<k<i i<m<l—1 1<k<m<i
+ Z v wim wkm + moim whkm «
1<k<i i<k<m<Ll—1
i<m<l—1
—1)(—2 cq - .
The % generators of g, are, withi < j:
= 42w o+ &l gzl w9+ & —wil g
wilwil /<j 7/ wki z g zJ 7/ —wik| "z
1<k<i i<k<j j<k<t—1
+ Z wh ki A ki + Z wh wki ki + Z w w'™ 3im + w w9,
1<k<i 1<k<i i<m<j
+ Z w w'™ dyim + Z wi wki ki + Z w" w!™ 3y, jm
j<m<L—1 i<k<j j<m<L—1
ki k) ki }\j k
w w w w
+ Z ‘—w’”[ o Oykm + Z ‘ i Oykm + Z i w/”’ 0yyykm
1<k<m<i 1<k<i 1<k<i
= i<m<] j<m<e—1
wik ki ik ki
+ Z ‘w,m —wmj wkm + Z ‘u)vm w‘/.m awkm
i<k<m<j i<k<j
Jjem<L—1
U}ik U}jk
+ wim wim aw"'m ‘
Jj<k<m<e—1
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