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Abstract
Wenoticed a discrepancy between Élie Cartan and Sigurdur Helgason about the lowest
possible dimension in which the simple exceptional Lie group E8 can be realized.
This raised the question about the lowest dimensions in which various real forms of
the exceptional groups E� can be realized. Cartan claims that E6 can be realized in
dimension 16. However Cartan refers to the complex groupE6, or its split real form EI .
His claim is also valid in the case of the real formdenoted by EIV .Wefind however that
the real forms EI I and EI I I ofE6 cannot be realized in dimension16 à laCartan. In this
paper we realize them in dimension 24 as groups of CR automorphisms of certain CR
structures of higher codimension. As a byproduct of these two realizations, we provide
a full list of CR structures (M, H , J ) and their CR embeddings in an appropriate C

N ,
which satisfy the following conditions:

• they have real codimension k > 1,
• the real vector distribution H proper for the action of the complex structure J is
such that [H , H ] + H = TM ,

• the local group GJ of CR automorphisms of the structure (M, H , J ) is simple,
acts transitively on M and has isotropy P being a parabolic subgroup in GJ ,

• the local symmetry group G of the vector distribution H on M coincides with the
group GJ of CR automorphisms of (M, H , J ).

Because all the CR structures from our list satisfy the last property we call them
accidental. Our CR structures of higher codimension with the exceptional symmetries
EI I and EI I I are particular entries in this list.
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1 Introduction

In theGerman version of his PhD thesis [2] Élie Cartan gives a realization of the simple
exceptionalLie groupF4 as a symmetry groupof a certain rank eight vector distribution
in dimension fifteen. Sigurdur Helgason in [4] reports on this fact as follows:

Cartan represented F4 (...) by the Pfaffian system in R
15 (...). Similar results for

E6 in R
16, E7 in R

27 and E8 in R
29 are indicated in [2]. Unfortunately, detailed

proofs of these remarkable representations of the exceptional groups do not seem
to be available.

Nowadays the information invoked by Helgason is in principle understood in the
context of parabolic geometries [3]. We used the phrase ‘it is understood in principle’
because:

• Cartan’s paper has amisprint, and his R
29 as a space for a realization of E8, which

is written in the third sentence before the end of his paper, should beR
57; Helgason

in [4] copied this misprint without confronting it with the last sentence of Cartan’s
paper1 which gives the correct space R

57;
• Helgason’s use of the word ‘similar’ in the phrase Similar results for E6 in

R
16[...]are indicated in [2] is not particularly appropriate, as it will be clear in

the sequel;
• more importantly, the explicit realizations of E6, E7 and E8 really similar to Car-
tan’s realization of F4 are still missing.

Looking at Cartan’s description of the realization ofF4 inR
15 given at the bottom of

page 418 and the top of page 419 in [2], one sees that Cartan speaks about a realization
of the split real form2 FI of the complex simple exceptional Lie group F4 in R

15 as
a symmetry group of a rank 8-distribution H in R

15 defined as the annihilator of the
following 1-forms

λi j = dui j + xidx j + ykdyl ,

λ7 = du7 +
4∑

i=1

yidxi .

Here ui j with 1 ≤ i < j ≤ 4, u7, xi with i = 1, 2, 3, 4, and yi with i = 1, 2, 3, 4,
are coordinates in R

15, and indices k, l in the first formula above are such that the
quadruple of indices (i jkl), with i < j , is an even permutation of numbers 1, 2, 3, 4.

1 Ich habe eine einfache G78 im R16 und eine G133 im R27 gefunden. Die G78 enthält die 16 infinites-
imalen Transformationen nullter Ordnung, p1, . . . , p16, 16 homogene Transformationen erster Ordnung
und 16 homogene Transformationen zweiter Ordnung. Die G133 enthält die 27 infinitesimalen Transfor-
mationen nullter Ordnung, p1, . . . , p27, 79 homogene Transformationen erster Ordnung und 27 homogene
Transformationen zweiter Ordnung.
Endlich habe ich eine einfache 248-gliedrige Berührungstransformationsgruppe G248 im R29 gefunden.
Diese drei Gruppe sind ihre eigenen dualistischen Gruppen.
Die fünf speciellen einfachen Gruppen mit 14 bez. 52, 78, 123, 248 Parametern können in weniger als 5
bez. 15, 16, 27, 57 Veränderlichen nicht existiren.
2 In this paper we use the same notation for the real forms of the simple exceptional Lie groups as the
notation presented in Table B.4 on pages 612-615 of [3].



Parabolic CR Geometries

Thus, Cartan is very explicit with providing a realization of the split real form FI

of the complex simple exceptional Lie group F4:
It is the local symmetry group of a distribution

H = {�(TR
15) � X : X−| λi j = X−| λ7 = 0, ∀ 1 ≤ i < j ≤ 4},

i.e. it is the local transformation group on R
15 whose Lie algebra is spanned by all

real vector fields Y on R
15 satisfying

(LYλi j
) ∧ λ12 ∧ λ13 ∧ λ14 ∧ λ23 ∧ λ24 ∧ λ34 ∧ λ7 = 0, 1 ≤ i < j ≤ 4,

(LYλ7
) ∧ λ12 ∧ λ13 ∧ λ14 ∧ λ23 ∧ λ24 ∧ λ34 ∧ λ7 = 0.

Cartan’s detailed description of the F4 realization, is in contrast with his discussion
of realizations of real forms of E6, E7 and E8 in the respective R

16, R
27 and R

57. In
these cases Cartan only specifies the commutation relations between generators of the
corresponding real Lie algebras, and observes, that in each of theE� cases, � = 6, 7, 8,
they include real subalgebras of respective real dimensions 62, 106, 191. This only
means that there are E�-homogeneous spaces of dimension 16, 27 and 57 for the
respective � = 6, 7, 8. That is all that Cartan says! In particular, he says nothing about
that what are the geometric structures on these spaces which are E� homogeneous.
And a closer look at his 62, 106 and 191 dimensional subalgebras of these E�s shows
that the corresponding geometric structures are very different from the structure of the
rank 8 bracket generating distribution in dimension 15, which realizes the real form
FI of F4 as its local symmetry.

In short: Cartan’s geometry with symmetry F4 in dimension 15, viewed as a
parabolic geometry, is two-step graded, whereas Cartan’s homogeneous spaces with
symmetryE6 in dimension 16, with symmetryE7 in dimension 27, andwith symmetry
E8 in dimension 57, viewed as parabolic geometries, are one-step graded. In particular,
his geometry in dimension 16 with symmetry E6 is an RSpin(5, 5) geometry.

If somebody is interested in the details of these F4, E6, E7 and E8 realizations,
we direct her to a paper [9]. What is important for our current paper is that, as far
as the E6 realization in dimension 16 is concerned, Cartan in [2] realized one par-
ticular real form of E6 only, namely the split real form EI , with the Satake diagram

.
The parabolic geometry he considered was of type (EI , RSpin(5, 5)), which cor-

responds to the following crossing

on this diagram [3]. Cartan in the last sentence of [2] writes:

Die fünf specielle einfachen Gruppen mit 14 bez. 52, 78, 133, 248 Parametern
können in weniger als 5 bez. 15, 16, 27, 57 Veränderlichen nich existiren3.

3 In this statement there is another misprint of [2], since the correct number 133 of the dimension of E7 is
erroneously printed as 123.
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So he claims, in particular, that the lowest dimension in which the group E6 is realized
is 16. This is however true only if he does not care aboutwhich real form of E6 hewants
to realize. If he wanted to realize the real form EI I or EI I I of E6 in dimension 16, his
method of realization of EI would notwork. This is quite visible in the Satake diagrams

,

of EI I and EI I I : Because the first and the last nodes of these diagrams are complex
conjugated, when crossing one of them, one has to cross the conjugated one as well;
therefore no 62-dimensional parabolic subgroup corresponding to one cross exists in
these groups. If we want to make a realization of EI I and EI I I in the way Cartan
did it for EI we should cross the lateral root in the Satake diagrams of these groups.
This results in the automatic cross on the opposite lateral root, which corresponds
to a choice of a parabolic subgroup of 54 dimensions, and giving the realization in
dimension 24. We display this result in the following corollary,

Corollary 1.1 The real forms EI I and EI I I of the simple exceptional Lie groupE6 can
be realized in dimension 24. The realizations are given by the groups EI I and EI I I

being automorphisms groups of rank 16 bracket generating distributions with growth
vectors (16, 24) defined in our respective Corollaries 1.4 and 1.5. These realizations
happen to be the same as EI I and EI I I being groups of CR automorphisms of the
accidental CR structures described in our respective Theorems 1.2 and 1.3.

These respective realizations of EI I and EI I I in R
24 are very much in the spirit of

Cartan’s realization of the real form FI of F4 as a symmetry of a bracket generating
distribution. As explained below in Corollaries 1.4 and 1.5, the groups EI I and EI I I

can be realized as symmetries of certain rank 16 bracket generating distributions
in dimension 24, and the realizations of these groups as symmetries of parabolic
geometries are 2-step graded. These groups also accidentally turn out to be symmetries
of certain CR geometries of higher codimension naturally associated with these 2-
step rank 16 distributions. As such, they were our main motivation for writing this
paper. More specifically, the E6 realizations as symmetries of CR structures of higher
codimension as presented in our Theorems 1.2, 1.3, are examples of a positive answer
to the following problem:

Consider a parabolic geometry totally defined in terms of an even-rank real distri-
bution H on a real manifold M . Is it possible that H admits an integrable complex
structure J compatible with this geometry? Compatibility here means that the geom-
etry of H itself defines a unique complex structure J on H in a canonical way; in
particular that means that all the local differential invariants of H on M coincide with
all the local differential invariants of the structure (H , J ) on M?

This problem arose during our discussions with Katja Sagerschnig, and in this
paper we answer it in the affirmative in the case of parabolic geometries with 2-step
gradings. The full list of parabolic geometries having these properties is contained in
Theorems 1.2, 1.3, 3.1, 3.3 and 3.5. The relevant maximal groups G of symmetries
are respectively EI I , EI I I , SO(� − 1, � + 1) with � ≥ 4, SO∗(4m + 2) with m ≥ 2
and SU(t + s, r + t + s) with (r , t) �= 0, r ≥ 0, t ≥ 0, s ≥ 2.

In all these five cases we describe a CR structure (M, H , J ) corresponding to
the flat model of the corresponding parabolic geometry. We do it by finding explicit
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embeddings of each of these CR structures in an appropriate C
N . We state their CR

dimension n and CR codimension k. Forgetting about the complex structure J on
the CR distribution H we define H totally in real terms, and due to our setting, we
may say that the symmetry of the distribution itself is the same as the group of CR
automorphisms of (M, H , J ).

We also compared our list of 2-step parabolic ‘accidental CR’ geometries with
K. Yamaguchi’s list [14] of nonrigid parabolic geometries. It turns out (see our
Theorem 5.8 in the last section of this article) that the only nonrigid geometries on our
list are those with the group G being any of the SU (t + s, r + t + s), s ≥ 2, (r , t) �= 0
graded by the second and second last roots. We stress that these nonrigid parabolic
geometries correspond to CR manifolds of higher codimension (i.e. they are not of
hypersurface type).

Our results are in conformation with the classification of semisimple Levi-Tanaka
algebras and their corresponding CR manifolds by Medori and Nacinovich [7, 8]. We
compare our approach with theirs in Section 5. Our techniques are different.

Returning to our list of 2-step parabolic geometries with an ‘accidental’ CR struc-
ture, we find on it very interesting geometric realizations of simple Lie groups
SU(p, q), SO(� − 1, � + 1), SO∗(4m + 2) and, in particular, the above mentioned
two real forms EI I and EI I I of the exceptional simple complex Lie group E6. We
describe them in our Theorems 1.2, 1.3, 3.1, 3.3 and 3.5. Here, in this introduction, as
two highlights, we focus on the two E6-homogeneous examples.

The case of EI I symmetry
Consider C

16 with holomorphic coordinates (w1, w2, . . . , w8, z1, z2, . . . , z8), and its
subset M24

EI I
⊂ C

16 defined by:

M24
EI I

=
{

C
16 � (w1, w2, . . . , w8, z1, z2, . . . z8) s.t.


w1 = Re
(
z1 z4 + z2 z3

)


w2 = Re
(
z1 z6 + z2 z5

)


w3 = 
 (
z1 z7 + z5 z3

)


w4 = 
 (
z2 z7 + z3 z6 − z5 z4 − z8 z1

)


w5 = Re
(
z2 z7 + z3 z6 − z5 z4 − z8 z1

)


w6 = 
 (
z2 z8 + z6 z4

)


w7 = Re
(
z3 z8 + z4 z7

)


w8 = Re
(
z5 z8 + z6 z7

) }

.

We have the following theorem.

Theorem 1.2 The set M24
EI I

⊂ C
16 is a real 24-dimensional embedded CR manifold,

acquiring the CR structure of CR dimension n = 8 and CR codimension k = 8 from
the ambient complex space C

16. Its local group of CR automorphisms is isomorphic
to the real simple exceptional Lie group EI I with the Lie algebra having the Satake
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diagram . It is locally CR equivalent to the flat model EI I /P(2) of a 24-

dimensional parabolic geometry of type (EI I , P(2)), where the real parabolic subgroup
P(2) in EI I is determined by the following crossing on the corresponding e6 Satake

diagram: .

The case of EI I I symmetry
Consider C

16 with holomorphic coordinates (w1, w2, . . . , w8, z1, z2, . . . , z8), and its
subset M24

EI I I
⊂ C

16 defined by:

M24
EI I I

=
{

C
16 � (w1, w2, . . . , w8, z1, z2, . . . z8) s.t.

Im(w1) = Re(z1 z̄8 + z2 z̄4 + z3 z̄7 + z5 z̄6)

Im(w2) = Re(z1 z̄4 − z2 z̄8 − z3 z̄6 + z5 z̄7)

Im(w3) = Re(z1 z̄7 + z2 z̄6 − z3 z̄8 − z4 z̄5)

Im(w4) = Re
(
i(z1 z̄2 + z3 z̄5 + z4 z̄8 + z6 z̄7)

)

Im(w5) = Re(z1 z̄6 − z2 z̄7 + z3 z̄4 − z5 z̄8)

Im(w6) = Re
(
i(z1 z̄5 + z2 z̄3 − z4 z̄7 + z6 z̄8)

)

Im(w7) = Re
(
i(z1 z̄3 − z2 z̄5 + z4 z̄6 + z7 z̄8)

)

Im(w8) = |z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 + |z6|2 + |z7|2 + |z8|2
}

.

We have the following theorem.

Theorem 1.3 The set M24
EI I I

⊂ C
16 is a real 24-dimensional embedded CR manifold,

acquiring the CR structure of CR dimension n = 8 and CR codimension k = 8 from
the ambient complex space C

16. Its local group of CR automorphisms is isomorphic
to the real simple exceptional Lie group EI I I with the Lie algebra having the Satake

diagram . It is locally CR equivalent to the flat model EI I I /P(1) of a

24-dimensional parabolic geometry of type (EI I I , P(1)), where the real parabolic
subgroup P(1) in EI I I is determined by the following crossing on the corresponding

e6 Satake diagram: .

A CR structure on a manifold M is a triple (M, H , J ) where H is rank � = 2n
vector distribution on M and J : H → H , such that J 2 = −idH , is an integrable
complex structure on H . CR structures have their invariants, one of them being their
symmetry group GJ , also called the group of CR automorphisms. If this group acts
transitively on M the CR structure (M, H , J ) is called homogeneous. A CR structure
(M, H , J )may be viewed as an additional structure, a decoration, on the distribution
structure (M, H), i.e. a manifold equipped M with a rank � = 2n vector distribution.
The distribution structures (M, H) also have invariants, also allowing for the notion
of their symmetry group G, and their homogeneity.
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In this paper we focus on CR structures (M, H , J ) which are accidental. These
are homogeneous CR structures (M, H , J ) for which the undecorated distribution
structure (M, H) is also homogeneous and the corresponding symmetry groups GJ

and G coincide. It follows that the embedded CR structures given in Theorems 1.2
and 1.3 are accidental (see Section 2.4 and Definition 2.8 for more details). Because
of their accidentality, the CR structures involved in Theorems 1.2 and 1.3 provide also
nice realizations of the real exceptional simple Lie groups EI I and EI I I in purely real
terms. Actually these two theorems imply the following two corollaries. In them these
groups are identified as transformation groups of symmetries of two particular vector
distributions near the origin of R

24.

Corollary 1.4 Consider a 24-dimensional manifold M24
I I locally parametrized by real

coordinates (u1, u2, . . . , u8, x1, x2, . . . , x8, y1, y2, . . . , y8) and the Pfaffian system
of 1-forms [λ1, λ2, . . . , λ8] on M24

I I given by

λ1 = du1+ 1
2

(
x1dy4+ x2dy3+ x3dy2+ x4dy1− y1dx4− y2dx3− y3dx2− y4dx1

)

λ2 = du2+ 1
2

(
x1dy6+ x2dy5+ x5dy2+ x6dy1− y1dx6− y2dx5− y5dx2− y6dx1

)

λ3 = du3+ 1
2

(
x1dx7− x3dx5+ x5dx3− x7dx1+ y1dy7− y3dy5+ y5dy3− y7dy1

)

λ4 = du4+ 1
2

(
x1dx8+ x2dx7+ x3dx6+ x4dx5− x5dx4− x6dx3− x7dx2− x8dx1

+ y1dy8+ y2dy7+ y3dy6+ y4dy5− y5dy4− y6dy3− y7dy2− y8dy1
)

λ5 = du5+ 1
2

(
y1dx8− y2dx7− y3dx6+ y4dx5+ y5dx4− y6dx3− y7dx2+ y8dx1

− x1dy8+ x2dy7+ x3dy6− x4dy5− x5dy4+ x6dy3+ x7dy2− x8dy1
)

λ6 = du6+ 1
2

(
x2dx8− x4dx6+ x6dx4− x8dx2+ y2dy8− y4dy6+ y6dy4− y8dy2

)

λ7 = du7+ 1
2

(
x3dy8+ x4dy7+ x7dy4+ x8dy3− y3dx8− y4dx7− y7dx4− y8dx3

)

λ8 = du8+ 1
2

(
x5dy8+ x6dy7+ x7dy6+ x8dy5−y5dx8−y6dx7−y7dx6−y8dx5

)
.

Then the rank 16 distribution H defined on M24
I I via

H = {TM24
I I � X s.t. X−|λi = 0, ∀i = 1, 2, . . . , 8}

has the real exceptional simple Lie group EI I as its group of symmetries.

We also have:

Corollary 1.5 Consider a 24-dimensional manifold M24
I I locally parametrized by real

coordinates (u1, u2, . . . , u8, x1, x2, . . . , x8, y1, y2, . . . , y8) and the Pfaffian system
of 1-forms [λ1, λ2, . . . , λ8] on M24

I I given by

λ1 = du1 + x1dy8 + x2dy4 + x3dy7 + x4dy2 + x5dy6 + x6dy5 + x7dy3 + x8dy1

λ2 = du2 + x1dy4 + y8dx2 + y6dx3 + x4dy1 + x5dy7 + y3dx6 + x7dy5 + y2dx8

λ3 = du3 + x1dy7 + x2dy6 + y8dx3 + y5dx4 + y4dx5 + x6dy2 + x7dy1 + y3dx8

λ4 = du4 + x2dx1 + x5dx3 + x8dx4 + x7dx6 + y2dy1 + y5dy3 + y8dy4 + y7dy6
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λ5 = du5 + x1dy6 + y7dx2 + x3dy4 + x4dy3 + y8dx5 + x6dy1 + y2dx7 + y5dx8

λ6 = du6 + x5dx1 + x3dx2 + x4dx7 + x8dx6 + y5dy1 + y3dy2 + y4dy7 + y8dy6

λ7 = du7 + x3dx1 + x2dx5 + x6dx4 + x8dx7 + y3dy1 + y2dy5 + y6dy4 + y8dy7

λ8 = du8 + x1dy1 + x2dy2 + x3dy3 + x4dy4 + x5dy5 + x6dy6 + x7dy7 + x8dy8.

Then the rank 16 distribution H defined on M24
I I I via

H = {TM24
I I I � X s.t. X−|λi = 0, ∀i = 1, 2, . . . , 8}

has the real exceptional simple Lie group EI I I as its group of symmetries.

We close this Introduction to focus reader’s attention on the questions we address
in this paper:

(1) Can a homogeneous bracket generating real distribution H , of rank � = 2n on a
real manifold M = G/P , admit an integrable complex structure J on H , such that
the associated CR structure (M, H , J ) on M is homogeneous, having the same
group G of CR automorphisms as the group of automorphisms of the naked distri-
bution H? According to our terminology, which was briefly introduced between
Theorem 1.3 and Corollary 1.4, this question asks if there exist accidental CR
structures?

(2) There is a large class of homogeneous bracket generating distributions H which
define flat models of various parabolic geometries. In this context, the above
question can be restricted to: do there exist accidental parabolic CR structures?

(3) The most geometrically studied CR structures (M, H , J ) are the hypersurface
type CR structures with nondegenerate Levi form. They are examples of parabolic
geometries. All these are not accidental, since their distributions H are contact
distributions having infinite dimensional group of automorphisms, whereas their
groups of CR automorphisms can not be larger than finite dimensional simple Lie
groups SU(p, q).

(4) There are also known nontrivial classes of non-accidental CR structures asso-
ciated with other parabolic geometries than those of hypersurface type Levi-
nondegenerate CRs. For example one can take the exceptional simpleG2 parabolic
geometry associated with a generic rank 2 distribution H on a five manifold M .
Here, at least locally one can always find J on H so that the real codimension three
and complex dimension one CR structure (M, H , J ) has lower symmetry than the
14-dimensional group G2. Actually it is well known [9] that on the G2 flat rank
2 distribution H in dimension 5, one can put a CR structure J with group of CR
automorphisms of dimension no larger than 7. Such examples are however easy
to make, because in them the distribution H has rank 2, i.e. the only requirement
J has to fulfill is the algebraic constraint J 2 = −idH , and one does not need to
worry about the integrability of J in H .

(5) When n > 1, given a rank � = 2n distribution on M , to put J on H , apart from
the algebraic constraint J 2 = −idH , one needs to impose nonlinear differential
constraints on J , which may be incompatible with H . One therefore may think,
that if the parabolic geometry associated with rank � = 2n distribution H admits
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an integrable complex structure J in H , then it must be accidental. This brings
yet another question: is it true that if a flat distribution H of rank � = 2n ≥ 4
defining a parabolic geometry of type (G, P) on a manifold M = G/P admits
an integrable J , then the associated CR structure (M, H , J ) is accidental?

We believe that our explanations and examples included in this paper clarify all the
issues enumerated above.

2 Basic Notions andMotivation

2.1 Distribution Structure on aManifold

This is a pair (M, H), where M is a smooth manifold, and H is a vector distribution
on M . We recall that a rank � vector distribution H on an m-dimensional smooth
manifold M , or an �-distribution H on M , for short, is a smooth assignment M �
p → Hp ⊂ TpM of an �-dimensional vector subspace Hp of TpM , to each point
p ∈ M . In the spirit of Felix Klein, one associates a geometry with such objects
by saying that two �-distributions H1 and H2 on M are (locally) equivalent if there
exists a (local) diffeomorphism φ : M → M on M such that φ∗H1 = H2. It follows,
that if the distributions are not integrable, i.e. if they do not satisfy the Frobenius
condition [H , H ] ⊂ H , then starting from dimension m = 5 of M , there exist locally
nonequivalent �-distributions. From now on we will only consider nonintegrable �-
distributions on M .

Let us introduce the simplest local invariant of an �-distribution H , namely its
growth vector. It is determined by considering a sequence of distributions onM defined
inductively as follows: D−1 := H , D−i−1 := [D−1, D−i ] + D−i for i ∈ N. The
growth vector of H is related to the ranks of these distributions. Explicitly, it is the
nondecreasing sequence of integers (r−1, r−2, . . . , r−i , . . . ), with each r−i being the
rank of the corresponding distribution D−i , r−i = rank(D−i ). In particular r−1 = �.
In general the growth vector can vary from point to point on M , but in this paper,
we will only consider distribution structures (M, H) with (locally) constant growth
vector.We furthermention that the distribution H from the structure (M, H) is bracket
generating if r−s = m = dim(M) for some s ∈ N. In the case of bracket generating
�-distributions with constant growth vector, to give more information about them,
one includes the growth vector (�, r−2, . . . ,m) in their name. One therefore has such
names as e.g. a (2, 3, 5)-distribution, which denotes a rank 2 distribution in dimension
5, with a constant growth vector (2, 3, 5).

Another simple (local) invariant of an �-distribution H on M is its (local) group of
automorphisms G. This consists of those (local) diffeomorphisms φ : M → M , called
symmetries, which preserve H , i.e. are such that φ∗H = H . The group multiplication
in G is the composition of the symmetries as diffeomorphisms. For short the (local)
group G of automorphisms of (M, H) is called the group of (local) symmetries of the
rank �-distribution H . If a (local) group G of symmetries of H acts transitively on
(M, H), then the �-distribution H is called (locally) homogeneous. In such case, the
manifold M is locally diffeomorphic to M = G/P , where P is the isotropy subgroup
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of G, which preserves Hp at a point p ∈ M . It is known that there exist locally (and
globally) nonequivalent homogeneous �-distributions on manifolds. From the local
point of view, and in particular in the homogeneous case, to see that the group G of
symmetries of two distributions are different, it is enough to consider the algebraic
structure of the space of vector fields Y on M such that [Y , H ] ⊂ H . These are called
infinitesimal symmetries of H and form a Lie algebra g of symmetries of the pair
(M, H). The Lie algebra g is obviously a local invariant of an �-distribution H on M .
It is the Lie algebra of G.

One can locally define an �-distribution H on M by distinguishing a rank (m − �)

subbundle H⊥ ⊂ T∗M of the cotangent bundle T∗M and saying that H consists of
all vector fields X on M which annihilate H⊥, H := {X ∈ TM | X−| H⊥ = 0}.
Example 2.1 As an example of a distribution defined in this way let us consider the
following 4-distribution H in dimension m = 7.

Let M = R
7 with Cartesian coordinates (x1, x2, x3, x4, x5, x6, x7) and let

H⊥ = Span(λ1, λ2, λ3),

with the 1-forms λi , i = 1, 2, 3, being defined by:

λ1 = dx5 + x1dx4 + x2dx3,

λ2 = dx6 + x3dx4 + x1dx2,

λ3 = dx7 + x3dx1 + x2dx4.

(2.1)

The corresponding 4-distribution H is

H = Span(X1, X2, X3, X4), (2.2)

with the four vector fields Xi , i = 1, 2, 3, 4 annihilating H⊥, given by

X1 = ∂1 − x3∂7,

X2 = ∂2 − x1∂6,

X3 = ∂3 − x2∂5,

X4 = ∂4 − x1∂5 − x3∂6 − x2∂7.

(2.3)

One checks, that the 4-distribution H is not integrable, actually

[H , H ] + H = TM,

because
[X3, X2] = [X4, X1] = ∂5,

[X2, X1] = [X4, X3] = ∂6,

[X1, X3] = [X4, X2] = ∂7.

(2.4)
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Thus, the distribution structure (M, H) is enforced on M = R
7 by a (4, 7) distri-

bution H .
Moreover, after solving the symmetry equations

[Y , Xi ] ∧ X1 ∧ X2 ∧ X3 ∧ X4 = 0, for i = 1, 2, 3, 4,

one finds that the Lie algebra g of infinitesimal symmetries of H is isomorphic to the
simple Lie algebra sp(1, 2). Thus this distribution has a 21 dimensional Lie algebra
of symmetries. In particular, as can be easily checked, vector fields:

Y10 = x3∂1 + x4∂2 − x1∂3 − x2∂4 + (x1x2 − x3x4)∂5

+ 1
2

(
(x1)2 + (x2)2 − (x3)2 − (x4)2

)
∂7,

Y12 = ∂4

are infinitesimal symetries of (M, H).
It follows [3] that the distribution structure given by a pair (M = R

7, H), as above,
is locally diffeomorphic to the flat model M = Sp(1, 2)/P of a parabolic geometry
of type (Sp(1, 2), P), where P is a parabolic subgroup in Sp(1, 2) related to the
following crossed Satake Diagram: . It gives an example of a nonintegrable,
bracket generating, homogeneous distribution on a manifold with a simple symmetry
group G (in this case G = Sp(1, 2)).

2.2 Tanaka Prolongation and Symmetry

We only provide the minimal information, as regards our needs, about the Tanaka
theory, refering a reader interested in details to the original paper [13].

In the context of distributions, the Tanaka theory is mainly applied to the case
when a vector distribution H on a real N -dimensional manifold MN defines a p-step
filtration

D−1 ⊂ D−2 ⊂ · · · ⊂ D−p = TMN (2.5)

of the tangent bundle of MN , with the filtered components D−k defined by:

D−1 = H , and D−k−1 = [D−1,D−k] + D−k ∀k < p, k, p ∈ N. (2.6)

This defines a graded vector space

n- = n-p ⊕ n-(p-1) ⊕ · · · ⊕ n-1

via
n-k = D−k/D−k+1,

which, at every point x ∈ MN defines a p-step nilpotent Lie algebra (n-(x), [·, ·]x )
with the Lie bracket [·, ·]x induced by the Lie bracket of vector fields on MN . The Lie
algebra (n-(x), [·, ·]x ) is called the symbol algebra (or the nilpotent approximation) of
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the distribution H . It serves as a local algebraic differential invariant of the distribution
H around x ∈ MN .

Let us, from now on, restrict to the case of distributions whose symbol algebras
n-(x) are constant over MN , i.e such that n-(x) = n- for all x ∈ MN . In particular,
homogeneous distributions are examples of those.

Every distribution with a constant symbol, has therefore a unique p-step nilpotent
Lie algebra (n-, [·, ·]) associated to it. This characterizes it algebraically.

Although (even locally) there exist nonequivalent distributions with the same con-
stant symbol, they are all sort of a perturbation of, or better to say, they are modelled
on a standard distribution with this symbol. This standard distribution is called the flat
model for distributions with a given symbol n-. It is naturally defined on a manifold
Nil, which is the Lie group of the symbol algebra n-, as follows:

A gradation n- = n-p ⊕ n-(p-1) ⊕ · · · ⊕ n-1 in the symbol algebra n-, is mirrored in
the Lie algebra

nNil
- = nNil

-p ⊕ nNil
-(p-1) ⊕ · · · ⊕ nNil

-1

of the left invariant vector fields on Nil, which is isomorphic ton-. Then this defines the
filtration in Nil, with the filtered componentsD−k spanned over all smooth functions
f ∈ F(Nil) on Nil, by those left invariant vector fields on Nil, which belong to
nNil
-k ⊕ nNil

-k+1 ⊕ · · · ⊕ nNil
-1 , namely

D−k = SpanF(Nil)(n
Nil
-k ⊕ nNil

-k+1 ⊕ · · · ⊕ nNil
-1 ).

It follows that the first step H = D−1 in this filtration is the distribution on Nil with
the symbol n-. This serves as a flat model for all the distributions with the constant
symbol n-.

The symbol algebra n- of the distribution H is, as its alternative name suggests, its
algebraic approximation. In particular, it captures information about the local proper-
ties of the maximal possible group of automorphisms of all distributions with a given
constant symbol n-.

It is not a surprise that the maximal symmetry for all distributions with a constant
symbol algebra n-, is realized for the natural distribution structure (Nil, H = D−1) on
the nilpotent Lie group Nil associated with n-. Moreover, the algebraic structure of the
maximal groupof automorphisms of distributions H with a constant symboln-, namely
the maximal Lie algebra of the automorphisms aut(H) for all these distributions
H , is obtained from the symbol n-, by an algebraic procedure called the Tanaka
prolongation. This goes as follows:

We start with a symbol algebra n-, which is a p-step nilpotent Lie algebra, i.e. a
real Lie algebra n-, which is p-graded in the sense that it is a direct sum

n- = n-p ⊕ n-(p-1) ⊕ · · · ⊕ n-1

of p vector spaces n- j , j = 1, 2, . . . , p, and that it is equipped with a Lie bracket
[·, ·], such that

[n-i , n- j ] ⊂
{
n-(i+ j) if 2 ≤ i + j ≤ p

{0} if p < i + j
.
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The Tanaka prolongation of n- is a graded Lie algebra given by a direct sum

gT (n-) = n- ⊕ n0 ⊕ n1 ⊕ · · · ⊕ n j ⊕ · · · , (2.7)

with
nk =

{⊕

j<0

nk+ j ⊗ n∗
j � A s.t. A[X ,Y ] = [AX ,Y ] + [X , AY ]

}
(2.8)

for each k ≥ 0. In particular, n0 is the Lie algebra of all derivations of n- preserving
its direct-sum-of-vector-spaces-n- j structure. Setting [A, X ] = AX for all A ∈ nk
with k ≥ 0 and for all X ∈ n- makes the condition in (2.8) into the Jacobi identity.
Moreover, if A ∈ nk and B ∈ nl , k, l ≥ 0, then their commutator [A, B] ∈ nk+l is
defined on elements X ∈ n- inductively, according to the Jacobi identity. By this we
mean that it should satisfy

[A, B]X = [A, BX ] − [B, AX ],

which is sufficient enough to define [A, B]. The Tanaka prolongation gT (n-) is
uniquely determined by the nilpotent Lie algebra n-. It may happen that, given n-,
the sum in its Tanaka prolongation (2.7) is infinite. There are however n- for which
the Tanaka prolongation is finite. In particular, there are known situations when the
Tanaka prolongation

g = gT (g-)

of the p-step nilpotent part
g- = g-p ⊕ · · · ⊕ g-1

is symmetric, in the sense

gT (g-) = g-p ⊕ · · · ⊕ g-1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gp,

with
dim(g−k) = dim(gk), k = 1, 2, . . . , p,

and when the so defined Lie algebra gT (g-) is simple. In such case the Tanaka prolon-
gation defines a gradation of this simple Lie algebra, and the subalgebra

p = g0 ⊕ g1 ⊕ · · · ⊕ gp,

in such gT (g-) is parabolic.
The following theorem is due to Noboru Tanaka:

Theorem 2.2 Consider distribution structures (MN , H), with distributions H defining
a p-step filtration as in (2.5)-(2.6) and having the same constant symbol n-. Then

• The most symmetric of all of these distribution structures is (Nil, H = D−1), with
Nil being a nilpotent Lie group associated of the symbol algebra n-, and with H
being the first component D−1 of the natural filtration on Nil associated to the
p-step grading in n-.
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• The Lie algebra of automorphisms aut(H) of the flat model structure (Nil, H =
D−1) is isomorphic to the Tanaka prolongation gT (n-) of the symbol algebra n-,
aut(H) � gT (n).

Let us now return to Example 2.1.

Example 2.3 Note that in Example 2.1, the vector fields X1, X2, X3, X4 and X5 = ∂5,
X6 = ∂6, X7 = ∂7 span a 2-step nilpotent Lie algebra

n = SpanR(X1, X2, . . . , X7) = n-2 ⊕ n-1.

Here the graded components are

n-1 = SpanR(X1, X2, X3, X4)

n-2 = SpanR(X5, X6, X7).

According to our discussion above, we can now built a flat model of rank 4 dis-
tributions H in dimension 7 with symbol n. This model distribution can be identified
with the original distribution H , as in (2.2) in Example 2.1. Using the commutation
relations for the basis (X1, X2, . . . , X7) and the definition of the Tanaka prolongation
discussed above, we find that the Tanaka prolongation for n and, as a consequence,
the Lie algebra of automorphisms of H is,

aut(H) = gT (n) = n-2 ⊕ n-1 ⊕ n0 ⊕ n1 ⊕ n2,

with the submodules nk of respective dimensions

dim(n±2) = 3

dim(n±1) = 4

dim(n0) = 7.

One can recognize that in this Tanaka prolongation of n the homogeneity 0 compo-
nent n0 = R⊕2su(2), and that the full Tanaka prolongation is gT (n) � sp(1, 2). This,
via the Tanaka Theorem 2.2, confirms the claim that the local group of automorphisms
of the distribution structure (M, H) form Example 2.1 is Sp(1, 2) as claimed before.

2.3 Decorated Distributions

Distribution structures are perhaps the simplest geometric structures one can define on
a smooth manifold. Note, for example that any smooth manifold is naturally equipped
with an m-distribution structure (M, H), where m is the dimension of M and the
distribution m-plane Hp at each point p ∈ M is the entire tangent space TpM at p.

One obtains more exciting geometries when one decorates a distribution structure
(M, H), or the distribution H , with the same kinds of geometric objects at each point
p ∈ M . Such objects can be, for example a metric g on H , or a skew symmetric form
ω on H , or more generally a tensor ϒ , or families of tensors such as e.g. pencils of
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tensors, on M . Then the distribution structure (M, H) decorated in this way, is given
by a triple (M, H , ϒ), where ϒ is an appropriate object defined on H . Frequently
some integrability conditions for the decorating object field ϒ on H are also required
(see below).

Given a distribution structure (M, H , ϒ) decorated by a tensor field ϒ on H
one defines a (local) equivalence of two such decorated structures (M, H1, ϒ1) and
(M, H2, ϒ2) on M , by saying that they are (locally) equivalent if they are (locally)
equivalent as distribution structures and if the distribution structure equivalence dif-
feomorphism φ : M1 → M2 transforms the tensor field ϒ1 from the first distribution
H1 to the corresponding tensor fieldϒ2 on H2, φ∗ϒ2 = ϒ1. Obviously, one can speak
about the (local) group Gϒ of automorphisms of a decorated distribution structure
(M, H , ϒ), as well as about the corresponding Lie algebra gϒ of infinitesimal sym-
metries of (M, H , ϒ): this is generated by those vector fields Y from the Lie algebra
g of infinitesimal symmetries of the distribution structure (M, H), which additionally
preserve ϒ on H . It is also obvious that in most of decorations the group Gϒ will
be a proper subgroup of G, and the Lie algebra gϒ will be a proper subalgebra of
g. We further discuss more specific issues associated with the decorations of distri-
bution structures on a particular class of decorations (M, H , J ), which are termed
Cauchy-Riemann structures, or CR structures, for short.

2.3.1 CR Structures of Type (n, k)

An almost CR structure of CR dimension n and CR codimension k = (m − 2n) on an
m-dimensional manifold M equipped with a bracket generating (2n)-distribution H
is a decoration (M, H , J ) of the structure (M, H)with a linear operator J : H → H ,
such that J 2 = −id|H .AnalmostCRstructure ofCRdimensionn andCRcodimension
k is called a CR structure of CR dimension n and CR codimension k if and only if the
integrability conditions are satisfied for the pair (H , J ), i.e. if and only if, for every
two vector fields X and Y belonging to H , X ,Y ∈ H , the following two conditions
are satisfied:

• the difference of the commutators [X ,Y ] and [J X , JY ] is in H ,

([X ,Y ] − [J X , JY ]) ∈ H ; (2.9)

• the vanishing Nijenhuis tensor condition is satisfied, namely

J
([X ,Y ] − [J X , JY ]) = [J X ,Y ] + [X , JY ]. (2.10)

For further use let us introduce a convenient terminology: An (almost) CR structure
(M, H , J ) of CR dimension n and CR codimension k will be called an (almost) CR
structure of type (n, k). For these structures we obviously have that the rank � of H is
� = 2n and the dimension of the manifold M is m = 2n + k.

An almost CR structure of type (n, k) can be also defined via the dual picture,
i.e. starting from the codistribution H⊥ which is annihilated by H . For this, in the
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complexification (T∗M)C we need a subbundle Z∗ of complex rank (n + k) such that

(H⊥)C ⊂ Z∗ ⊂ (T∗M)C and (H⊥)C ∧ Z∗ ∧ Z̄∗ = ∧(2n+k)(T∗M)C;

here Z̄∗ = {(T∗M)C � μ s.t. μ̄ ∈ Z∗}. Now, J is defined in H by saying that it is a
real operator in H such that when it is complexified, it acts as J Z = i Z on all vector
fields Z in the annihilator of Z̄∗.

Since this is a bit complicated, let us return to our example 2.1.

Example 2.4 Continuation of Example 2.1: In Example 2.1 we have the distribution
H defined as the annihilator of H⊥ spanned by the three forms λ1, λ2, λ3 as given in
(2.1). We define Z∗ = (H⊥)C + W ∗ with W ∗ = Span(μ1, μ2), where

μ1 = dx1 + idx4,

μ2 = dx2 − idx3.
(2.11)

Here i denotes the imaginary unit, i = √−1, and Span is taken over the complex-
valued functions on M = R

7. This results in

H⊥ ⊂ Z∗ = Span(λ1, λ2, λ3, μ1, μ2),

where again the Span is taken over the complex-valued functions in R
7

The flag (H⊥)C ⊂ Z∗ ⊂ (T∗M)C defines Z̄∗ = Span(λ1, λ2, λ3, μ̄1, μ̄2), with
the ‘bar’ operator on complex 1-forms denoting the usual complex conjugation, as for
example in μ̄1 = dx1 − idx4. Furthermore, we have

(H⊥)C∧ Z∗ ∧ Z̄∗ = Span(dx1 ∧dx2 ∧dx3 ∧dx4 ∧dx5 ∧dx6 ∧dx7) = ∧7(T∗
R
7)C.

Thus, according to the brief procedure above, we have an almost CR structure of
type (2, 3) in M = R

7. To see how the complex structure operator in H looks like,
note the following:

The annihilator of Z̄∗ is
Z = Span(Z1, Z2),

with
Z1 = X1 − i X4 and Z2 = X2 + i X3,

where we have used the basis (X1, X2, X3, X4) for H with the vector fields Xi as
defined in (2.3). We therefore have J Z1 = i Z1 and J Z2 = i Z2. Looking at the real
and imaginary parts of these equations we find out the following action of the real
operator J on the basis (X1, X2, X3, X4) of H :

J X1 = X4, J X2 = −X3, J X3 = X2, J X4 = −X1.

It is visible that J 2 = −id on H , so we really have an almost CR structure (R7, H , J )

of type (2, 3) in R
7.
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Interestingly this almost CR structure is actually an honest CR structure of type
(2, 3). One easily checks that the Nijenhuis integrability conditions (2.9)-(2.10) are
satisfied.

Returning to the general case of an almost CR structure of type (n, k) we note the
following usefulness of our formulation of a CR decoration of a distribution H in
terms of the flag (H⊥)C ⊂ Z∗ ⊂ (T∗M)C. The Nijenhuis integrability conditions
(2.9)-(2.10) of an almost CR structure defined on M by such a flag are equivalent to
a single condition:

differentials of all forms from Z∗ are in the ideal
generated by forms from Z∗.

The ideal here is in the Grassmann algebra of all (complex-valued) skew symmetric
forms on M , whose multiplication is the wedge product of forms.

This leads to the followingoperational and easy to usewayof checking theNijenhuis
conditions (2.9)-(2.10) for (M, H , J ):

Let (λ1, λ2, . . . , λk)be abasisof 1-forms inH⊥, and let (λ1, λ2, . . . , λk, μ1, μ2, . . . ,

μn) be its extension to a basis of 1-forms in Z∗. Then the almost CR structure
(M, H , J ) corresponding to the flag (H⊥)C ⊂ Z∗ ⊂ (T∗M)C satisfies the Nijen-
huis integrability conditions (2.9)-(2.10) if and only if

dλi ∧ λ1 ∧ λ2 ∧ · · · ∧ λk ∧ μ1 ∧ μ2 ∧ · · · ∧ μn = 0, for all i = 1, 2, . . . , k,

and

dμα ∧ λ1 ∧ λ2 ∧ · · · ∧ λk ∧ μ1 ∧ μ2 ∧ · · · ∧ μn = 0, for all α = 1, 2, . . . , n.

(2.12)
In particular, using these conditions, one can easily check that the almost CR struc-

ture from Example 2.4 is an integrable CR structure of type (2, 3) on M = R
7.

Using the flag (H⊥)C ⊂ Z∗ ⊂ (T∗M)C formulation of the concept of an almost
CR structure, we can also easily define the concept of (local) equivalence of almost
CR structures and the concept of (local) symmetry group:

We say that two almost CR structures given by the respective two flags (H⊥
1 )C ⊂

Z∗
1 ⊂ (T∗M)C and (H⊥

2 )C ⊂ Z∗
2 ⊂ (T∗M)C on M are (locally) equivalent, if and

only if there exists a (local) diffeomorphism φ : M → M transforming one flag to the
other, i.e. such that

φ∗((H⊥
2 )C ⊂ Z∗

2 ⊂ (T∗M)C
) = (H⊥

1 )C ⊂ Z∗
1 ⊂ (T∗M)C.

We further say that a (local) diffeomorphism φ : M → M is a (local) CR automor-
phism for an almost CR structure (M, H , J ) defined by (H⊥)C ⊂ Z∗ ⊂ (T∗M)C if
and only if it satisfies

φ∗((H⊥)C ⊂ Z∗ ⊂ (T∗M)C
) = (H⊥)C ⊂ Z∗ ⊂ (T∗M)C.

Note that, in terms of the bases (λ1, λ2, . . . , λk) in H⊥ and (λ1, λ2, . . . , λk, μ1, μ2,

. . . , μn) in Z∗, the (local) CR automorphism can be equivalently defined as a (local)
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diffeomorphism φ : M → M satisfying:

φ∗(λi
) ∧ λ1 ∧ λ2 ∧ · · · ∧ λk =0, for all i=1, 2, . . . k,

and

φ∗(μα
) ∧ μ1 ∧ μ2 ∧ · · · ∧ μn ∧ λ1 ∧ λ2 ∧ · · · ∧ λk =0, for all α=1, 2, . . . n.

Consequently, the (local) group GJ of CR automorphisms consists of all suchφ’s on
(M, H , J ) with the composition of CR automorphisms as the group multiplication. If
the groupGJ of CR automorphisms acts transitively on M then (locally) M = GJ /P ,
with isotropy P , and the CR structure (M, H , J ) is called homogeneous.

The infinitesimal symmetries of an almost CR structure (infinitesimal CR auto-
morphisms) are real vector fields Y on M which preserve the flag (H⊥)C ⊂ Z∗ ⊂
(T∗M)C. Their most convenient equivalent definition is again given in terms of the
bases (λ1, λ2, . . . , λk) in H⊥ and (λ1, λ2, . . . , λk, μ1, μ2, . . . , μn) in Z∗. We note
that a vector field Y on M is an infinitesimal symmetry of an almost CR structure
given on M by (H⊥)C ⊂ Z∗ ⊂ (T∗M)C if and only if Y satisfies the following PDEs
with respect to the bases (λ1, λ2, . . . , λk) in H⊥ and (λ1, λ2, . . . , λk, μ1, μ2, . . . , μn)

in Z∗:
(LYλi

) ∧ λ1 ∧ λ2 ∧ · · · ∧ λk = 0, for all i = 1, 2, . . . k,

and
(LYμα

) ∧ μ1 ∧ μ2 ∧ · · · ∧ μn ∧ λ1 ∧ λ2 ∧ · · · ∧ λk = 0, for all α = 1, 2, . . . n.

(2.13)
Of course the Lie algebra gJ of infinitesimal symmetries of (M, H , J ) is an R-

linear span of the above vector fields Y with the Lie bracket of vector fields as the Lie
algebra gJ bracket.

It is worthwhile to note that the basis related flag (H⊥)C ⊂ Z∗ ⊂ (T∗M)C defi-
nition of an (almost) CR structure (M, H , J ) is particularly useful when we want to
compare the geometry of a structure of a naked distribution (M, H)with that of a deco-
rated distribution structure (M, H , J ). For example the Lie algebra of the infinitesimal
symmetries of the naked (M, H) structure consists of real vector fields Y on M such
that (LYλi

) ∧ λ1 ∧ λ2 ∧ · · · ∧ λk = 0, for all i = 1, 2, . . . k, (2.14)

holds, whereas the Lie algebra of infinitesimal symmetries of an (almost) CR structure
(M, H , J ) decorating the structure (M, H) will be its subalgebra which, in addi-
tion to (2.14), satisfies also the second part of integrability conditions from (2.13),
namely all conditions involving (LYμα)s. We will return to this (trivial) observation
in Section 2.4, where it will be crucial to motivate our main object of study in this
paper.

Example 2.5 Continuation of Examples 2.1 and 2.4: In Example 2.1 we have a
distribution structure (M, H) on M = R

7 given in terms of the real bundle H⊥ =
Span(λ1, λ2, λ3) as in (2.1). And in Example 2.4 we decorated it with an almost
CR structure (M, H , J ) by complexifying H⊥ to (H⊥)C and by considering Z∗ =
SpanC(λ1, λ2, λ3, μ1, μ2). As we noticed already the almost CR structure (M, H , J )
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defined by (H⊥)C ⊂ Z∗ ⊂ (T∗M)C is integrable, which can be easily checked by
seeing that

dλ1 ∧ λ1 ∧ λ2 ∧ λ3 ∧ μ1 ∧ μ2 = 0,

dλ2 ∧ λ1 ∧ λ2 ∧ λ3 ∧ μ1 ∧ μ2 = 0,

dλ3 ∧ λ1 ∧ λ2 ∧ λ3 ∧ μ1 ∧ μ2 = 0,

dμ1 ∧ λ1 ∧ λ2 ∧ λ3 ∧ μ1 ∧ μ2 = 0,

dμ2 ∧ λ1 ∧ λ2 ∧ λ3 ∧ μ1 ∧ μ2 = 0.

Furthermore, we know that the structure (M, H) has the 21-dimensional group
Sp(1, 2) as the group of its local symmetries, with the 21-dimensional Lie algebra g
of infinitesimal symmetries Yν , ν = 1, 2, . . . , 21, as in Example 2.1. By solving the
CR symmetry equations (2.13) for the CR structure (M, H , J ), namely by solving the
equations (LYλ1

) ∧ λ1 ∧ λ2 ∧ λ3 = 0,
(LYλ2

) ∧ λ1 ∧ λ2 ∧ λ3 = 0,
(LYλ3

) ∧ λ1 ∧ λ2 ∧ λ3 = 0,
(LYμ1) ∧ μ1 ∧ μ2 ∧ λ1 ∧ λ2 ∧ λ3 = 0,
(LYμ2) ∧ μ1 ∧ μ2 ∧ λ1 ∧ λ2 ∧ λ3 = 0,

(2.15)

or by choosing only these symmetries Yν , ν = 1, 2, . . . , 21, of (M, H), which in addi-
tion to the first three equations in (2.15), also satisfy the last two, we find that the Lie
algebra gJ of infinitesimalCR symmetries of (M, H , J )has dimension dim(gJ ) = 12,
only. So the dimension of the Lie algebra g of symmetries of the distribution structure
drops from 21 to the dimension 12 of the Lie algebra gJ of infinitesimal symmetries of
the decorated structure (M, H , J ). In particular, the infinitesimal distribution struc-
ture symmetry generator Y10 from Example 2.1 does not satisfies the CR symmetry
equations (LYμ1) ∧ μ1 ∧ μ2 ∧ λ1 ∧ λ2 ∧ λ3 = 0,

(LYμ2) ∧ μ1 ∧ μ2 ∧ λ1 ∧ λ2 ∧ λ3 = 0,

and thus it is not a CR symmetry generator. On the other hand the distribution struc-
ture symmetry Y12 from Example 2.1 satisfies all five conditions for being the CR
symmetry, and generates a local CR automorphism. So in this example we see explic-
itly the typical situation, in which the symmetry algebra gJ of a decorated structure
(M, H , J ), is a proper subalgebra of the algebra g of symmetries of the naked structure
(M, H).

2.3.2 Embedding a CR Structure of Type (n, k) inC
(n+k)

Let us, from now on, assume that all our CR structures are real analytic.
Consider then a CR structure (M, H , J ) of type (n, k) defined on a (2n)-

distribution H via the flag (H⊥)C ⊂ Z∗ ⊂ (T∗M)C. Let (λ1, λ2, . . . , λk) and
(λ1, λ2, . . . , λk, μ1, μ2, . . . , μn) be the respective bases in H⊥ and Z∗. ACR function
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z : M → C is a complex-valued differentiable function on M such that

dz ∧ λ1 ∧ λ2 ∧ · · · ∧ λk ∧ μ1 ∧ μ2 ∧ · · · ∧ μn = 0.

We say that CR functions z1, z2, . . . , z j are functionally independent in an open
set U if and only if

dz1 ∧ dz2 ∧ · · · ∧ dz j �= 0 in U .

It is well known [1] that an analytic CR structure of type (n, k) always admits
(n+ k) independent CR functions z1, z2, . . . , z(n+k). They provide a local embedding

M � p
ι−→ (

z1(p), z2(p), . . . , z(n+k)(p)
) ∈ C

(n+k). (2.16)

Once a CR structure (M, H , J ) is embedded like that it provides a CR structure(
ι(M), ι∗H , ι∗ J

)
of type (n, k) embedded as a submanifold of real codimension k in

C
(n+k). As a real submanifold it also acquires a CR structure of type (n, k) from the

canonical complex structure I (multiplication by an imaginary unit) in the ambient
space C

(n+k). This is defined by noting that ι∗H = IT(ι(M)) ∩ T(ι(M)) and that
ι∗ J = I|ι∗H . Thus both these CR structures on ι(M) are CR equivalent, and are
equivalent to the original abstract CR structure (M, H , J ) on M . Therefore knowing
(n + k) independent CR functions of (M, H , J ) we have a nice model of an abstract
CR structure: one embeds it by (2.16) as a real submanifold of higher codimension
and gets the CR structure on it from the ambient complex space C

N .
A particular class of embedded CR manifolds M2n+k ⊂ C

(n+k) can be defined
in terms of graphs of k real functions �i = �i (z1, z2, . . . , zn, z̄1, z̄2, . . . , z̄n), i =
1, 2, . . . , k such that ∂�1∧∂�2∧· · ·∧∂�k �= 0,where the linear differential operators
∂ and ∂̄ act on real-valued differentiable functions f = f (z, z̄) as

∂ f =
n∑

α=1

∂ f

∂zα
dzα and ∂̄ f =

n∑

α=1

∂ f

∂ z̄α
dz̄α.

To describe embedded CR manifolds, let us denote holomorphic coordinates in
C
n+k by (w, z) = (w1, w2, . . . , wk, z1, z2, . . . , zn). Then the CR structures from this

particular class are defined by the following embeddings:

M2n+k = { C
n+k � (w, z) s.t . Im(wi ) − �i (z, z̄) = 0 ∀i = 1, 2, . . . k }. (2.17)

In such case the distribution H on M2n+k is defined as the annihilator of k real
1-forms

λi = dRe(wi ) + i
(
∂̄ − ∂

)
�i , i = 1, 2, . . . , k,

Thus in such case we have

H = {TM2n+k � X s.t. X−| λi = 0 ∀i = 1, 2, . . . , k}.
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Writing wi s and zi s in terms of their real and imaginary parts, wi = ui + ivi ,
zα = xα + iyα , we then have that �i = �i (x1, x2, . . . , xn, y1, y2, . . . , yn) and, in
particular, that

λi = dui +
n∑

α=1

(∂�i

∂xα
dyα − ∂�i

∂ yα
dxα

)
, ∀i = 1, 2, . . . , k. (2.18)

Now the CR manifold M2n+k can be conveniently parametrized by (2n + k) real
parameters (ui , xα, yα) in which the distribution H is spanned as

H = Span(Xα,Yα)

by the 2n real vector fields Xα and Yα given by

Xα = ∂xα +
k∑

i=1

∂�i

∂ yα
∂ui , Yα = ∂yα −

k∑

i=1

∂�i

∂xα
∂ui , α = 1, 2, . . . , n.

This H is invariantwith respect to the complex structure I from the ambient complex
spaceC

n+k . Indeed, it follows that I Xα = Yα and IYα = −Xα for allα = 1, 2, . . . , n.
It also follows that the bundle Z is spanned as

Z = Span(Zα)

by the α = 1, 2, . . . , n complex-valued vector fields

Zα = 1
2 (Xα − iYα) = ∂zα + i

k∑

i=1

∂�i

∂zα
∂ui ,

and is automatically integrable since [Zα, Zβ ] = 0 for all α, β = 1, 2, . . . , n.
The complex bundle Z∗ is spanned over the complex functions by all λi ’s and μα’s

where μα = dzα , α = 1, 2, . . . , n.

Example 2.6 Continuation of Example 2.4: One easily checks that the CR functions
equation

dz ∧ λ1 ∧ λ2 ∧ λ3 ∧ μ1 ∧ μ2 = 0

written in terms of the generators (λ1, λ2, λ3, μ1, μ2) of Z∗ for the CR structure
(M, H , J ) of Example 2.4 has the following five independent solutions:

w1 = x1 + i x4, w2 = x2 − i x3, w3 = x5 + i
2

(
(x1)2 − (x2)2

)
,

z1 = x6 + i x1x3, z2 = x7 + i(x2 − i x3)x2.
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Eliminating variables x1, x2, x3, x4, x5, x6, x7 from (w1, w2, w3, z1, z2) we get a
real codimension k = 3 submanifold

ι(M) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
5 � (w1, w2, w3, z1, z2) s.t .

Im(w1) = 1
2

(
(Re(z1))

2 − (Re(z2))
2)

Im(w2) = −Re(z1)Im(z2)

Im(w3) = Re(z1)Re(z2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⊂ C
5,

which gives a CR embedding of (ι(M), H , J ) in C
5.

According to our formulas above, this (ι(M), H , J ) CR structure, provides a dis-
tribution structure (ι(M), H) having H⊥ = Span(λ1, λ2, λ3) given by the 1-forms
λ1, λ2, λ3

λ1 = du1 + x1dy1 − x2dy2,

λ2 = du2 − y2dy1 + x1dx2,

λ1 = du3 + x2dy1 + x1dy2.

We leave to the reader to check that this distribution structure onR
7 with coordinates

(x1, y1, x2, y2, u1, u2, u3) is locally equivalent to our distribution structure (M, H)

from Example 2.1. We also leave to the reader to check that the CR structure on
the embedded manifold ι(M) given by the flag (H⊥)C ⊂ Z∗ ⊂ (T∗M)C in which
(H⊥)C is the complexification of the above real H⊥, and the complex bundle Z∗ is
Z∗ = (H⊥)C +Span(μ1, μ2)with μ1 = dx1 + idy1 and μ2 = dx2 + idy2, is locally
CR equivalent to the CR structure (M, H , J ) from Example 2.4.

2.4 Accidental Decorations

The CR decoration (M, H , J ) in Example 2.4, which was put on the distribution
structure (M, H) from Example 2.1 was by no means canonical. Let us consider
the following deformation of the CR structure (M, H , J ) defined, on the distribution
structure (M, H) from Example 2.1, in Example 2.4.

Example 2.7 Let us return to Example 2.4 and consider three real constants a, b, c
such that

a2 + b2 + c2 = 1. (2.19)

If b2+c2 �= 0, instead of Z∗ from Example 2.4, we take Z∗
(a,b,c) = (H⊥)C+W ∗

(a,b,c),
with W ∗

(a,b,c) spanned by the 1-forms

μ1 = dx1 − iadx2 − icdx3 + ibdx4,

μ2 = iadx1 + dx2 − ibdx3 − icdx4.
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If b = c = 0, we take Z∗
(a,0,0) = (H⊥)C + W ∗

(a,0.0) with W ∗
(a,0,0) spanned by the

1-forms
μ1 = dx1 − iadx2,

μ2 = dx3 + iadx4.
a = ±1,

Then it follows that every choice of three constants (a, b, c) as in (2.19), via the flag
(H⊥)C ⊂ Z∗

(a,b,c) ⊂ (T∗M)C, decorates the distribution H from Example 2.1 with an
integrable CR structure (M, H , J(a,b,c)). The one from Example 2.4 corresponds to
the choice (a, b, c) = (0, 1, 0). This shows that a distribution structure (M, H) may
have many integrable CR decorations.

We further note that all CR structures (M, H , J(a,b,c)) have the local group of CR
automorphisms GJ(a,b,c) with symmetry dimension not larger than 12. So we are in
the typical situation: the dimension 12 of the local symmetry group GJ(a,b,c) of the
CR structure (M, H , J(a,b,c)) is smaller than the dimension 21 of the local symmetry
group G of the naked distribution structure (M, H).

In this paper we focus on quite different situations. Roughly, we aim to give exam-
ples of distribution structures (M, H), which are such that they canonically define
nontrivial decorations on H . We want that the geometry of the distribution structure
alone imposes, without any additional input, some decoration. Such decorations we
will call accidental.

Leaving the precise formulation of the notion of an accidental structure in the most
general situations to subsequent studies, here in this paper, we will focus on accidental
CR structures (M, H , J ) on homogeneous distribution structures (M, H).

Recall that a typical situation for the respective groups of symmetries G and GJ of
a distribution structure (M, H) and a CR structure (M, H , J ) is that GJ � G. The
notion of an accidental (M, H , J ) requires equality here:

Definition 2.8 A CR structure (M, H , J ) on a homogeneous distribution structure
(M, H) is called accidental if and only if the group GJ of CR automorphisms of the
CR structure (M, H , J ) is equal to the group G of symmetries of the distribution
structure (M, H).

In case of (M, H) with an accidental CR structure (M, H , J ) the addition of the
complex structure J to (M, H) does not diminish the symmetry of (M, H). Saying
it differently, the complex structure J is in a way compatible with the distribution
structure, or is somehow cannonically defined by it.

Our two E6 homogenous CR structures from the introduction are examples of
accidental CR structures. In the next sections we present manymore of them. Actually
we provide a full list of accidental CR structures (M, H , J ) for which the distribution
H satisfies

(1) [H , H ] + H = TM and
(2) the geometry of (M, H , J ) is a flat model for a parabolic geometry associated

with the distribution H .

On the other hand, there aremany nonaccidental homogeneous CR structures. First,
all the hypersurface type CR structures, i.e. real hypersurfaces in C

N which acquire
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their CR structure from the ambient complex space and have nondegenerate Levi form,
are not accidental: Their distribution structure (M, H) is a contact structure and as
such has infinite dimensional group G of local symmetries; in contrast the group GJ

of local CR automorphisms for them is always finite dimensional. As our Example 2.7
shows there is also plenty of nonaccidental homogeneous CR structures of higher
codimension.

We emphasize that the notion of an accidental structure on a distribution is not
solely reserved to the integrable (or almost) CR structures. This however goes beyond
the present work, and we move discussions of this issue to a subsequent paper.

2.5 A note on aMethod for Approaching the Problem

The restriction of our considerations to accidental CR structures (M, H , J ) on distri-
bution structures (M, H) being flat models for parabolic geometries, makes the task
of finding a full list of them to be manageable. This is due to the following;

First, all parabolic geometries are classified, so one way of finding the suspects, is
to search within the available lists.

Second, the accidental feature of the objects we search for, requires that the symbol
algebra of the searched distribution structures is such that its n-1 part is naturally
equipped with an almost structure J . This is because this J should naturally induce
an almost complex structure J Nil on H = nNil

-1 , which in turn would define the flat
model distribution H on the group Nil. This immediately excludes all nilpotent Lie
algebras with odd dimension of n-1.

Actually the situation is much better: restricting to the nilpotent p-step Lie algebras
with even dimension of n-1, if a J in n-1 was not natural, and we would consider a
corresponding almost CR structure (Nil, H = nNil

- , J Nil) on Nil, the symmetry of
this almost CR structure would be smaller that the symmetry of (Nil, H = nNil

- ),
since the Tanaka prolongation of (n-, J ) would not only preserve the strata nk− in n-,
but also J in n-1. This would chop n0 from the situation without J in n-. It would
chop it to a smaller nJ0 , making the resulting new Tanaka prolongation gJT (n-) smaller
than gT (n-). For us the crucial information is that in such situation the new nJ0 should
preserve J , in the natural adjoint action of nJo in n-1 given by the Lie bracket in gJT (n-).
Therefore nJ0 should naturally be a subalgebra of a unitary algebra su(n-1) for J .

This last observation forces us to restrict to the nilpotent Lie algebras, which on
top of producing flat models of parabolic geometries, should have, in their Tanaka
prolongation, their n0 part as a subalgebra of a unitary algebra acting in n-1. This
selects quite a small subset of all n’s defining gradations in simple Lie algebras. The
addition of the requirement that the searched n’s must be 2-step graded, finishes the
job, and one gets the full list. Note, that by this algebraic approach, we are guaranteed
that we found accidental almost CR manifolds. Interestingly, all the found ones, the
ones which appear in our list, are the true CR manifolds, with corresponding J ’s
satisfying the integrability conditions (2.9)-(2.10).
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3 Flat Parabolic CR Structures with Symmetry Algebras a�, d� and e6

3.1 The Case of EII and EIII Symmetry

This was discussed in the Introduction in Theorems 1.2 and 1.3. Here we mention that
the explicit formulae for the embedding of CR manifolds depend on the convenience
or, in most cases, on the personal taste of the person who embedds them. In particular,
if one guesses the embeddings of the CR manifold of Theorem 1.3 by analyzing
the structure of the simple roots of an appropriate real form of E6, a more natural
embedding of the 24-dimensional CR manifold M24

EI I I
can be given:

In C
8+8 with holomorphic coordinates (zi , wi ), i = 1, 2, . . . , 8, consider

M̃24
EI I I

=
{
Rew1 = Re

(|z1|2 + |z2|2 + |z3|2 + |z4|2
)
,

Rew2 = Re
(|z5|2 + |z6|2 + |z7|2 + |z8|2

)
,

Imw3 = Im
(
z1 z7 + z2 z8 + z5 z3 + z6 z4

)
,

Rew4 = Re
(
z1 z7 + z2 z8 + z5 z3 + z6 z4

)
,

Imw5 = Im
(
z1 z6 − z3 z8 + z5 z2 − z7 z4

)
,

Rew6 = Re
(
z1 z6 − z3 z8 + z5 z2 − z7 z4

)
,

Imw7 = Im
(
z2 z6 + z3 z7 − z5 z1 − z8 z4

)
,

Rew8 = Re
(
z2 z6 + z3 z7 − z5 z1 − z8 z4

)} ⊂ C
16.

Then this embedded 24-dimensional CR manifold of CR dimension n = 8 and CR
codimension k = 8 is biholomorphically equivalent to the one from Theorem 1.3, and
as such has the exceptional simple Lie group EI I I as its group of CR automorphisms.

3.2 The Case of SO(� − 1, � + 1) Symmetry

Let � ≥ 4 and N (�) = (�−1)(�+2)
2 , and consider C

�(�−1)/2 with holomorphic coordi-
nates (w, z) = (wi j , zk). Here i < j, k = 1, 2, . . . , � − 1.

Define

MN (�) =
{

C
�(�−1)/2 � (w, z) s.t. Im(wi j − zi z̄ j ) = 0 ∀i < j = 1, 2, . . . , � − 1

}
.

We have the following theorem.

Theorem 3.1 Let � ≥ 4. The set MN (�) ⊂ C
�(�−1)/2 is a real N (�)-dimensional

embedded CR manifold, acquiring the CR structure of CR dimension n = � − 1 and
CR codimension k = (�−1)(�−2)

2 from the ambient complex space C
�(�−1)/2. Its local

group of CR automorphisms is isomorphic to the real simple Lie group SO(�−1, �+1)

with the Lie algebra having the Satake diagram with � nodes. It is
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locally CR equivalent to the flat model SO(� − 1, � + 1)/P1 of an N (�)-dimensional
parabolic geometry of type (SO(�−1, �+1), P1), where the real parabolic subgroup
P1 in SO(� − 1, � + 1) is determined by the following crossing on the corresponding

d� Satake diagram: .

Example 3.2 If � = 4 we have a 9-dimensional CR manifold M9, of CR dimension
n = 3 and CR codimension k = 3, embedded in C

6 with holomorphic coordinates
(w12, w13, w23, z1, z2, z3), via k = 3 real equations

Im(w12 − z1 z̄2) = Im(w13 − z1 z̄3) = Im(w23 − z2 z̄3) = 0.

This CR structure has the orthogonal group SO(5, 3) as the full group of its local CR
automorphisms.

Our formulae are also valid for � = 3. In this case the CR manifold MN (3) is
5-dimensional; it has CR dimension n = 2 and CR codimension k = 1. Therefore it
is a CR manifold of hypersurface type in C

3. Indeed, with holomorphic coordinates
(w12, z1, z2) our formulae give the hyperquadric CR structure Im(w12) = 1

2i (z
1 z̄2 −

z̄1z2) in C
3. This has the Levi form of signature (+,−) and is locally equivalent to the

Penrose’s null twistors CR manifold PN = {|Z1|2 + |Z2|2 − |Z3|2 − |W |2 = 0} in
CP3, with homogeneous coordinates [Z1, Z2, Z3,W ] [5, 10–12]. Restricting to � ≥ 4
we excluded it from our Theorem, since this flat parabolic CR structure is already on
the classical list of parabolic CR structures of hypersurface type corresponding to
the contact gradation in su(p, q). This is due to the low dimensional isomorphism
between the Lie algebras so(4, 2) and su(2, 2).

3.3 Explicit Formulae for the CR Symmetry Generators

We also calculated vector fields of infinitesimal CR automorphisms generating the
symmetry algebra for the SO(� − 1, � + 1) symmetric CR manifolds covered by
Theorem 3.1; see Appendix C for explicit formulae. This was also done for all other
homogeneous CR structures included in this paper, but the formulae are too long to
be included here. They can be found in [6].

3.4 The Case of SO∗(2�), with � = 2m + 1, Symmetry

Let m ≥ 2, � = 2m + 1 and N (m) = m(2m + 3), and consider C
m(2m+1) with

holomorphic coordinates (wI , w, z, ζ ) = (w
i j
I , wk1 , zk2 , ζ k3). Here I = 1, 2, 3, 4;

i < j, k1, k2, k3 = 1, 2, . . . ,m.
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Define

MN (m) =
{

C
m(2m+1) �(wI , w, z, ζ ) s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Im(w
i j
1 ) = Im(zi z̄ j + ζ i ζ̄ j )

Im(w
i j
2 ) = Im(zi ζ̄ j + ζ i z̄ j )

Im(w
i j
3 ) = Re(zi z̄ j + ζ i ζ̄ j )

Im(w
i j
4 ) = Re(zi ζ̄ j + ζ i z̄ j )

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∀i < j =1, 2, . . .m,

Im(wi ) = |zi |2 + |ζ i |2 ∀i = 1, 2, . . .m
}

.

We have the following theorem.

Theorem 3.3 Let m ≥ 2. The subset MN (m) of C
m(2m+1) is a real N (m)-dimensional

embedded CR manifold, acquiring the CR structure of CR dimension n = 2m and CR
codimension k = m(2m−1) from the ambient complex spaceC

m(2m+1). Its local group
of CR automorphisms is isomorphic to the real simple Lie group SO∗(4m+2)with the

Lie algebra having the Satake diagram with � = 2m + 1 nodes. It

is locally CR equivalent to the flat model SO∗(4m + 2)/P2 of an N (m)-dimensional
parabolic geometry of type (SO∗(4m + 2), P2), where the real parabolic subgroup
P2 in SO∗(4m + 2) is determined by the following crossing on the corresponding d�

Satake diagram: .

Example 3.4 Ifm = 2, l = 3,we have a 14-dimensionalCRmanifold ofCRdimension
n = 4 andCR codimension k = 6, CR embedded inC

10 with holomorphic coordinates
(w12

1 , w12
2 , w12

3 , w12
4 , w1, w2, z1, z2, ζ 1, ζ 2), via the k = 6 real equations

Im(w12
1 − z1 z̄2 − ζ 1ζ̄ 2) = Im(w12

2 − z1ζ̄ 2 − ζ 1 z̄2) = 0

Im(w12
3 ) − Re(z1 z̄2 + ζ 1ζ̄ 2) = Im(w12

4 ) − Re(z1ζ̄ 2 + ζ 1 z̄2) = 0

Im(w1) − |z1|2 − |ζ 1|2 = Im(w2) − |z2|2 − |ζ 2|2 = 0.

This CR structure has SO∗(10) as the full group of its local CR automorphisms.
Again, the formulae can be also made valid for m = 1. In this case we have a

5-dimensional CR manifold M5 embedded in C
3 with coordinates (w, z, ζ ). The real

manifold is obtained as a hypersurface Im(w) = zz̄+ζ ζ̄ inC
3.We thus have again an

embedded hypersurface CR structure, the Heisenberg group, of CR dimension n = 2
and CR codimension k = 1, but this one with the signature of its Levi form (+,+).
This is again a classical flat parabolicCR structure from the series SU (p, q), for p = 3,
q = 1. It has SO∗(6) as the group of its local automorphisms. It is excluded from our
Theorem in order not to double the classification of the parabolic CR structures, due
to the low dimensional isomorphism so∗(6) = su(3, 1).
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3.5 Flat Parabolic CR Structures with Symmetry Algebra su(p, q)

We end our survey of examples, with a branch of accidental homogeneous CR mani-
folds which generalize, to the accidental setting, the codimension one hyperquadrics
embedded inC

n+1. Our accidental ones have symmetries of a SU(p, q) group, similar
to the hypersurface ones, but they have higher codimension. We left this discussion
to the end of our survey, because the presentation of all of these higher codimension
accidental CR manifolds with SU(p, q) symmetry is quite complicated, due to many
possible choices of parabolic subgroups P in SU(p, q), which lead to an accidental
CR structure J on M = SU(p, q)/P .

Since we are always in the homogeneous situation, it is enough to indicate which
choices of parabolic subalgebras p in su(p, q) lead to the gradation su(p, q) = g−2 ⊕
g−1 ⊕ g0 ⊕ g1 ⊕ g2 having natural J : g−1 → g−1 such that J 2 = −id. These can
be described as follows:

The Lie algebra su(p, q) has � = p+ q − 1 simple positive roots α1, α2,...,α�. For
reasons which will be clear soon in the examples, for our discussion it is enough to
only consider p ≤ q, when p ≥ 2 and q ≥ 3.

The following two cases should be considered.

• Either 2 ≤ p < q, and then the Satake diagram for the real Lie algebra su(p, q)

is
;

here the black nodes start after the first p white nodes, and became again white
starting at (� − p + 1)st = q th node,

• or p = q, and the Satake diagram for the real Lie algebra su(p, p) is

.

In both pictures, the � = p + q − 1 roots α1, α2, ..., α� are symbolized by the white
or black nodes in the diagram from left to right.

It follows that each parabolic subgroup Ps , with Lie algebra ps , which leads
to an accidental CR structure on the corresponding homogeneous manifold M =
SU(p, q)/Ps is in one to one correspondence with the choice of a pair of roots
cs = {αs, αp+q−s}. The choices cs of these pairs of roots lead to nonequivalent CR
manifolds M = SU(p, q)/Ps

for each 1 ≤ p < q and s = 1, 2, . . . , p,

and
for each q = p ≥ 2 and s = 1, 2, . . . , p − 1.
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It further follows that for each choice of the integers p, q, s as above, the CR
manifold M = SU(p, q)/Ps has

• real dimension dim M = s(2p + 2q − 3s),
• the CR dimension n = s(p + q − 2s) and
• the CR codimension k = s2.

In particular, the familiar codimension one hyperquadrics embedded in C
n+1, with

the SU(p, q) group of CR automorphisms, corresponds to s = 1 and the choice of the
roots c1 = {α1, αp+q−1}. As it is seen from here, if s ≥ 2 these CR structures are not
of hypersurface type. In all cases s ≥ 2 these CR structures are accidental.

To state an appropriate theorem about the accidental CR manifolds with SU(p, q)

symmetry we thus need to choose three integers p, q, s with their ranges as discussed
above. It turns out, that to set up the formulas for the embedding of these CRmanifolds
in C

n+k it is convenient to pass from the integers p, q, s to the new integers

t = p − s and r = q − p.

If p, q, s changes as we discussed above, we have the following ranges of t, r and
s:

r ≥ 0, t ≥ 0, s ≥ 1 and (r , t) �= (0, 0).

Let
N (t, r , s) = s(2r + 4t + s)

and consider C
s(r+2t+s) with holomorphic coordinates

(z, u, v, w) = (zaμ, ubA, vcB, wde)

and with 1 ≤ a, b, c, d, e ≤ s, with 1 ≤ μ ≤ r and 1 ≤ A, B ≤ t , provided that
r �= 0 and t �= 0. If r = 0 the z variables are not present in (z, u, v, w), and if t = 0
the u and v variables are not present in (z, u, v, w).

Define

MN (t,r ,s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
s(r+2t+s) � (z, u, v, w) s.t.

Imwac = Im

⎧
⎪⎨

⎪⎩

za1 zc1 + · · · + zar zcr

+ua1 vc1 + · · · + uat vct

+va1 uc1 + · · · + vat uct

⎫
⎪⎬

⎪⎭
for 1 ≤ a < c ≤ s,

Rewac = Re

⎧
⎪⎨

⎪⎩

za1 zc1 + · · · + zar zcr

+ua1 vc1 + · · · + uat vct

+va1 uc1 + · · · + vat uct

⎫
⎪⎬

⎪⎭
for 1 ≤ c ≤ a ≤ s.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We have the following theorem.

Theorem 3.5 Let r ≥ 0, t ≥ 0, s ≥ 1 and (r , t) �= (0, 0). The set MN (t,r ,s) ⊂
C
s(r+2t+s) is a real N (t, r , s)-dimensional embedded CR manifold, acquiring the CR
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structure of CR dimension n = s(r+2t) and CR codimension k = s2 from the ambient
complex space C

s(r+2t+s). Its local group of CR automorphisms is isomorphic to the
real simple Lie group SU(t + s, r + t + s). It is locally CR equivalent to the flat
model SU(t + s, r + t + s)/Ps of an N (t, r , s)-dimensional parabolic geometry of
type (SU(t + s, r + t + s), Ps), where the real parabolic subgroup Ps in SU(t + s, r +
t + s) is determined by crossing the roots αs and αr+2t+s on the Satake diagram of
SU(t + s, r + t + s).

Example 3.6 To get an accidental CR manifold with SU(p, q) symmetry we need
to have s ≥ 2, since otherwise the CR manifold has codimension one, and is of a
hypersurface type. Knowing that we need s at least as large as 2, and using inequalities
for t and r , it is easy to see that the smallest possible SU(p, q) symmetry group
of an accidental CR structure is SU(2, 3). In such case p = 2, q = 3, and the
corresponding choice of a parabolic Ps in SU(2, 3) leading to the accidental CR
structure onSU(2, 3)/Ps is, at the level of Lie algebra, given by the following crossings
in the su(2, 3) Satake diagram:

As indicated in the diagram, this choice of a parabolic P2 in SU(2, 3) corresponds
to an accidental CR manifold M8 = SU(2, 3)/Ps . This SU(2, 3) homogeneous CR
manifold has dimension N = 8, CR dimension n = 2 and CR codimension k = 4. It
is embedded in C

6 as follows:

M8 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
6 � (z1, z2, w11, w12, w21, w22) s.t .

w12 − w̄12 = z1 z̄2 − z̄1z2
w11 + w̄11 = 2z1 z̄1
w21 + w̄21 = z1 z̄2 + z̄1z2
w22 + w̄22 = 2z2 z̄2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

and has SU(2, 3) group of CR automorphisms.

Example 3.7 In case of the SU(3, 3) CR symmetry we have p = q = 3, i.e. r = 0
and t = 3− s > 0, and if we want to have an accidental CR structure we need to take
the only possibility s = 2.

The Satake Diagram for su(3, 3) is

,

and the choice of a parabolic leading to the accidental CR structure is:

, with (n, k) = (4, 4).
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The embedding is given by:

M12 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
8 � (ua, vb, wcd), a, b, c, d = 1, 2, s.t .

w12 − w̄12 = u1v̄2 + v1ū2 − ū1v2 − v̄1u2
w11 + w̄11 = 2(u1v̄1 + v1ū1)

w21 + w̄21 = u2v̄1 + v2ū1 + ū2v1 + v̄2u1
w22 + w̄22 = 2(u2v̄2 + v2ū2)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

and provides an accidental CR structure of CR dimension n = 4 and CR codimension
k = 4 in C

8 with the CR automorphisms group SU(3, 3).

Example 3.8 In case of the SU(2, 4) CR symmetry we have p = 2, q = 4, i.e. r = 2
and t = 2 − s ≥ 0, and an accidental CR structure appears for s = 2 only. In such
case t = 0.

The Satake Diagram for su(2, 4) is

,

and the choice of a parabolic leading to the accidental CR structure is:

, with (n, k) = (4, 4).

The embedding is given by:

M12 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
8 � (zab, wcd), a, b, c, d = 1, 2, s.t .

w12 − w̄12 = z11 z̄21 + z12 z̄22 − z̄11z21 − z̄12z22
w11 + w̄11 = 2(z11 z̄11 + z12 z̄12)

w21 + w̄21 = z21 z̄11 + z22 z̄12 + z̄21z11 + z̄22z12
w22 + w̄22 = 2(z21 z̄21 + z22 z̄22)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

This provides an accidental CR structure of CR dimension n = 4 and CR codi-
mension k = 4 in C

8. It has SU(2, 4) as its group of CR automorphisms.

Example 3.9 If p = 3, q = 4, and the group of CR automorphisms is SU(3, 4) we
have r = 4 − 3 = 1 and t = 3 − s ≥ 0, and we encounter the lowest dimensional
situation when we have two nonequivalent accidental CR manifolds. This is because
in this case there are two not equal to 1 possible values for s, namely s = 2 and s = 3.
The Satake Diagram for su(3, 4) with the choice of parabolic related to s = 2 is
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and the Satake Diagram for su(3, 4) with the choice of parabolic related to s = 3 is

• In case of s = 2, r = 1, t = 1, the embedding in C
10 of the corresponding

accidental CR structure of dimension N = 16, CR dimension n = 6 and CR
codimension k = 4 is given by:

M16 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
10 � (za, ub, vc, wde), a, b, c, d, e = 1, 2, s.t .

Im(w12) = Im
(
z1 z̄2 + u1v̄2 + v1ū2

)

Re(w11) = z1 z̄1 + u1v̄1 + v1ū1

Re(w21) = Re
(
z2 z̄1 + u2v̄1 + v2ū1

)

Re(w22) = z2 z̄2 + u2v̄2 + v2ū2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

By construction this accidental CR structure has SU(3, 4) group of the CR auto-
morphisms.

• In case of s = 3, r = 1, t = 0, the embedding in C
12 of the corresponding

accidental CR structure of dimension N = 15, CR dimension n = 3 and CR
codimension k = 9 is given by:

M15 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
12 � (za, wbc), a, b, c = 1, 2, 3, s.t .

w12 − w̄12 = z1 z̄2 − z̄1z2
w13 − w̄13 = z1 z̄3 − z̄1z3
w23 − w̄23 = z2 z̄3 − z̄2z3
w11 + w̄11 = 2z1 z̄1
w21 + w̄21 = z2 z̄1 + z̄2z1
w22 + w̄22 = 2z2 z̄2
w31 + w̄31 = z3 z̄1 + z̄3z1
w32 + w̄32 = z3 z̄2 + z̄3z2
w33 + w̄33 = 2z3 z̄3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

By construction this accidental CR structure has SU(3, 4) group of the CR auto-
morphisms.

4 Why Examples of Sections 2 and 3 are Flat Parabolic Geometries?

4.1 Proofs of Theorems 1.2 and 1.3

In the rest of this section we give justifications for Theorems 1.2, 1.3, 3.1, 3.3 and 3.5.
Since the idea is the same for all of them, we will only concentrate on the proofs of
Theorems 1.2 and 1.3 related to e6. This is, anyhow, not so important, since the proofs
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of Theorems 1.3, 1.2, 3.1, 3.3 and 3.5 follow directly from our Section 5 and (in full
generality) from the Reference [8].

The basic observation (a nontrivial one!), valid for all Theorems 1.3, 1.2, 3.1, 3.3
and 3.5, is that the entire CR geometry of CR manifolds MN appearing in them, is
totally determined by the mere geometry of the real distribution H . By this we mean
that for all of the CR manifolds from these Theorems, the complex structure J in H
is an object totally determined by the pair (MN , H). Saying it yet differently: for all
the CR manifolds from Theorems 1.3, 1.2, 3.1 and 3.3 the local differential geometry
of the CR structure (MN , H , J ) is the same as the local geometry of the structure
(MN , H) of a real manifold of dimension N and a rank 2n (real) distribution H (with
a proper symbol algebra). This is the reason why we call the CR structures from
Theorems 1.3, 1.2, 3.1 and 3.3 as accidental CR structures: these are structures of a
vector distribution H on MN , and the J in H is given as a gift, or an accident, from
the geometric data (MN , H).

Of course the statement that the local differential geometry of the CR structures
(MN , H , J ) is the same as the local geometry of the structures (MN , H) of a real
manifold of dimension N and a rank 2n (real) distribution H , for all the structures in
Theorems 1.3, 1.2, 3.1 and 3.3, requires proofs. We will give them by inspecting all
of these cases separately below.

Proof of Theorem 1.2 In this case, passing to the real variables (ui , vi , xi , yi ), we can
write our CR structure M24

EI I
in the form (2.17) with 8 defining functions �i given by:

�1 = x2x3 + x1x4 + y2y3 + y1y4

�2 = x2x5 + x1x6 + y2y5 + y1y6

�3 = x7y1 − x5y3 + x3y5 − x1y7

�4 = x8y1 + x7y2 + x6y3 + x5y4 − x4y5 − x3y6 − x2y7 − x1y8

�5 = x2x7 + x3x6 − x1x8 − x4x5 + y2y7 + y3y6 − y1y8 − y4y5

�6 = x8y2 − x6y4 + x4y6 − x2y8

�7 = x4x7 + x3x8 + y4y7 + y3y8

�8 = x6x7 + x5x8 + y6y7 + y5y8.

So now our CR manifold M24
EI I

is parametrized by the real coordinates (ui , xi , yi ),

i = 1, 2, . . . , 8, so that the forms λi anihilating the rank 16 distribution H on M24
EI I

,

according to the formula (2.18), are given by the 1-forms λi , i = 1, 2, . . . , 8, of the
Pfaffian system from Corollary 1.4.

Now we have the following Lemma4.

Lemma 4.1 The Lie algebra of infinitesimal symmetries of the Pfaffian system
[λ1, λ2, . . . , λ8] on M24

EI I
, with formsλi as inCorollary 1.4, orwhat is the same, the Lie

4 Actually, to shorten the expressions for the λ’s given here, and to have more symmetric formulas for the
EDS later, we changed the original coordinates ui appearing in (2.18) to more suitable ui ’s appearing here,
and slightly rescaled the λ’s in (2.18).
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algebra of infinitesimal symmetries of the rank 16 distribution H = [λ1, λ2, . . . , λ8]⊥,
is the real form of the simple exceptional Lie algebra e6 with Satake diagram

.

Proof of Lemma 4.1 There are at least three ways of proving the Lemma:

• By brute force: solve the PDEs (2.14) for the symmetries Y of the distribution
structure (M, H) defined as the annihilator of the Pfaffian system [λ1, λ2, . . . , λ8]
given in the Lemma. This can be done e.g. by I. Anderson’s Differential geometry
package of Maple. This package can also classify the obtained Lie algebra of
symmetries, showing that the algebra is of type e6. But for this one needs quite a
powerful computer and the commercial software Maple.

• By theCartan equivalence method applied to forms (λi ) given on amanifoldM24
EI I

up to the transformations λi �→ ai jλ j , where the real 8× 8 matrices (ai j ) belong
to GL(8, R). This is very tedious, and as a result gives 78 linearly independent
1-forms on a certain 78-dimensional manifold G which satisfies the EDS of the
Maurer-Cartan forms on the appropriate real form of the simple exceptional Lie
group E6.

• By the Tanaka prolongation method, which we will follow in this exposition.

The proof of the Lemma is based on the Tanaka’s Theorem 2.2. To see this we extend
the eight 1-forms λi generating the Pfaffian system from the Lemma to a coframe
(λA), A = 1, 2 . . . 24, on M24

EI I I
by setting

λi+8 = dxi , λi+16 = dyi , i = 1, 2, . . . , 8.

We calculate all the exterior derivatives dλA obtaining:

dλ1 = λ9 ∧ λ20 + λ10 ∧ λ19 + λ11 ∧ λ18 + λ12 ∧ λ17

dλ2 = λ9 ∧ λ22 + λ10 ∧ λ21 + λ13 ∧ λ18 + λ14 ∧ λ17

dλ3 = λ9 ∧ λ15 − λ11 ∧ λ13 + λ17 ∧ λ23 − λ19 ∧ λ21

dλ4 = λ9 ∧ λ16 + λ10 ∧ λ15 + λ11 ∧ λ14 + λ12 ∧ λ13 + λ17 ∧ λ24 + λ18 ∧ λ23

+ λ19 ∧ λ22 + λ20 ∧ λ21

dλ5 = − λ9 ∧ λ24 + λ10 ∧ λ23 + λ11 ∧ λ22 − λ12 ∧ λ21 − λ13 ∧ λ20 + λ14 ∧ λ19

+ λ15 ∧ λ18 − λ16 ∧ λ17

dλ6 = λ10 ∧ λ16 − λ12 ∧ λ14 + λ18 ∧ λ24 − λ20 ∧ λ22

dλ7 = λ11 ∧ λ24 + λ12 ∧ λ23 + λ15 ∧ λ20 + λ16 ∧ λ19

dλ8 = λ13 ∧ λ24 + λ14 ∧ λ23 + λ15 ∧ λ22 + λ16 ∧ λ21

dλμ = 0, ∀μ = 9, 10, . . . , 24.
(4.1)

We thus have
dλA = − 1

2c
A
BDλB ∧ λD, (4.2)
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with all the coeffcients cABD = −cADB being constants. Thus our 24-dimensional
manifold M24

EI I
with the coframe (λA) can be locally consider to be a Lie group, say

N , for which the coframe (λA) is a coframe of Maurer-Cartan forms. Looking at the
structure constants of the Lie algebra n of this group, which can be read off (4.1)
via (4.2), we see that this Lie group is nilpotent. Indeed, taking the vector fields XA,
A = 1, 2, . . . , 24 on N dual to the coframe 1-forms λB , XA−| λB = δBA , we see that
they form a 2-step nilpotent Lie algebra

n = n-2 ⊕ n-1 (4.3)

with

n-1 = SpanR(X9, X10, . . . , X24), n-2 = SpanR(X1, X2, . . . , X8). (4.4)

We used here the commutation relations of vector fields XA obtained from (4.1)-
(4.2) via the formula [XA, XB] = cE AB XE . Now note that our distribution H from
the Lemma 4.1 is precisely the distrubution spanned, over the functions onN , by the
left invariant vector fields Xμ,μ = 9, 10, . . . , 24, which span the n-1 part of the 2-step
nilpotent Lie algebra n.

So, what is the Lie algebra of symmetries aut(H) of our distribution H from the
Lemma?

Via the Tanaka theory this is a Lie algebra isomorphic to the Tanaka prolongation
gT (n) of the nilpotent Lie algebra n = SpanR(XA). So to determine the Lie algebra
of automorphisms of our rank 16 distribution H it is enough to calculate gT (n) for n
in (4.3)-(4.4).

Calculating the Tanaka prolongation gT (n-) is an algorithmic inductive process
involving only linear algebra applied to n- and its successors n j , j ≥ 0. One first
calculates n0, then n1, etc. Here, for brevity we will only show in details how n0 for
our n, as in (4.3)-(4.4), is calculated

The elements of n0 are derivations A of n preserving the strata n-1 and n-2 in n.
Thus the matrix elements (AB

C ) of a linear map A : n → n belonging to n0 must
satisfy, in the basis (XA), the following equations:

(1) Ai
μ = 0 and Aμ

i = 0, for i = 1, 2, . . . 8, μ = 9, 10, . . . , 24, (preservation of the
strata)

(2) cE BD AE
F − cF BE AD

E + cF DE AB
E = 0, B, D, F = 1, 2, . . . , 24, (derivation

property).

These linear equations for the matrix entries AB
C , with cB DE given by (4.3)-(4.4),

have a 30-dimensional space of solutions. Explicitly

(AB
C ) =

⎛

⎝
Ai

j | 0
−− −−
0 | Aμ

ν

⎞

⎠ , (4.5)
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where

(Ai
j ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a27 + a28 + 2a30 a7 a8 2a9 2a10 a11 a12 0
a1 −a27 + a29 + a30 a17 2a18 2a19 a20 0 a12
a2 a13 −a28 + a29 + a30 2a23 2a24 0 a20 −a11
a3 a14 a21 a30 −a25 − a26 a23 −a18 a9
a4 a15 a22 a25 + a26 a30 a24 −a19 a10
a5 a16 0 2a21 2a22 a28 − a29 + a30 a17 −a8
a6 0 a16 −2a14 −2a15 a13 a27 − a29 + a30 a7
0 a6 −a5 2a3 2a4 −a2 a1 −a27 − a28

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the real matrix (Aμ
ν) is:

(Aμ
ν) =

30∑

k=1

ak Ek, (4.6)

with 16× 16 matrices Ek , k = 1, 2, . . . , 30 given in the Appendix A. Note that there
are 30 real matrix coefficients ak , k = 1, 2, . . . , 30, in the matrix (AB

C ).
The abovematrices (AA

B), are closedwith respect to the commutator ([A, A′]B C )

= (AB
D A′

D
C − A′

B
D AD

C ), as they should be, and form the n0 of the Tanaka
prolongation gT (n).

What is this Lie algebra? By looking for a symmetric tensor gi j = g ji invariant,
Ai

kgk j + A j
kgik = 1

8Tr(A)gi j , under the adjoint action of the matrix (Ai
j ) in n-2,

we find that (gi j ) is a multiple of the numerical matrix

(gi j ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 − 1

2 0 0 0 0
0 0 0 0 − 1

2 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This shows that A acts in n-2 as the Lie algebra cso(3, 5). Thus, the Lie algebra n0
is

n0 = R ⊕ cso(3, 5) = R ⊕ R ⊕ so(3, 5) = 2R ⊕ .

Further calculation shows that n1 is a Lie algebra of dimension 16 = dim(n-1), that
dim(n2) = 8 = dim(n-2), and that nk = {0} for all k > 2. This shows that the Lie
algebra of automorphisms of the distribution H from our Lemma, aut(H), being the
Tanaka prolongation gT (n) = aut(H), has a symmetric gradation

aut(H) = n-2 ⊕ n-1 ⊕ n0 ⊕ n1 ⊕ n2, (4.7)

with its dimension
78 = 8 + 16 + 30 + 16 + 8. (4.8)
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Such a symmetric gradation is typical for a parabolic gradation in a simple Lie
algebra. Comparing the obtained gradation (4.7)-(4.8) with possible gradations in
simple real Lie algebras identifies our aut(H) as the Lie algebra

(4.9)

with the gradation correspondinng to the choice of a parabolic subalgebra indicated
by the crossings in (4.9). Note that if you remove the crossed nodes in (4.9), you will
remain with the Dynkin diagram for so(3, 5), which together with the crossed nodes,
counting as 2R, gives the calculated n0. This finishes the proof of the Lemma. �

Returning to the proof of Theorem1.2,we see from theLemma that ourCR structure
onM24

EI I
has locally EI I symmetric Levi distribution H . But the distribution H defines

n0 which naturally acts in H at every point. We emphasize, that H itself defines n0
and its action. One therefore is tempted to see if there is any object, say a tensor T ,
in H which is invariant with respect to this action. So now, we want to see if there
exists a rank

(1
1

)
tensor J in H preserved by the action of n0 in H , which is the same

as asking about the existence of a 16 × 16 matrix (Tμ
ν) such that

Tμ
ρ Aρ

ν = Aμ
ρTρ

ν ∀μ, ν = 9, 10, . . . , 24. (4.10)

Here the matrix (Aμ ν) is as in (4.5).
We solved the equations (4.10) for an n0 invariant tensor T in H . It turns out that

there is a 2-parameter family of such invariant T s, parametrized by real numbers say
α, β,

T = αidH + β J ,

with

J =
⎛

⎝
0 | −id8×8

−− −−
id8×8 | 0

⎞

⎠ = E25 − E26. (4.11)

Among such invariant T ’s there is a unique (up to a sign) T such that T 2 = −idH .
This happens if and only if α = 0, β = ±1.

So, although we did not assumed any complex structure J in H , there is a prefered
one in there! It is defined uniquely up to a sign by the requirements that J in H satisfies
J 2 = −idH and that it commutes with the action of n0. And because n0 is also fully
defined by H , this J is defined by the real distribution H alone.

If such J were not n0 invariant, then when calculating the Tanaka prolongation
of the composed structure (H , J ), one should not only require that n0 consisted of
the strata preserving derivations of n, but that n0 consists of those strata preserving
derivations in n which in addition preserve J in n-1. In our case, since J commutes
with the n0, the two Lie algebras ‘the strata preserving derivations of n’ and ‘the strata
preserving derivations of nwhich also preserve J in n-1’ are the same. Thus the entire
Tanaka prolongation of n related to the structure of the distribution H alone, and the
Tanaka prolongation of the structure of the distribution H with J , because it is H -
defined, are also the same. As a consequence, the structure (M24

EI I
, H , J ) has the same
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Tanaka prolongation as (M24
EI I

, H), and in turn the entire CR structure (M24
EI I

, H , J )

is (locally) EI I symmetric.
Finally one uses the (M24

EI I
, H , J ) obtained from (M24

EI I
, H), checks that the cor-

responding (H⊥)C ⊂ Z∗ ⊂ (T∗M)C is integrable, and embeds it in C
16. It follows

that this embedding is CR equivalent to the one given in Theorem 1.2.
This finishes the proof of this theorem. �
We now pass to the proof of Theorem 1.3. Since it is almost the same as the proof of

Theorem 1.2 we only give formulae that are different in this theorem when compared
to the formulae in Theorem 1.2.

Proof of Theorem 1.3 This time, the real distribution H in M24
EI I I

is given as the anni-

hilator of the Pfaffian forms [λ1, . . . , λ8], which in the real coordinates (ui , xi , yi ) are
given in Corollary 1.5. Again introducing λi+8 = dxi and λi+16 = dyi , i = 1, . . . , 8,
we easily see that these forms satisfy the following EDS:

dλ1 = λ9 ∧ λ24 + λ10 ∧ λ20 + λ11 ∧ λ23 + λ12 ∧ λ18 + λ13 ∧ λ22 + λ14 ∧ λ21

+ λ15 ∧ λ19 + λ16 ∧ λ17

dλ2 = λ9 ∧ λ20 + λ24 ∧ λ10 + λ22 ∧ λ11 + λ12 ∧ λ17 + λ13 ∧ λ23 + λ19 ∧ λ14

+ λ15 ∧ λ21 + λ18 ∧ λ16

dλ3 = λ9 ∧ λ23 + λ10 ∧ λ22 + λ24 ∧ λ11 + λ21 ∧ λ12 + λ20 ∧ λ13 + λ14 ∧ λ18

+ λ15 ∧ λ17 + λ19 ∧ λ16

dλ4 = λ10 ∧ λ9 + λ13 ∧ λ11 + λ16 ∧ λ12 + λ15 ∧ λ14 + λ18 ∧ λ17 + λ21 ∧ λ19

+ λ24 ∧ λ20 + λ23 ∧ λ22

dλ5 = λ9 ∧ λ22 + λ23 ∧ λ10 + λ11 ∧ λ20 + λ12 ∧ λ19 + λ24 ∧ λ13 + λ14 ∧ λ17

+ λ18 ∧ λ15 + λ21 ∧ λ16

dλ6 = λ13 ∧ λ9 + λ11 ∧ λ10 + λ12 ∧ λ15 + λ16 ∧ λ14 + λ21 ∧ λ17 + λ19 ∧ λ18

+ λ20 ∧ λ23 + λ24 ∧ λ22

dλ7 = λ11 ∧ λ9 + λ10 ∧ λ13 + λ14 ∧ λ12 + λ16 ∧ λ15 + λ19 ∧ λ17 + λ18 ∧ λ21

+ λ22 ∧ λ20 + λ24 ∧ λ23

dλ8 = λ9 ∧ λ17 + λ10 ∧ λ18 + λ11 ∧ λ19 + λ12 ∧ λ20 + λ13 ∧ λ21 + λ14 ∧ λ22

+ λ15 ∧ λ23 + λ16 ∧ λ24

dλμ = 0, ∀μ = 9, 10, . . . , 24.

The constancy of the coefficients CA
BD = −CA

DB in dλA = − 1
2CBDλB ∧ λD

above, and their algebraic structure, again show that these are theMaurer-Cartan forms
on a nilpotent Lie group, say N , with the Lie algebra n being 2-step nilpotent

n = n-2 ⊕ n-1,
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with
n-1 = SpanR(X9, . . . , X24), n-2 = SpanR(X1, . . . , X8),

and XA−| λB = δBA .
The Tanaka prolongation gT (n) of this nilpotent Lie algebra n has n0 consisting of

matrices (with commutator in matrices) of the form

(AB
C ) =

⎛

⎝
Ai

j | 0
−− −−
0 | Aμ

ν

⎞

⎠ ,

where

(Ai
j ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a30 a22 a28 a13 a27 a25 a18 a7
−a22 a30 −a21 a9 −a20 −a19 a14 a3
−a28 a21 a30 a12 a26 a24 a17 a6
−a13 −a9 −a12 a30 −a11 −a10 −a8 −a1
−a27 a20 −a26 a11 a30 a23 a16 a5
−a25 a19 −a24 a10 −a23 a30 a15 −a4
−a18 −a14 −a17 a8 −a16 −a15 a30 −a2
a7 a3 a6 −a1 a5 −a4 −a2 a30

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the real matrix (Aμ
ν) is:

(Aμ
ν) =

30∑

k=1

1
2ak Ẽk, (4.12)

with 16× 16 matrices Ẽk , k = 1, 2, . . . , 30 given in the Appendix B. Note that again
there are 30 real matrix coeffcients ak , k = 1, 2, . . . , 30, in the matrix (AB

C ).
The abovematrices (AA

B), are closedwith respect to the commutator ([A, A′]B C )

= (AB
D A′

D
C − A′

B
D AD

C ), as they should be, and form the n0 of the Tanaka
prolongation gT (n).

Asking again the question of ‘what is this Lie algebra?’, by the same argument of
looking for a symmetric tensor gi j = g ji invariant under the adjoint action of the
matrix (Ai

j ) in n-2, and finding that (gi j ) is a multiple of the diagonal matrix of
the form diag(−1,−1,−1,−1,−1,−1,−1, 1), one sees that A acts in n-2 as the Lie
algebra cso(1, 7). Thus, the Lie algebra n0 is

n0 = R ⊕ cso(1, 7) = R ⊕ R ⊕ so(1, 7) = 2R ⊕

We then calculated n1 and n2 obtaining, in particular, that n1 is a Lie algebra
of dimension 16 = dim(n-1), that dim(n2) = 8 = dim(n-2), and that nk = {0}
for all k > 2. This, as in the case of Theorem 1.3, shows that the Lie algebra of
automorphisms of the distribution H from our Lemma, aut(H), being the Tanaka
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prolongation gT (n) = aut(H), has a symmetric gradation

aut(H) = n-2 ⊕ n-1 ⊕ n0 ⊕ n1 ⊕ n2,

with its dimension
78 = 8 + 16 + 30 + 16 + 8.

This leads to the conclusion that this Lie algebra is with the choice of a

parabolic as indicated by the crossings.5 This proves that the local group of symmetries

of the distribution H from Theorem 1.3 is EI I I with the Lie algebra .

Now: ‘what about the symmetries of the CR structure on M24
EI I I

?’. The point is that
again the (Levi) distribution H on its own, by its mere algebraic structure, defines J
in it. Again there exists a unique (up to a sign) rank

(1
1

)
tensor J in H preserved by

the action of n0 in H and squaring to ‘−idH ’. In the basis (X9, . . . , X24) in H it is
given by

J =
⎛

⎝
0 | −id8×8

−− −−
id8×8 | 0

⎞

⎠ = Ẽ29.

Thus, again, the structure (M24
EI I I

, H , J ) has the same Tanaka prolongation as

(M24
EI I I

, H), and in turn the entire structure (M24
EI I I

, H , J ) is (locally) EI I I sym-
metric.

Also, as in the previous case, one uses the (M24
EI I I

, H , J ) obtained from (M24
EI I I

, H)

and embedds it in C
16. It follows that this embedding is equivalent to the one given in

Theorem 1.3.
This finishes the proof of this theorem. �

5 Classification of Accidental CR Graded Simple Lie Algebras

Following the discussion in Section 2.5 about our approach to search for accidental CR
structures, we start out by classifying the corresponding graded simple Lie algebras.

Recall that a real graded Lie algebra (abbreviated as GLA) is a real Lie algebra g
with a direct sumdecomposition g = ⊕

p∈z̄ gp such that each gp is a finite dimensional
real vector subspace of g and [gp, gq ] ⊂ gp+q for all integers p, q.

Note that g0 is a subalgebra of g and that by restriction of the adjoint representation,
there is a natural representation of g0 on gp for any integer p.

We will denote by n−(g) the nilpotent subalgebra ⊕p<0gp of g. The maximum d
of the set of integers p for which g−p �= 0 is called the depth of the GLA. A GLA
g = ⊕

p∈z̄ gp is called fundamental if g−1 generates n−(g) = ⊕
p<0 gp.

5 Note that if you remove the crossed nodes, you will remain with the Dynkin diagram for so(1, 7), which
together with the crossed nodes, counting as 2R, gives the calculated n0.
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A real simple Lie algebra g belongs to two disjoint families (see [14]):

(1) Complex type: g is a complex simple Lie algebra g̃ regarded as real. In this case,
the complexification gC is only semisimple as a complex Lie algebra.

(2) Real type: g is a real form of a complex Lie algebra. In this case, gC is simple as
a complex Lie algebra.

In this paper, we are mainly interested in the second case of real type. Note that for
the Killing form κ of a simple GLA g, we have κ(gp, gq) �= 0 ⇐⇒ p + q = 0.

Definition 5.1 Let

g = g−d ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gd

be a simple graded Lie algebra of real type. g is said to have an accidental CR structure
if

(1) g is fundamental,
(2) g is the Tanaka prolongation of n−,
(3) g−1 has an almost complex structure J compatible with the g0-action, that is, there

exists an R-linear transformation J : g−1 → g−1 such that

J 2 = −Idg−1 , and adH ◦ J = J ◦ adH , ∀H ∈ g0.

Remark 5.2 The pattern of this definition should be adoptable to define other acciden-
tal structures as discussed above in Subsection 2.5.

The authors of this paper started with this definition and looked to classify such
accidental CR graded simple Lie algebras. ThroughMaple calculations ofmany exam-
ples, they came to the realization that such accidental CR structures exist when the
grading roots for the gradation come in pairs in the Satake diagram.

After the realization that their list of such candidate simple Lie algebras are exactly
the same as those in [8, Section 4], the present authors were drawn to the fundamental
works of Medori and Nacinovich [7, 8].

The first paper [7] systematically studied Levi-Tanaka algebras following the
method of N. Tanaka. In the second paper [8], Medori and Nacinovich classified
all semisimple Levi-Tanaka algebras, of both the complex and the real types.

For the reader’s convenience, we recall their basic definitions and compare their
results with our more naive version. For the application to CR geometry, [7, 8] put the
integrability conditions in (2.9) and (2.10) of J in the forefront from the beginning,
as should be.

Definition 5.3 ([8, p. 287]) Let g = ⊕
p∈z̄ gp be a finite dimensional real graded Lie

algebra. g is called a Levi-Tanaka algebra if

(1) g is fundamental;
(2) there is a partial complex structure on g, that is, an R-linear map J : g−1 → g−1

which satisfies {
J 2 = −I dg−1 ,

[J X , JY ] = [X ,Y ], ∀X ,Y ∈ g−1.
(5.1)
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(3) the adjoint representation gives an isomorphism between g0 and the algebra of
0-degree derivations of n−(g) whose restriction to g−1 commutes with J ;

Definition 5.4 ([8, Section 4]) A simple Levi-Tanaka Lie algebra of the real type is a
Levi-Tanaka Lie algebra that is also a simple Lie algebra of the real type.

If we compare our Definition 5.1 and their Definitions 5.3 and 5.4, we see that we
didn’t require the partial integrability condition (5.1). Also a Levi-Tanaka algebra 5.3
is stronger in condition (3) requiring that g0 is equal to the unitary algebra su(g−1) for
J , while accidental CR structure 5.1 only requires that g0 is a subalgebra of su(g−1).
On the other hand, for accidental CR structure 5.1, condition (2) explicitly requires
that the simple Lie algebra is the Tanaka prolongation of n-.

The gradations on a simple Lie algebra of the real type in the second case can
be given in terms of the restricted roots or using the Satake diagram [14], with the
latter giving more information. Recall that the nodes on the Satake diagram are black
when the corresponding simple roots are compact (or purely imaginary), or otherwise
white. Some pairs of white nodes are joined by curved arrows if they are conjugate
to each other, modulo the compact roots. The other white ones stand alone. Using the
Satake diagram, a gradation on g is given by a subset B−1 of simple roots represented
by white nodes, where one may choose some standing-alone white nodes or pairs of
white nodes joined by curved arrows.

Theorem 5.5 ([8, Thm 4.1]) Let g be a simple graded Lie algebra of the real type.
Then g admits the structure of a Levi-Tanaka algebra if and only if its Satake diagram
satisfies that the set of grading roots is nonempty and consists of a disjoint union of
pairs of white roots joined by a curved arrow.

Then [8, Section 4] lists all the possible simple Levi-Tanaka algebras of the real
type as follows.

(1) su(p, q), 1 ≤ p < q, p + q = � + 1 graded by

B−1 = {αi1 , . . . , αiν , α�−iv+1, . . . , α�−i1+1}

where 1 ≤ i1 < · · · < iv ≤ p, with depth 2ν,
(2) su(p, p), p ≥ 2, 2p = � + 1 graded by

B−1 = {αi1 , . . . , αiν , α�−iv+1, . . . , α�−i1+1}

where 1 ≤ i1 < · · · < iv ≤ p − 1, with depth 2ν,
(3) so(� − 1, � + 1), � ≥ 4 graded by B−1 = {α�−1, α�}, with depth 2,
(4) so∗(2�), � = 2m + 1,m ≥ 2 graded by B−1 = {α�−1, α�}, with depth 2,
(5) EI I graded by B−1 = {α1, α6}, {α3, α5} or {α1, α3, α5, α6}, with depths 2, 4, 6,
(6) EI I I graded by B−1 = {α1, α6} with depth 2.

Adapting their proof to our situation, we can also get the following result.
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Theorem 5.6 A simple Lie algebra of real type admits an accidental CR structure iff
it admits a Levi-Tanaka structure other than the case of

su(p, q), 1 ≤ p < q, p + q = � + 1 graded by B−1 = {α1, α�},
su(p, p), 2 ≤ p, 2p = � + 1 graded by B−1 = {α1, α�}. (5.2)

Therefore the J in the accidental CR structure can be made integrable, and up to a
sign, such integrable J is unique.

Proof of Theorem 1.3 The criterion for a simple graded Lie algebra g to be the pro-
longation of n− is given in [14, Theorem 5.3]. Then all the simple Levi-Tanaka Lie
algebras have accidental structures except those listed in (5.2), that is, the hypersurface
type CR structure discussed in the introduction.

Now in the other direction, we can show that an accidental CR structure always
implies a Levi-Tanaka structure.

The main technical advantage of the proof in [8] over our original more compu-
tational approach is their theorem 2.4. It states that the partial complex structure J
is induced by a unique element J̃ ∈ g0. This part does not require the integrability
condition. All it requires is that the J : g−1 → g−1 defines a degree 0 derivation
of n−. In the Levi-Tanaka cases, this derivation is J itself so it belongs to g0. In our
accidental CR structure case, condition (2) would imply that such a derivation belongs
to the degree 0 part of the Tanaka prolongation and so in our g0.

For a pair of grading roots α, α′ ∈ B−1 joined by a curved arrow in the Satake
diagram, the corresponding root spaces gα, gα′ belong separately to

g
(1,0)
−1 = {X − √−1J X | X ∈ g−1} ⊂ gC−1,

g
(0,1)
−1 = {X + √−1J X | X ∈ g−1} ⊂ gC−1,

by [8, p. 290]. We then call the corresponding root to have type (1, 0) or (0, 1) accord-
ingly. The choice of J consists of deciding, among each pair of such roots, which
one has type (1, 0). The integrability condition [J X , JY ] = [X ,Y ] for X ,Y ∈ g−1
is spelled out in [8, eqn. (14)] as follows. If Y is a connected subset of the Satake
diagram of g and Y ∩B−1 = {αi , α j } with i < j , then αi and α j have different types.
Therefore, an integrable J , if it exists, is uniquely determined by the type of one root
in B−1, and we just alternate the types for the roots in B−1 as we travel through the
Satake diagram.

In our case where B−1 consists of pairs of roots α, α′ joined by curved arrows,
conditon (iii) in the proof of Theorem 4.1 in [8] observed that the line connecting α

and α′ contains an even number of vertices in B−1. This means that our alternation
method would still satisfy that α and α′ have different types. So an integrable J exists
for any of our accidental CR structures, and it is unique up to a sign. �

Remark 5.7 Medori andNacinovich [8] also classifies simple Levi-Tanaka Lie algebra
of complex type. There, the gradation root sets are more flexible, and the integrability
condition comes in much more prominently and is the main factor to decide the result.
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We summarize the accidental CR structures with depth 2 that we studied in this
paper in the following theorem. We also find among them the nonrigid ones.

Theorem 5.8 (1) The list of simple Lie algebras of real type with an accidental CR
structure of depth 2 is as follows.

(a) EI I graded by B−1 = {α1, α6} corresponding to Theorem 1.2,
(b) EI I I graded by B−1 = {α1, α6} corresponding to Theorem 1.3,
(c) so(� − 1, � + 1), � ≥ 4 graded by B−1 = {α�−1, α�} corresponding to

Theorem 3.1,
(d) so∗(2�), � = 2m + 1,m ≥ 2 graded by B−1 = {α�−1, α�} corresponding to

Theorem 3.3,
(e) su(p, q), 1 ≤ p ≤ q, p + q = � + 1 graded by B−1 = {αs, α�−s+1}, where

2 ≤ s ≤ p if p < q, and 2 ≤ s < p if p = q, corresponding to Theorem 3.5.

(2) Among such accidental CR structures with depth 2, the only nonrigid ones are
su(p, q), p + q = � + 1 graded by B−1 = {α2, α�−1}, where 2 ≤ p < q or
3 ≤ p = q.

Proof of Theorem 1.3 Part (1) follows from Theorem 5.5, the list after it, and
Theorem 5.6.

Recall that a parabolic geometry modeled on a graded Lie algebra g with negative
part n− is nonrigid if the Lie algebra cohomology H2(n−, g) has nonzero components
with nonnegativeweights.K.Yamaguchi in [14, Prop. 5.5] listed all such simple graded
Lie algebras. Comparing that list with Part (1), we see that the only common cases are
Yamaguchi’s case (I.8) for � = 4 and (I.10) for � ≥ 5, that is A� graded by {α2, α�−1}
for � ≥ 4. This is our Part (2). �

Appendix A

Basis forR ⊕ cso(3, 5) in 16-dim Representation

First we introduce 16 × 16 real matrices Fμ
ν = (Fμ

να
β), μ, ν = 1, 2, . . . , 16,

α, β = 1, 2, . . . , 16, with matrix elements Fμ
να

β = δ
μ
α δ

β
ν . Then, the matrices

spanning R ⊕ cso(3, 5) and standing in formula (4.6) are:

E1 =F5
3 + F6

4 + F13
11 + F14

12,

E2 = − F5
10 + F7

12 + F13
2 − F15

4,

E3 =F5
9 + F6

10 + F7
11 + F8

12 − F13
1 − F14

2 − F15
3 − F16

4,

E4 = − F5
1 + F6

2 + F7
3 − F8

4 − F13
9 + F14

10 + F15
11 − F16

12,

E5 = − F6
9 + F8

11 + F14
1 − F16

3,

E6 = F7
1 + F8

2 + F15
9 + F16

10,

E7 = F3
5 + F4

6 + F11
13 + F12

14,
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E8 = F2
13 − F4

15 − F10
5 + F12

7,

E9 = −F1
13 − F2

14 − F3
15 − F4

16 + F9
5 + F10

6 + F11
7 + F12

8,

E10 = −F1
5 + F2

6 + F3
7 − F4

8 − F9
13 + F10

14 + F11
15 − F12

16,

E11 =F1
14 − F3

16 − F9
6 + F11

8,

E12 =F1
7 + F2

8 + F9
15 + F10

16,

E13 =F3
10 + F7

14 − F11
2 − F15

6,

E14 = − F3
9 − F4

10 + F7
13 + F8

14 + F11
1 + F12

2 − F15
5 − F16

6,

E15 =F3
1 − F4

2 + F7
5 − F8

6 + F11
9 − F12

10 + F15
13 − F16

14,

E16 =F4
9 + F8

13 − F12
1 − F16

5,

E17 = − F2
11 − F6

15 + F10
3 + F14

7,

E18 =F1
11 + F2

12 − F5
15 − F6

16 − F9
3 − F10

4 + F13
7 + F14

8,

E19 =F1
3 − F2

4 + F5
7 − F6

8 + F9
11 − F10

12 + F13
15 − F14

16,

E20 = − F1
12 − F5

16 + F9
4 + F13

8,

E21 =F2
1 − F4

3 − F6
5 + F8

7 + F10
9 − F12

11 − F14
13 + F16

15,

E22 =F2
9 + F4

11 + F6
13 + F8

15 − F10
1 − F12

3 − F14
5 − F16

7,

E23 =F1
2 − F3

4 − F5
6 + F7

8 + F9
10 − F11

12 − F13
14 + F15

16,

E24 = − F1
10 − F3

12 − F5
14 − F7

16 + F9
2 + F11

4 + F13
6 + F15

8,

E25 = − F1
9 − F4

12 − F6
14 − F7

15 + F9
1 + F12

4 + F14
6 + F15

7,

E26 =F2
10 + F3

11 + F5
13 + F8

16 − F10
2 − F11

3 − F13
5 − F16

8,

E27 =F3
3 + F4

4 − F5
5 − F6

6 + F11
11 + F12

12 − F13
13 − F14

14,

E28 =F2
2 + F4

4 − F5
5 − F7

7 + F10
10 + F12

12 − F13
13 − F15

15,

E29 =F1
1 − F4

4 + F5
5 − F8

8 + F9
9 − F12

12 + F13
13 − F16

16,

E30 =F1
1 + F2

2 + F3
3 + F4

4 + F9
9 + F10

10 + F11
11 + F12

12.

Appendix B

Basis forR ⊕ cso(1, 7) in 16-dim Representation

The matrices spanning R ⊕ cso(1, 7) and standing in formula (4.12) are:

Ẽ1 = −(F1
10 + F10

1) + (F2
9 + F9

2) − (F3
13 + F13

3) − (F4
16 + F16

4)

+(F5
11 + F11

5) − (F6
15 + F15

6) + (F7
14 + F14

7) + (F8
12 + F12

8),

Ẽ2 = −(F1
11 + F11

1) + (F2
13 + F13

2) + (F3
9 + F9

3) − (F4
14 + F14

4)
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−(F5
10 + F10

5) + (F6
12 + F12

6) − (F7
16 + F16

7) + (F8
15 + F15

8),

Ẽ3 = (F1
4 + F4

1) − (F2
8 + F8

2) − (F3
6 + F6

3) + (F5
7 + F7

5)

+(F9
12+ F12

9)−(F10
16+F16

10)−(F11
14+F14

11)+(F13
15+F15

13),

Ẽ4 = − (F1
13 + F13

1) − (F2
11 + F11

2) + (F3
10 + F10

3) + (F4
15 + F15

4)

+ (F5
9 + F9

5) − (F6
16 + F16

6) − (F7
12 + F12

7) + (F8
14 + F14

8),

Ẽ5 =(F1
6 + F6

1) − (F2
7 + F7

2) + (F3
4 + F4

3) − (F5
8 + F8

5)

+ (F9
14+F14

9)−(F10
15+F15

10)+(F11
12+F12

11)−(F13
16+F16

13),

Ẽ6 =(F1
7 + F7

1) + (F2
6 + F6

2) − (F3
8 + F8

3) − (F4
5 + F5

4)

+ (F9
15+F15

9)+(F10
14+F14

10)−(F11
16+F16

11)−(F12
13+F13

12),

Ẽ7 =(F1
8 + F8

1) + (F2
4 + F4

2) + (F3
7 + F7

3) + (F5
6 + F6

5)

+ (F9
16 + F16

9)+(F10
12+F12

10)+(F11
15+F15

11)+(F13
14+F14

13),

Ẽ8 = − (F1
5 − F5

1) − (F2
3 − F3

2) − (F4
7 − F7

4) + (F6
8 − F8

6)

− (F9
13−F13

9)−(F10
11−F11

10)−(F12
15−F15

12)+(F14
16−F16

14),

Ẽ9 =(F1
16 − F16

1) + (F2
12 − F12

2) − (F3
15 − F15

3) + (F4
10 − F10

4)

− (F5
14 − F14

5) − (F6
13 − F13

6) − (F7
11 − F11

7) + (F8
9 − F9

8),

Ẽ10 =(F1
3 − F3

1) − (F2
5 − F5

2) − (F4
6 − F6

4) − (F7
8 − F8

7)

+ (F9
11−F11

9)−(F10
13−F13

10)−(F12
14−F14

12)−(F15
16−F16

15),

Ẽ11 =(F1
15 − F15

1) + (F2
14 − F14

2) + (F3
16 − F16

3) + (F4
13 − F13

4)

+ (F5
12 − F12

5) + (F6
10 − F10

6) + (F7
9 − F9

7) + (F8
11 − F11

8),

Ẽ12 = − (F1
14 − F14

1) + (F2
15 − F15

2) + (F3
12 − F12

3) + (F4
11 − F11

4)

− (F5
16 − F16

5) − (F6
9 − F9

6) + (F7
10 − F10

7) − (F8
13 − F13

8),

Ẽ13 = − (F1
12 − F12

1) + (F2
16 − F16

2) − (F3
14 − F14

3) − (F4
9 − F9

4)

+ (F5
15 − F15

5) − (F6
11 − F11

6) + (F7
13 − F13

7) + (F8
10 − F10

8),

Ẽ14 =(F1
14 − F14

1) + (F2
15 − F15

2) + (F3
12 − F12

3) + (F4
11 − F11

4)

+ (F5
16 − F16

5) + (F6
9 − F9

6) + (F7
10 − F10

7) + (F8
13 − F13

8),

Ẽ15 = − (F1
2 − F2

1) − (F3
5 − F5

3) + (F4
8 − F8

4) + (F6
7 − F7

6)

− (F9
10−F10

9)−(F11
13−F13

11)+(F12
16−F16

12)+(F14
15−F15

14),

Ẽ16 = −(F1
12 − F12

1) − (F2
16 − F16

2) + (F3
14 − F14

3) − (F4
9 − F9

4)

+(F5
15 − F15

5) + (F6
11 − F11

6) + (F7
13 − F13

7) − (F8
10 − F10

8),

Ẽ17 = (F1
16 − F16

1) − (F2
12 − F12

2) + (F3
15 − F15

3) − (F4
10 − F10

4)
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−(F5
14 − F14

5) − (F6
13 − F13

6) + (F7
11 − F11

7) + (F8
9 − F9

8),

Ẽ18 = −(F1
15 − F15

1) + (F2
14 − F14

2) + (F3
16 − F16

3) − (F4
13 − F13

4)

−(F5
12 − F12

5) + (F6
10 − F10

6) − (F7
9 − F9

7) + (F8
11 − F11

8),

Ẽ19 =(F1
15 − F15

1) − (F2
14 − F14

2) + (F3
16 − F16

3) − (F4
13 − F13

4)

− (F5
12 − F12

5) − (F6
10 − F10

6) + (F7
9 − F9

7) + (F8
11 − F11

8),

Ẽ20 = − (F1
3 − F3

1) − (F2
5 − F5

2) − (F4
6 − F6

4) + (F7
8 − F8

7)

−(F9
11−F11

9)−(F10
13−F13

10)−(F12
14−F14

12)+(F15
16−F16

15),

Ẽ21 =(F1
5 − F5

1) − (F2
3 − F3

2) − (F4
7 − F7

4) − (F6
8 − F8

6)

+(F9
13−F13

9)−(F10
11−F11

10)−(F12
15−F15

12)−(F14
16−F16

14),

Ẽ22 = − (F1
2 − F2

1) + (F3
5 − F5

3) − (F4
8 − F8

4) + (F6
7 − F7

6)

−(F9
10−F10

9)+(F11
13−F13

11)−(F12
16−F16

12)+(F14
15−F15

14),

Ẽ23 =(F1
16 − F16

1) − (F2
12 − F12

2) − (F3
15 − F15

3) − (F4
10 − F10

4)

+ (F5
14 − F14

5) + (F6
13 − F13

6) − (F7
11 − F11

7) + (F8
9 − F9

8),

Ẽ24 =(F1
12 − F12

1) + (F2
16 − F16

2) + (F3
14 − F14

3) + (F4
9 − F9

4)

+ (F5
15 − F15

5) + (F6
11 − F11

6) + (F7
13 − F13

7) + (F8
10 − F10

8),

Ẽ25 = − (F1
14 − F14

1) − (F2
15 − F15

2) + (F3
12 − F12

3) + (F4
11 − F11

4)

+ (F5
16 − F16

5) − (F6
9 − F9

6) − (F7
10 − F10

7) + (F8
13 − F13

8),

Ẽ26 = − (F1
2 − F2

1) + (F3
5 − F5

3) + (F4
8 − F8

4) − (F6
7 − F7

6)

−(F9
10−F10

9)+(F11
13−F13

11)+(F12
16−F16

12)−(F14
15−F15

14),

Ẽ27 = − (F1
5 − F5

1) + (F2
3 − F3

2) − (F4
7 − F7

4) − (F6
8 − F8

6)

− (F9
13−F13

9)+(F10
11−F11

10)−(F12
15−F15

12)−(F14
16−F16

14),

Ẽ28 = − (F1
3 − F3

1) − (F2
5 − F5

2) + (F4
6 − F6

4) − (F7
8 − F8

7)

−(F9
11−F11

9)−(F10
13−F13

10)+(F12
14−F14

12)−(F15
16−F16

15),

with Ẽ29 = J as in (4.11), and Ẽ30 = id16×16.

λ1 = d
(
x8− x7− 1

4

(
(x1)2+ (x2)2+ (x3)2+ (x4)2

))+ 1
2

(
x2dx1− x1dx2+ x4dx3− x3dx4

)

λ2 = d
(
x8− x5− 1

4

(
(x1)2+ (x2)2+ (x3)2+ (x4)2

))+ 1
2

(
x3dx1− x1dx3+ x2dx4− x4dx2

)

λ3 = d
(
x8− x6− 1

4

(
(x1)2+ (x2)2+ (x3)2+ (x4)2

))+ 1
2

(
x4dx1− x1dx4+ x3dx2− x2dx3

)

λ1 = d
(
x8 − x7 + x6 + x5

) + x2dx1 − x1dx2 + x4dx3 − x3dx4,

λ2 = d
(
x8 + x7 + x6 − x5

) + x3dx1 − x1dx3 + x2dx4 − x4dx2,

λ3 = d
(
x8 + x7 − x6 + x5

) + x4dx1 − x1dx4 + x3dx2 − x2ddx3.
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Appendix C

Here we present the explicit formulae for the CR symmetry generators of the SO(� +
1, � − 1) homogenous CR manifolds described in Theorem 3.1. The notation is as in
this theorem. Thus, in coordinates:

z = (z1, . . . , z�−1) and w = (
wi j )

1�i< j��−1,

we have the CR submanifold MN (�) ⊂ C�(�−1)/2 of Section 3.2 defined by

wi j − wi j = zi z j − zi z j (1� i < j � �−1),

with

CRdim M = � − 1 and codim M = (�−1)(�−2)
2 .

As is known, when the CR structure is embedded, the real infinitesimal CR sym-
metries Y , as defined in (2.13), are determined by the holomorphic vector fields:

Y =
�−1∑

i=1

Zi (z, w) ∂zi +
�−1∑

j=1

�−1∑

k=1

Wjk(z, w) ∂w jk ,

whose (double) real part Y + Y is tangent to the (extrinsic) CR manifold:

hol(M) := {
Y : Y + Y is tangent to M

}
.

Defining symmetries via this requirement is equivalent to the definition (2.13). In
particular, hol(M) is a real Lie algebra isomorphic to the Lie algebra of symmetries
gJ as defined in (2.13).

Below, to save space, only the holomorphic part of the symmetry is written; to get
the real symmetry Y one has to add the term ‘+Y ’, in the formulae below.

Attributing the weights:

[zi ] :=1=:[z̄i ], [
∂zi

] :=−1=:[∂z̄i
] [w jk] :=2=:[w̄ jk], [

∂w jk

] :=−2=:[∂w̄ jk

]

there is a grading:

hol(M)=g−2⊕g−1⊕g0⊕g1⊕g2=sox(�−1, �+1) with dim g−λ =dim gλ,

where
gλ = {

Y ∈ hol(M) : [Y ] = λ
}
.

Dimensions are:

g−2 g−1 g0 g1 g2

(�−1)(�−2)
2 2 (� − 1) (� − 1)2 + 1 2 (� − 1) (�−1)(�−2)

2
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The (�−1)(�−2)
2 generators of g−2 are:

Y−2
wi j := ∂wi j (1� i < j � �−1).

The (� − 1) + (� − 1) generators of g−1 are:

Y−1
zi

:= ∂zi +
∑

1�k<i

zk ∂wki −
∑

i<k��−1

zk ∂wik (1� i � �−1),

IY−1
zi

:= √−1 ∂zi −
∑

1�k<i

√−1 zk ∂wki +
∑

i<k��−1

√−1 zk ∂wik (1� i � �−1),

The (�−1)(�−2)
2 + (� − 1) + (�−1)(�−2)

2 + 1 generators of g0 are:

Y 0
i j := zi ∂z j +

∑

1�k<i

wki ∂wk j −
∑

i<k< j

wik ∂wk j +
∑

j<k��−1

wik ∂w jk (1� i < j � �−1),

Y 0
i i := zi ∂zi +

∑

1�k<i

wki ∂wki +
∑

i<k��−1

wik ∂wik (1� i � �−1),

Y 0
i j := zi ∂z j +

∑

1�k< j

wki ∂wk j −
∑

j<k<i

wki ∂w jk +
∑

i<k��−1

wik ∂w jk , (1� j < i � �−1),

together with the rotation:

R := √−1 z1 ∂z1 + · · · + √−1 z�−1 ∂z�−1 .

The sum of the Y 0
i i equals the dilation:

D :=
∑

1�k��−1

zk ∂zk +
∑

1�k<m��−1

wkm ∂wkm .

The (� − 1) + (� − 1) generators of g1 are:

Y 1
zi zi :=

∑

1�k<i

(
zi zk − wki ) ∂zk + zi zi ∂zi +

∑

i<k��−1

(
zi zk + wik) ∂zk

+
∑

1�k<i

zi wki ∂wki +
∑

i<m��−1

zi wim ∂wim

+
∑

1�k<m<i

∣∣∣ z
k −wki

zm −wmi

∣∣∣ ∂wkm +
∑

1�k<i
i<m��−1

∣∣∣ z
k −wki

zm wim

∣∣∣ ∂wkm

+
∑

i<k<m��−1

∣∣∣ z
k wik

zm wim

∣∣∣ ∂wkm ,

IY 1
zi zi :=

∑

1�k<i

(√−1 zi zk+√−1wki ) ∂zk +√−1 zi zi ∂zi +
∑

i<k��−1

(√−1 zi zk−√−1wik) ∂zk
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+
∑

1�k<i

√−1 zi wki ∂wki +
∑

i<m��−1

√−1 zi wim ∂wim +
∑

1�k<m<i

√−1

∣∣∣ z
k −wki

zm −wmi

∣∣∣ ∂wkm

+
∑

1�k<i
i<m��−1

√−1

∣∣∣ z
k −wki

zm wim

∣∣∣ ∂wkm +
∑

i<k<m��−1

√−1

∣∣∣ z
k wik

zm wim

∣∣∣ ∂wkm .

The (�−1)(�−2)
2 generators of g2 are, with i < j :

Y 2
wi jwi j :=

∑

1�k<i

∣∣∣z
i wki

z j wk j

∣∣∣ ∂zk +zi wi j ∂zi +
∑

i<k< j

∣∣∣z
i −wik

z j wk j

∣∣∣ ∂zk +z j wi j ∂z j +
∑

j<k��−1

∣∣∣z
i −wik

z j −w jk

∣∣∣ ∂zk

+
∑

1�k<i

wi j wki ∂wki +
∑

1�k<i

wi j wk j ∂wk j +
∑

i<m< j

wi j wim ∂wim + wi j wi j ∂wi j

+
∑

j<m��−1

wi j wim ∂wim +
∑

i<k< j

wi j wk j ∂wk j +
∑

j<m��−1

wi j w jm ∂w jm

+
∑

1�k<m<i

∣∣∣−wki −wk j

−wmi −wmj

∣∣∣ ∂wkm +
∑

1�k<i
i<m< j

∣∣∣−wki −wk j

wim −wmj

∣∣∣ ∂wkm +
∑

1�k<i
j<m��−1

∣∣∣−wki −wk j

wim w jm

∣∣∣ ∂wkm

+
∑

i<k<m< j

∣∣∣wik −wk j

wim −wmj

∣∣∣ ∂wkm +
∑

i<k< j
j<m��−1

∣∣∣wik −wk j

wim w jm

∣∣∣ ∂wkm

+
∑

j<k<m��−1

∣∣∣wik w jk

wim w jm

∣∣∣ ∂wkm .
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