photonpacket.stat1d module¶
-
photonpacket.stat1d.
mean
(s, uncert=False)[source]¶ Calculate the mean photon number
- Parameters
- s
photonpacket.frameseriesq
ornp.ndarray
Series of photon frames or photon counts
- s
- Returns
- double
Mean photon number
Notes
The mean photon number is calculated as
\langle n \rangle = \sum_i^N n_i / N
where n_i is the total number of photons in frame i and N is the total number of frames in the series.
Examples
>>> fs.mean() 0.553
-
photonpacket.stat1d.
subbinomal
(fs)[source]¶ Calculate the sub-binomial paramter
- Parameters
- fs
photonpacket.frameseries
Series of photon frames
- fs
- Returns
- double
The sub-binomial parameter
Notes
The sub-binomial parameter was introduced in [1]
References
- 1
Sperling, W. Vogel, and G. S. Agarwal, “Sub-binomial light”, Phys. Rev. Lett. 109, 093601 (2012).
Examples
>>> fs.subbinomial() 1
-
photonpacket.stat1d.
thmodes
(fs, uncert=False)[source]¶ Calculate the number of modes estimated assuming the photons are distributed thermally
- Parameters
- fs
photonpacket.frameseries
Series of photon frames
- fs
- Returns
- double
Estimated number of thermal modes
See also
qmandel
Related Mandel Q Parameter
Notes
Number of thermal modes may be estimated as:
M = \langle n \rangle^2 / (\Delta^2 n - \langle n \rangle)
where \langle n \rangle is the mean photon number and \Delta^2 n is photon number variance.
Examples
>>> fs.thmodes() 1