
DRAFT
Non-equilibrium Statistical Physics

M. Panfil,

Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
milosz.panfil@fuw.edu.pl

May 28, 2025

These are very rough and incomplete notes for the course. I primarily prepare
them for my personal use during the lectures. There are typos, mistakes and missing
explanations. Their quality will gradually improve but use with caution.

I will be grateful for letting me know about any spotted typos and errors.

Contents
1 Motivation 2

2 Microscopic and macroscopic dynamical systems 4
2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The phase space distribution function . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Equilibrium states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Reduced distributions, correlations and the BBGKY hierarchy 9
3.1 Evolution equations for the reduced distributions . . . . . . . . . . . . . . . . . 10
3.2 Correlation functions and their evolution . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Vlasov and Landau equations 15
4.1 Weakly coupled systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Derivation of the Vlasov equation and its properties . . . . . . . . . . . . . . . . 15
4.3 Landau equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Boltzmann equation 21
5.1 Entropy and stationary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Collision invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Hydrodynamic quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Hydrodynamic balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 More on the Boltzmann equation 26
6.1 Cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Heuristic derivation of the Boltzmann equation . . . . . . . . . . . . . . . . . . 28
6.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



DRAFT
7 Linearized Boltzmann equation and transport coefficients 31

7.1 Linearized Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Linearised hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Self-diffusion 36
8.1 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Green-Kubo formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Additional exercises 38

The presentation follows mainly:

• Statistical Dynamics: Matter out of Equilibrium by R. Balescu

I take also inspirations from

• Kinetic Theory: Classical, Quantum, and Relativistic Descriptions by R.L. Liboff

• Classical Kinetic Theory of Fluids by P. Resibois, M. de Leener

Another suggested book is

• Contemporary kinetic theory of matter by J. R. Dorfman, H. Van Beijeren, T. R. Kirk-
patrick.

A good online source (for our purposes mainly Lectures 1, 2 and 4)

• Lectures on Kinetic Theory by D. Tong, https://www.damtp.cam.ac.uk/user/tong/
kinetic.html

1 Motivation
Navier-Stokes equations

∂tρ = −∇ · (ρu), (1.1)
∂t(ρu) = −∇ · (ρuu+ P + π) , (1.2)
∂t(ρe) = −∇ · (ρeu+ q)− P∇ · u− π : ∇u. (1.3)

State of the system described by ρ,u, e. Here P is the (scalar) pressure, π(x, t) is the dissipative
pressure tensor and q(x, t) is the heat flux. Locally in space and time the usual thermodynamics
works. Pressure P (x, t) and internal energy e(x, t) follow from local temperature T (x, t) and
density ρ(x, t) through from the equation of state.

The dissipative pressure tensor and heat flux are given by transport equations

π = −η{∇u}o − ζ (∇ · u) , q = −κ∇T, (1.4)

with transport coefficients: shear viscosity η, bulk viscosity ζ and thermal conductivity κ.
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In writing the equations we used the following notation (∇u)ij = ∇iuj,

{∇u}o = ∇u+ (∇u)T − 2
3
(∇ · u) , (∇ · uu)i = ∇juiuj. (1.5)

and tensor multiplication.
Observe that the Navier-Stokes equations are not invariant under the time invarsion

t→ −t, u→ −u. (1.6)

They describe irreversible dynamics. The terms breaking the reversability are proportional to
the transport coefficients, they describe dissipative processes. For transport coefficients equal
to zero, we get reversible Euler equations

∂tρ = −∇ · (ρu), (1.7)
∂t(ρu) = −∇ · (ρuu+ P ) , (1.8)
∂t(ρe) = −∇ · (ρeu)− P∇ · u. (1.9)

What is the microscopic origin of the Navier-Stokes equations and how the macroscopic time
irreversibility relates to the microscopic reversibility?
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2 Microscopic and macroscopic dynamical systems
Consider Hamiltonian system of classical mechanics of N particles. Each particle is described
by its position qj and momentum pj which are 3-dimensional vectors. A state of the system is
then described by specifying positions and momenta of all the particles: (q1, . . . ,qN ,p1, . . . ,pN)
and we can think about it as a point in the 6N -dimensional space called phase space. We can
also think about 6N = 2F where F is the number of degrees of freedom. We will often denote
the point of a phase space as (q, p) where q is the set of F coordinates and p is the set of F
momenta.

We also introduce dynamical functions, these are functions on the phase space B(p, q). An
example is the Hamiltonian H(p, q). (isolated (conservative) systems)

The Hamiltonian determines the law of evolution. These are Hamilton’s equations of motion

dqj(t)
dt
=
∂H(q, p)
∂pj

,
dpj(t)
dt
= −∂H(q, p)

∂qj
(2.1)

The dynamical function will evolve accordingly. Writing b(q, p; t) = b(q(t), p(t)) we find

∂tb(q, p; t) =
F∑
j=1

(
∂b

∂qj

dqj
dt
+

∂b

∂pj

dpj
dt

)
=
F∑
j=1

(
∂b

∂qj

∂H

∂pj
− ∂b

∂pj

∂H

∂qj

)
= {b,H}, (2.2)

where the Poisson bracket is

{f, g} =
F∑
j=1

(
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)
(2.3)

Clearly
{qj, pk} = δj,k, {qj, qk} = {pj, pk} = 0. (2.4)

Properties of the Poisson bracket (with f, g, h dynamical functions and α a scalar (a quantity
independent of q and p)

{f, g} = −{g, f}, {α, f} = 0, (2.5)
{fg, h} = f{g, h}+ {f, h}g, (2.6)
{f, {g, h}}+ {g, {h, f}}{h, {f, g}} = 0. (2.7)

We can also write the evolution equation

∂tb(q, p; t) = [H]b(q, p, t), (2.8)

where the linear operator [H] is

[H] =
F∑
j=1

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj

)
. (2.9)

This equation can be solved formally as

b(q, p; t) = e[H]tb(q, p) =
∞∑
n

1
n!
tn[H]nb(q, p). (2.10)

Operator e[H]t is called the propagator. It can be shown that

b(q, p; t) = e[H]tb(q, p; 0) = b(e[H]tq, e[H]tp; 0) = b(q(t), p(t); 0) (2.11)
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Microscopic function describing the mass density. Macroscopically we have a continuous

function ρ(x, t). Microscopically, we have discrete massive particles. Therefore a microscopic
representation of ρ(x, t) must consists of testing whether any of the particles in the system is
actually at position x. This is achieved by

ρ(q, p;x, 0) =
N∑
j=1

mδ(qj − x). (2.12)

Using the propagator we get

ρ(q, p;x, t) = eHt
N∑
j=1

mδ(qj − x) =
N∑
j=1

mδ(qj(t)− x). (2.13)

The coordinate x of the physical space is a scalar, whereas the coordinate qj in the phase space
is a dynamical quantity.

What is the relation between ρ(x, t) and ρ(q, p;x, t)? We will find out soon.

2.1 Examples

Our main test bed for the ideas will be a set of N identical point particles, each of mass m and
in absence of any external field. THe Hamiltonian of such system is

H = H0 +H ′, (2.14)

where the kinetic part is

H0 =
N∑
j=1

H0j , H0j =
p2j
2m

, (2.15)

while the interaction part is a sum of two-body interactions

H ′ =
N∑
j<k

Vjk. (2.16)

We will also assume that the interaction energy doesn’t depend on the momenta but only on
the coordinates of the two particles. More specifically, on the distance between them

Vjk = V (|qj − qk|). (2.17)

The standard cases are

• Lennard-Jones potential for neutral particles

V LJ(r) = V0

[(
r0
r

)12
−
(
r0
r

)6]
, (2.18)

• Its hard spheres limit when the attractive part is weak

V HS(r) =

∞, r < r0,

0, r > r0
(2.19)

• Coulomb potential

V C =
e2

r2
. (2.20)
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• Debye (screened Coulomb) potential

V D(r) = e2
exp(−r/rD

r
, rD =

(
4πe2n
kBT

)−1/2
. (2.21)

In the presence of external, possibly time-dependent field there is an extra contribution HF
to the Hamiltonian

HF =
N∑
j=1

V F (qj, t). (2.22)

2.2 The phase space distribution function

Statistical physics is not mechanics of many particles. The questions asked are different.
Example with a rod.
Mechanics: state of the system specified by a point in the phase space. Statistical physics:

state of the system specified by the phase space distribution function
The objects of macroscopic physics are presented by continuous functions in the physical

space: B(x, t). The corresponding microscopic dynamical quantities, are functions b(q, p;x, t)
of the phase space variables additionally parametrized (dependent) on x and t. We need a map

b(q, p;x, t)→ B(x, t). (2.23)

This is a functional, that for give x and t associates a number to any given function of q and p

B(x, t) = ⟨b(q, p;x, t)⟩ = ⟨b⟩. (2.24)

We require the following two conditions from this functional

• Constants on the phase space are unaffected

⟨β⟩ = β, (2.25)

• It is linear (this guarantees that microscopic additivity is translated into macroscopic,
e.g. mass density for a system with particles of two types)

⟨βb+ γc⟩ = β⟨b⟩+ γ⟨c⟩ (2.26)

A simple candidate is
B(x, t) = ⟨b⟩ =

∫
dqdp b(q, p;x, t)F (q, p), (2.27)

with the requirement that ∫
dqdpF (q, p) = 1. (2.28)

We will also assume that function F (q, p) is positive definite

F (q, p) ­ 0. (2.29)

We will call it phase space distribution function or distribution function.
The state of the system is completely specified by the specification of the distribution

function F (q, p).
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We can give F (q, p) a probabilistic meaning where F (q, p)dqdp is the probability of finding

the system within the infinitesimal domain (q+dq), (p+dp in the phase space. Functional (...)
is then called the phase space average.

How to find F (q, p)?
How does B(x, t) evolve? Assume that b(q, p;x, t = 0) = b(q, p;x) is a given function. Then

at time t
B(x, t) =

∫
dpdq

(
e[H]tb(q, p;x)

)
F (q, p). (2.30)

The time evolution can be now transferred from b to F with the result

B(x, t) =
∫
dpdq b(q, p;x)F (q, p; t), (2.31)

with
F (q, p; t) = e−[H]tF (q, p). (2.32)

Which is like going from Heisenberg picture in which observables evolve in time to the Schroedinger
picture in which the state evolves in time. This transformation relies on the concept of canonical
transformations.

Canonical transformation is a transformation to new coordinate {q′j, p′k} such that

{q′j, p′k} = δj,k, {q′j, q′k} = {p′j, p′k} = 0. (2.33)

Important results of Hamiltonian dynamics that we use are: time evolution is a canonical
transformation and volume element of the phase space (dqdp) is invariant under any canonical
transformation.

This way we arrived now at the evolution equation for the phase space distribution function

∂tF (q, p; t) = LF (q, p; t), (2.34)

where Liouvillian is

LF = {H,L} =
3N∑
j=1

(
∂H

∂qj

∂F

∂pj
− ∂H

∂pj

∂F

∂qj

)
. (2.35)

Liouvillian is like the Hamiltonian but instead of acting on a point in the phase space it acts
on the distribution function.

We write now the Liouvillian for the Hamiltonian of interacting particles. We introduce the
velocity

vj =
pj
m
, (2.36)

and the following abbreviations

∇j =
∂

∂qj
, ∂j =

∂

∂pj
, ∂jk = ∂j − ∂k (2.37)

Then the Liouvillian is

L = L0 + L′ =
N∑
j=1

L0j +
N∑
j<k

L′jk, (2.38)

where
L0j = −vj · ∇j, L′jk = (∇jVjk) · ∂jk. (2.39)
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2.3 Equilibrium states

Stationary solutions to the Liouville equation

{H(q, p), F 0(q, p)} = 0. (2.40)

Solution is any function of the Hamiltonian,

F 0(q, p) = Φ[H(q, p)], (2.41)

that is positive and normalizable. There are still many options. The central assumption of
equilibrium statistical physics is the principle of equal a priori probabilites. Assuming then a
closed system that can exchange energy with its environment we get

F 0(q, p) =
1

h3NN !Z(T, V,N)
exp

(
−H(q, p)

kBT

)
, (2.42)

with the partition function that ensures the normalization, namely

Z(T, V,N) =
1

h3NN !

∫
dqdp exp

(
−H(q, p)

kBT

)
. (2.43)

The fundamental relation of equilibrium statistical physics expresses the Helmholtz free energy
A(T, V,N) in terms of the partition function

A(T, V,N) = −kBT lnZ(T, V,N). (2.44)

2.4 Exercises

1. Find the stationary state of the Navier-Stokes equations in the presence of an external
potential

2. Solve the Harmonic oscillator by a canonical transformation of the coordinates.

3. Show the relation between the Heisenberg picture (2.30) and Schroedinger picture (2.31).

4. Prove that the Liouville operator is anit-Hermitian.

5. Solve Liouville equation for a system of non-interacting particles. Compute the propagator
for such system.
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3 Reduced distributions, correlations and the BBGKY hi-

erarchy
Shorthand notation xj = (qj,pj) for j = 1, . . . , N . Hamiltonian is a function of all variables
(x1, . . . , xN) and for the Hamiltonians of our interest

H(x1, . . . , xN) =
N∑
j=1

H0(xj) +
N∑
j<k

V (xj, xk). (3.1)

Consider an arbitrary dynamical function b(x1, . . . , xN) of a system of N identical particles.
Since particles are identical, this function has to be symmetric under permutation of any two
variables. Therefore it can be decomposed in the following way

b(x1, . . . , xN) = b0+
N∑
j=1

b1(xj)+
N∑
j<k

b2(xj, xk)+
N∑

j<k<n

b3(xj, xk, xn)+ · · ·+bN(x1, . . . , xN). (3.2)

Note that functions bs(x1, . . . , xs) has to be non-additive functions of the s variables x1, . . . , xs.
Therefore, they cannot be of the form

b2(x1, x2) = f(x1, x2) + g(x1) + g(x2), (3.3)

because contribution of the form g(x1) + g(x2) is already included in b1. Similarly for higher s.
The functions bs are called irreducible s-particle dynamical functions.

Alternative representation is

b(x1, . . . , xN) = b0 +
n∑
j=1

b1(xj) +
1
2!

N∑
j ̸=k

b2(xj, xk) + · · ·+ bN(x1, . . . , xN). (3.4)

Most dynamical functions of physical interest contain only small number of irreducible dynam-
ical functions, b0, b1, . . . , bS with S ≪ N and with bs = 0 for s > S. Most often S = 2 or
3.

The distribution function for identical particles is also a symmetric function under per-
mutation of any pair of variables. Consider now the average value of a dynamical function
decomposed into irreducible contributions. The constant term b0 yields b0. The one-particle
contribution is

∫
dx1 . . . dxN

 N∑
j=1

b1(xj)

F (x1, . . . , xN) = N ∫
dx1 . . . dxNb1(x1)F (x1, . . . , xN). (3.5)

Only the integration over x1 depends on the dynamical function. Therefore, the information
contained in the integration over the other variables is irrelevant for the evaluation of the one-
particle contribution. This motivates defining the reduced one-particle distribution function

f1(x1) = N
∫
dx2, . . . dxNF (x1, x2, . . . , xN). (3.6)

We then obtain

∫
dx1dxN

 N∑
j=1

b1(xj)

F (x1, . . . , xN) = ∫ dx1b1(x1)f1(x1). (3.7)
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In a similar fashion, for the s-particle contribution∫

dx1 . . . dxN

 1
s!

∑
j1 ̸=j2 ̸=... ̸=js

bs(xj1 , . . . , xjs)

F (x1, . . . , xN)
=

N !
(N − s)!s!

∫
dx1 . . . dxNbs(x1, . . . , xs)F (x1, . . . , xN)

=
1
s!

∫
dx1 . . . dxsbs(x1, . . . , xs)fs(x1, . . . , xs), (3.8)

where we defined the s-particle reduced distribution function

fs(x1, . . . , xs) =
N !

(N − s)!

∫
dxs+1 . . . dxNF (x1, . . . , xN). (3.9)

The reduced distribution functions are symmetric and f0 = 1 while for the others the
following normalization holds (show it)∫

dx1 . . . dxsfs(x1, . . . , xs) =
N !

(N − s)!
. (3.10)

There is also the following relation between the reduced distribution functions for r < s,

fr(x1, . . . , xr) =
(N − s)!
(N − r)!

∫
dxr+1 . . . dxsfs(x1, . . . , xs) (3.11)

Function fr with r < s contains less information than fs and therefore this relation is not
invertible.

An average value of any dynamical quantity we can now write

⟨b⟩ = b0 +
N∑
s=1

1
s!

∫
dx1 . . . dxsbs(x1, . . . , xs)fs(x1, . . . , xs). (3.12)

Thermodynamic limit: meaningless for F . Makes sense for fs with s fixed and s≪ N .

3.1 Evolution equations for the reduced distributions

Equations for F

∂tF =
N∑
j=1

L0jF +
N∑
j<k

L′jkF. (3.13)

Integrate this over all x’s. The right hand vanishes from the normalization condition of F . Thus
we obtain ∫

dx1 . . . dxN

 N∑
j=1

L0j +
N∑
j<k

L′jk

F = 0, (3.14)

which has to hold for each term separately∫
dx1 . . . dxNL0jF = 0,

∫
dx1 . . . dxNL′jkF = 0. (3.15)

This will be useful in deriving evolution equations for the reduced distribution functions. Inte-
grate equation for F over particles s+ 1, . . . , N . We obtain

∂tfs(x1, . . . , xs) =
N !

(N − s)!

∫
dxs+1 . . . dxN

 N∑
j=1

L0jF +
N∑
j<k

L′jkF

 . (3.16)
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Figure 1: The right hand side of the equations for reduced distribution functions can be rep-
resented diagrammatically using two types of diagrams. In the Y-vertex the position (s+ 1) is
integrated over.

For the first term we have
N∑
j=1

L0jF =
s∑
j=1

L0jF +
N∑
j=s+1

L0jF, (3.17)

For the first contribution, the integration and the operator L0j can be exchanged. The second
contribution vanishes due to the above result. Similar analysis of the second contribution gives

∂tfs(x1, . . . , xs)−
s∑
j=1

L0jfs(x1, . . . , xs) =
∑
j<k

L′jkfs(x1, . . . , xs)

+
s∑
j=1

∫
dxs+1L′j,s+1fs+1(x1, . . . , xs+1). (3.18)

Few comments are in place.

1. We have moved the term with L0j to the left hand side. The right hand side contains now
only terms which are due to the interactions between the particles. If the system is free,
the right hand side is equal to zero.

2. The equation for fs is coupled to fs+1. This creates a hierarchy of the coupled equations.
This hierarchy is known as BBGKY (Bogoliubov, Born, Green, Kirkwood and Yvon).

3. The hierarchy is linear in fs.

4. The hierarchy is completely equivalent to the Liouville equation.

Note that, as discussed above, for most of practical purpose we need only f1, f2 and maybe
f3. However, due to the hierarchical structure of the equations they all depend on the higher
reduced distribution functions.

Let us write explicitly the equations for the one-body and two-body reduced functions

∂tf1(x1)− L01f1(x1) =
∫
dx2L′12f2(x1, x2),

∂tf2(x1, x2)−
(
L01 + L

0
2

)
f2(x1, x2) = L12f2(x1, x2) +

∫
dx3 (L′13 + L

′
23) f3(x1, x2, x3).

(3.19)
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Figure 2: Diagrams for the one-body and two-body reduced distribution functions

3.2 Correlation functions and their evolution

If the system is uncorrelated at some given time t then

fs(x1, . . . , xs) =
s∏
j=1

f1(xj). (3.20)

In general the time evolution will produce correlations and the reduced distribution functions
will vary from the uncorrelated form. To capture true s-particle correlations we consider parti-
tion of the set of particles into disjoint sets containing at least one particle. We write

f2(x1, x2) = f1(x1)f1(x2) + g2(x1, x2), (3.21)

while for s = 3,

f3(x1, x2, x3) = f1(x1)f1(x2)f1(x3) + f1(x1)g2(x2, x3) + f1(x2)g2(x1, x3)
+f1(x3)g2(x1, x3) + g3(x1, x2, x3), (3.22)

with the last term describing the truly correlated effect of 3 particles.
Consider now normalization of the correlation functions. For the two point function we have

1
N2

∫
dx1dx2f2(x1, x2) =

( 1
N

∫
dx1f1(x1)

)2
+
1
N2

∫
dx1dx2g2(x1, x2). (3.23)

Using the normalization of the reduced distribution functions we find

− 1
N
=
1
N2

∫
dx1dx2g2(x1, x2), (3.24)

which implies that, in the thermodynamic limit,

1
N s

∫
dx1 . . . dxsg2(x1, . . . , x3)→ 0, (3.25)

and the whole normalization of fs is in the uncorrelated term.
The evolution equations are now

∂tf(x1)− L01f(x1) =
∫
dx2 (L′12f(x1)f(x2) + L

′
12g2(x1, x2)) , (3.26)
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Figure 3: Diagrams for the evolution of the connected correlation functions. The horizontal bar
implies that the variables enter the same correlator.

and
∂tg2(x1, x2)− (L01 + L02)g2(x1, x2) = L′12f(x1)f(x2) + L′12g2(x1, x2)

+
∫
dx3 [L′13f(x1)g2(x2, x3) + L

′
23f(x2)g2(x1, x3)

+ (L′13 + L
′
23) (f(x3)g2(x1, x2) + g3(x1, x2, x3))] .

(3.27)

The resulting equations are nonlinear contrary to the equations for the reduced distribution
functions.

3.3 Exercises

1. Exercise from R.L.Liboff "Kinetic Theory":

2. Show (3.15) by invoking the form (2.39) of the Liouville operators

3. Derive the equation (3.27) for g2.

4. Exercise from R.L.Liboff "Kinetic Theory" (solution is in the book):

13



DRAFT5. Show that g2 in free system is 0. [Use the solution for F in a free system to compute f1
and f2]
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4 Vlasov and Landau equations
Hierarchy couples dynamics of f1 to all the g′s. We will now make an approximation that
truncates the hierarchy. This approximation essentially assumes that we can neglect correlations
of order higher than some number S and in the same time, express the lower order correlations
through f1. As the result we obtain a closed equation for f1. Depending on the details of the
truncation we will find different equations. They are all called kinetic equations.

We change notation from momenta p to velocities v where p = mv, such that

f(q,p; t) = f(q,mv; t) = m3f̂(q,v; t). (4.1)

This implies correct normalization

N =
∫
dpdq f(q,p; t) =

∫
dvdq f̂(q,v; t). (4.2)

From now on we will also suppress the hat symbol and redefine xj = (qj,vj) and ∂j = ∂/∂vj.

4.1 Weakly coupled systems

We want to do a perturbation theory in the strength of the interactions. To this end we assume
that

V (r) = λv(r) (4.3)

with λ≪ 1 and |v(r)/v(r0)| = O(1) for every r and for some r0. In other words

|V (r)| = O(λ), |H0| = O(1). (4.4)

Let us see how the scalling with λ propagates through different quantities of our formalism.
For the components of the Liouville operator we have

L0j = O(λ0), L′jk = O(λ). (4.5)

The distribution function f1 is normalized to N hence it must be of order λ0. The correlation
functions need interactions and therefore they scale with λ, gs ∼ λs−1. Note that these scaling
is consistent with the time evolution. The time evolution does not produce terms of lower order
than given here. Thus, this assignment of orders is self-consistent.

Finally, let us discuss also the range of interactions. We assume that V (r) ≈ 0 for r ≫ l0.
We call l0 the range of the interactions. In a similar fashion also the correlation functions have
finite ranges which should be of the same order as l0, since they are a product of the interaction
potential. We take LC as the maximal range present in the system and therefore

g2(q1,q2,v1,v2; t) ≈ 0, for |q1 − q2| ≫ lC . (4.6)

4.2 Derivation of the Vlasov equation and its properties

Note that the simple expansion of the propagator will not work

e−λt = 1− tλ+ 1
2
t2λ2 + . . . , (4.7)

so no matter how many terms we take and how small λ is, there will be some time after which
the expansion blows up. This is despite the original function is bounded. This is a secular
expansion.
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Let us write equation for f1

∂tf1(x1; t− L01f(x1; t) =
∫
dx2L′12 (f(x1; t)f(x2; t) + g2(x1, x2; t)) . (4.8)

The first term on the rhs is of order λ while the second is of order λ2. Therefore, the kinetic
equation to order λ is

∂tf1(x1; t)− L01f(x1; t) =
∫
dx2L′12f(x1; t)f(x2; t). (4.9)

The right hand side can still be simplified using the expression for L′12. We have∫
dx2L′12f(x1; t)f(x2; t) =

∫
dq2dv2V ′(q1 − q2)(∂1 − ∂2)f(x1; t)f(x2; t)

=
∫
dq2dv2V ′(q1 − q2)∂1f(x1; t)f(x2; t), (4.10)

cause derivative ∂2 = ∂/∂v2 gives a contribution vanishing upon integration over v2. The
remaining integral can be interpreted with the help of average interaction potenatial at q1
caused by all the other particles

V̄ (q1; t) =
∫
dq2dv2V (q1 − q2)f(q2,v2; t), (4.11)

and
∂tf1(x1; t)− L01f(x1; t) = ∇1V̄ (x1; t)∂1f1(x1; t). (4.12)

This is Vlasov equation and is a closed equation for f(x; t).
Let us see what are stationary states of Vlasov. We note that for a homogeneous state

f(q,v; t) = nφ(v; t) the average potential V̄ is uniform and hence its gradient vanishes. Thus,
any homogeneous state is a stationary state of the Vlasov equation.

4.3 Landau equation

We expand the hierarchy to order λ2. We have two equations

∂tf(x1)− L01f(x1) =
∫
dx2L′12 (f(x1)f(x2) + g2(x1, x2)) , (4.13)

∂tg2(x1, x2)− (L01 + L02)g2(x1, x2) = L′12f(x1)f(x2). (4.14)

The correlation function is now fully determined from the knowledge of the one-body function.
The second equation can be solved with the help of the propagator

g2(x1, x2; t) = U012(t)g2(x1, x2; 0) +
∫ t
0
dτU012(τ)L

′
12f(x1; t− τ)f(x2; t− τ). (4.15)

Let us verify this solution by direct computations. Recall that

U012(t) = exp
((
L01 + L

0
2

)
t
)
. (4.16)

Differentiating the solution, we get

∂tg2(x1, x2; t) =
(
L01 + L

0
2

)
U012(t)g2(x1, x2; 0) + U

0
12(τ)L

′
12f1(x1; t)f1(x2; t)

+
∫ t
0
dτU012(τ)L

′
12∂t (f(x1; t− τ)f(x2; t− τ)) .
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The integral can be transformed in the following way. The derivative with respect to t can
be transformed into a (minus) derivative with respect to τ and then the expression can be
integrated by parts. The result is∫ t
0
dτ U012(τ)L

′
12∂t (f(x1; t− τ)f(x2; t− τ)) = −

∫ t
0
dτ U012(τ)L

′
12∂τ (f(x1; t− τ)f(x2; t− τ))

=
∫ t
0
dτ
(
∂τU

0
12(τ)

)
L′12f(x1; t− τ)f(x2; t− τ)− (boundary terms)

=
(
L01 + L

0
2

) ∫ t
0
dτ U012(τ)L

′
12f(x1; t− τ)f(x2; t− τ)− (boundary terms).

The boundary terms are

boundary terms = U012(t)L
′
12f(x1; 0)f(x2; 0)− U012(0)L′12f(x1; t)f(x2; t), (4.17)

thus first of them cancels the same time appearing in the derivative of g2. The second term
enters then the final expression and

∂tg2(x1, x2; t) =
(
L01 + L

0
2

)(
U012(t)g2(x1, x2; 0) +

∫ t
0
dτ U012(τ)L

′
12f(x1; t− τ)f(x2; t− τ)

)
+ U012(τ)L

′
12f1(x1; t)f1(x2; t).

Recognising g2(x1, x2, t) in the bracket verifies the solution.
Having now a solution to g2 we can substitute into an equation for f1. The result is

∂tf(x1)− L01f(x1) =
∫
dx2L′12

(
f(x1)f(x2) + U012(t)g2(x1, x2; 0)

)
+
∫
dx2L′12

∫ t
0
dτU012(τ)L

′
12f(x1; t− τ)f(x2; t− τ).

(4.18)

This is now a closed equation for f1 given the initial form of the correlator g2(x1, x2; 0). The
first term is the Vlasov term. Let us discuss the other two terms. The second term describe
the effect of the initial correlations on the state of the system at later time t. The third term
describes the effect of the correlation that build-up during the evolution of the system due to
the interactions and then their influence on the particles distribution. However, this term does
not depend only on the instantaneous value of the correlator but also on their whole history.
Thus, the equation is non-Markovian.

In the Vlasov limit the particles are smeared out and any given particle feels an averaged
force field. Here, the presence of other particles is controlled by the correlations. This gives a
sense of scattering between two particles. As we have seen above, it is natural to expect that
given a finite range of the interaction potential, implies an existence of correlation length lC .
Particles further than this length are uncorrelated. Existence of a correlation length implies an
existence of a correlation time tC , under an observation, that we might introduce a characteristic
velocity of particles in the system.

We can then view interaction to happen as an effect of succeeding collisions. If there are
many particles, it is very unlikely that a given particle will collide in a row with the same
particle. Therefore, the correlations that build up as an effect of collisions should be short-
lived. In the same time, between the collisions particles move in a straight lines. The distance
that they travel is called the mean free path lmfp and the corresponding time, the relaxation
time tR. This tells us how often particles collide and from equation (4.13) we see that is should
be proportional to λ2.
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There exists also a third length-scale associated with the spatial variation of one-particle dis-

tribution function. We call it hydrodynamic lenght and denote lH . The corresponding timescale
we call hydrodynamic time and denote tH .

We will assume the following ordering of the lengthscales (or corresponding timescales)

lC ≪ lmfp ≪ lH or tC ≪ tR ≪ tH (4.19)

Note that the first assumption relies on

lC
lmfp
= O(λ2) tC

tR
= O(λ2), (4.20)

whereas the second tells us the variations of macroscopic variables are of a different length-scale
then the microscopic description. This does not have to be the case, as sometimes mean path
can be very large or, for example in the presence of shocks, the variations of temperature can
be large.

We shall also assume that the lengthscale lC and timescales tC are experimentally inac-
cessible. However, we might be interested in dynamics at time scale tR as those are relevant
timescales for homogeneous systems (where tH → ∞). Since we are interested in timescale
t≫ tC then the second term in the eq. (4.18),

U012(t)g2(x1, x2; 0) = g2(q1 − v1t,q2 − v2t,v1,v2; t) ≈ 0, (4.21)

since correlations are expected to vanish after time t ∼ tC .
Let us now analyze the last term of (4.18)∫

dx2L′12
∫ t
0
dτU012(τ)L

′
12f(x1; t− τ)f(x2; t− τ). (4.22)

Let us first observe that we are interested in terms of order λ2 and this expression already
contains two factors L′12. Therefore, the time-evolved one-particle functions can be expressed
with the help of a free propagator

f(x1; t− τ) ≈ U012(−τ)f(x1, t). (4.23)

This gives then a factor (m appears because L′12 has now derivatives with respect to v not p)

L′12U
0
12(τ)L

′
12U

0
12(−τ) = m−2 (∇1V (q12)) · ∂12 U012(τ) (∇1V (q12)) · ∂12U012(−τ)

= m−2 (∇1V (q12)) · ∂12 (∇1V (q12 − v12τ)) · U012(τ)∂12U012(−τ)
= m−2∂12 · (∇1V (q12)) (∇1V (q12 − v12τ)) · U012(τ)∂12U012(−τ).

(4.24)

Let us look at the last factor

U012(τ)∂12U
0
12(−τ) = ∂12 + τ∇12. (4.25)

Therefore

L′12U
0
12(τ)L

′
12U

0
12(−τ) = m−2∂12 · (∇1V (q12)) (∇1V (q12 − v12τ)) · (∂12 + τ∇12) . (4.26)

The memory term of the Master equation is then

m−2
∫
dx2

∫ t
0
dτ∂12 · (∇1V (q12)) (∇1V (q12 − v12τ)) · (∂12 + τ∇12) f(x1; t)f(x2; t). (4.27)
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So far we haven’t done any approximations, merely rewritten it. Let us now change the inte-
gration variables from x2 = (q2,v2) to r = q12 and v2. The effect is

m−2
∫
drdv2

∫ t
0
dτ∂12 · (∇1V (r)) (∇1V (r− v12τ)) · (∂12 + τ∇12) f(q1,v1; t)f(q1 − r,v2; t).

(4.28)
Here comes a number of approximations

1. Since interactions are non-zero only up to distances lC and we are interested in times
t≫ tC , the upper range of the temporal integral can be extended to infinity.

2. The term τ∇12 is small compared with ∂12 which is of order of inverse of typical ve-
locity, say tR/lmfp. The other term is instead of order tC/lH . Taking their ratio we find
tC/tRlmfp/lH ∼ λ2λ and is small.

3. We also have f(q1 − r,v2; t) ≈ (1− r∇1)f(q1,v2; t). The correction is of order lC/lh and
thus small.

With these approximations we get

m−2
∫
drdv2

∫ ∞
0
dτ∂12 · (∇1V (r)) (∇1V (r− v12τ)) · ∂12f(q1,v1; t)f(q1,v2; t), (4.29)

or introducing the Landau tensor

m−2
∫
dv2 ∂12 ·G(v1 − v2) · ∂12f(q1,v1; t)f(q1,v2; t), (4.30)

where
G(g) =

∫
dr
∫ ∞
0
dτ (∇1V (r)) (∇1V (r− gτ)) . (4.31)

Explicit computations give

G(g) = 8π4
∫
dkδ(k · g)Ṽ 2(k)kk, (4.32)

or

Grs(g) =
(
δrs −

grgs
g2

)
B

g
, B = 8π5

∫ ∞
0
dk Ṽ 2(k)k3. (4.33)

The Landau equation is then

∂tf(x1)− L01f(x1) = V(f, f) +KL(f, f), (4.34)

where
KL(f, f) = m−2

∫
dv2 ∂12 ·G(v1 − v2) · ∂12f(q1,v1; t)f(q1,v2; t), (4.35)

4.4 Exercises

1. write down an equation for particle density and average velocity from the first equation
of the BBGKY hierarchy

2. scaling argument that variation of the density gradient should be small compared to the
range of interactions to have some dynamics for Vlasov equation

3. show that Vlasov equation is time reversible while Landau equation is not
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4. self-consistent solution

5. linearized Vlasov equation

6. explicit form of the Landau collision term (Balescu Sec. 6.3)

7. write down homogeneous Landau equation and show that Maxwell distribution is sta-
tionary.
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5 Boltzmann equation
The weak interaction assumption is problematic in many systems because of hard-core short-
range repulsion between the particles. At short distances the repulsion is very strong, an example
being the Lennard-Jones potential. However, this potential has another feature, a finite range l0
and as a consequence a finite correlation length lC . There exists another characteristic length,
which is a distance between the particles, d. It depends on the number density n = N/V such
that d = n−1/3. This allows us to introduce a new dimensionless parameter

γ = nl3C ≪ 1. (5.1)

What are now orders of different terms in the BBGKY hierarchy in terms of γ? The Hamilto-
nian, and thus the Liouvillan, do not depend on the density and

L0j = O(γ0), Ljn = γ′. (5.2)

The one-body function is clearly proportional to the density while correlation functions involve
increasing powers of the density

f(x1) = O(γ), gn(x1, . . . , xn) = O(γn). (5.3)

The X-vertices connect terms with the same number of particles hence they don’t contribute
any additional density factors. However, the Y -vertices connect n-particle state to the (n+ 1)
particle state and therefore they do introduce an additional n factor.

Let us consider a homogeneous system. The evolution equation for f1 is then

∂tf(x1; t) =
∫
dx2L′12g2(x1, x2; t), (5.4)

and it introduces a factor n because it is of the Y -type. Indeed f is of order n while g2 is of
order n2. Therefore, we only need g2 to the leading order. In equation for g2 we can thus keep
only the two terms involving the X-vertex. We find(

∂t − L01 − L02 − L′12
)
g2(x1, x2; t) = L′12f(x1; t)f(x2; t). (5.5)

Let us introduce now the complete two-body propagator Y12(t) as a solution to the following
equation (

∂t − L01 − L02 − L′12
)
Y12(t), (5.6)

with Y12(0) = I (the identity operator). We then find

∂tφ(v1; t) = n
∫ t
0
dτ
∫
dq2v2L′12Y12(τ)L

′
12φ(v1; t− τ)φ(v2; t− τ) (5.7)

+
1
n

∫
dq2dv2L′12Y12(t)g2(q1 − q2,v1,v2; 0). (5.8)

It has the same structure as a non-Markovian Landau equation. Using the same arguments we
obtain

∂tφ(v1; t) = n
∫
dv2J(v1,v2), (5.9)

where
J(v1,v2) =

∫
dr
∫ ∞
0
dτL′12Y12L

′
12φ(v1; t)φ(v2; t). (5.10)
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Figure 4: ...

It can be shown that

J(v1,v2) =
∫ 2π
0
dφ
∫ ∞
0
db bg (φ(v′1; t)φ(v

′
2; t)− φ(v1; t)φ(v2; t)) , (5.11)

where g = |v1 − v2|, v′1 = v′1(v1,v2) and v′2 = v′2(v1,v2) with

v′1 + v
′
2 = v1 + v2, |v′1|2 + |v′2|2 = |v1|2 + |v2|2. (5.12)

The geometry of the scattering process is shown in fig. 4.
The Boltzmann equation (generalizing back to the inhomogeneous case) reads

(∂t − v · ∇)φ(v; t) = V(f, f) +KB(f, f) (5.13)

where

KB(f, f) =
∫
dv2

∫ 2π
0
dφ
∫ ∞
0
db bg (f(q,v′1; t)f(q,v

′
2; t)− f(q,v1; t)f(q,v2; t)) . (5.14)

5.1 Entropy and stationary states

Consider a homogeneous system and define the following function

s(t) = −kB
∫
dvφ(v; t) ln (nφ(v; t)) + b. (5.15)

Consider now time derivative of s(t),

k−1B
˙s(t) = −

∫
dv1 [ln (nφ(v1; t) + 1] ∂tφ(v1; t)

= −2πn
∫
dv1dv2db bg [ln (nφ(v1; t) + 1]× (φ− φ)

= −πn
∫
dv1dv2db bg [ln (nφ(v1; t)) + ln (nφ(v2; t)) + 2]× (φ− φ)

= πn
∫
dv1dv2db bg ln

φ(v′1; t)φ(v
′
2; t)

φ(v1; t)φ(v2; t)
× (φ(v′1; t)φ(v′2; t)− φ(v1; t)φ(v2; t)) .

We first use the symmetry upon exchanging v1 with v2 and later symmetry with exchanging
initial with final velocities. Thus ṡ(t) ­ 0 and function s(t) increases monotonically during the
time evolution.
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The stationary state is thus given by a configuration that maximises the entropy. This

requires

ln
φ0(v′1)φ

0(v′2)
φ0(v1)φ0(v2)

= 1, (5.16)

which is satisfied by the Maxwell distribution

φ0(v) = c exp
[
−a|v − u|2

]
, (5.17)

with a, c > 0 and u arbitrary constants.

5.2 Collision invariants

Let us denote
⟨ψ⟩ =

∫
dqdvψ(v)f(q,v; t). (5.18)

The collision invariant is then a function for which∫
dqdvψn(q,v)K (f, f) = 0, (5.19)

for any one-body function f . Substituting the Boltzmann collision integral we have∫
dqdvψn(q,v)K (f, f) =

= 2π
∫
dq
∫
db b

∫
dv1dv2 gψ(q,v1) (f(q,v′1; t)f(q,v

′
2; t)− f(q,v1; t)f(q,v2; t)) . (5.20)

Consider now the double integral over the velocities∫
dv1dv2 gψ(q,v1) [f(q,v′1; t)f(q,v

′
2; t)− f(q,v1; t)f(q,v2; t)] =

=
1
4

∫
dv1dv2 g [ψ(q,v1) + ψ(q,v2)− ψ(q,v′1)− ψ(q,v′1)]×

× [f(q,v′1; t)f(q,v′2; t)− f(q,v1; t)f(q,v2; t)] (5.21)

The first bracket vanishes for

• for a function independent of v, ψ0(q,v) = ψ(q),

• for a function proportional to one of the components of the velocty, ψn(q,v) = vnψ(q)
with n = 1, 2, 3.

• for a function proportional to the velocity squared, ψ4(q,v) = |v|2ψ(q).

This follows from the fact that number of particles, their momentum and energy are conserved
in the collision process.

5.3 Hydrodynamic quantities

Recall the expression for the one-body local observable as an average with respect to the
dynamic function

B(x, t) =
∫
dv

∫
dq β(v)δ(x− q)f(q,v; t). (5.22)
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This can be interpreted as

B(x, t)
∫
dv β(v)f(v;x, t) (5.23)

where we introduce a local one-body function

f(v;x, t) =
∫
dq δ(x− q)f(q,v; t). (5.24)

Note that know the observables computed with the help of f(v;x, t) involve averaging over only
the velocities. The x is position in the real space not in the phase space. We can reformulate
the kinetic equation as an equation for f(v;x, t)

(∂t + v · ∇) f(v;x, t) = K{f, f} . (5.25)

We define the following hydrodynamic fields

• Mass density
ρ(x, t) = m

∫
dvf(v;x, t) (5.26)

• Momentum density
ρ(x, t)u(x, t) = m

∫
dv vf(v;x, t), (5.27)

• (Internal) energy density

ρ(x, t)e(x, t) =
1
2
m
∫
dv|v − u|2f(v;x, t). (5.28)

5.4 Hydrodynamic balance equations

We will now write equations for the 3 hydrodynamic fields. We use the collision invariants. For
the mass density we find

∂tρ(x, t) = −∇ · (ρu) , (5.29)

which is the first hydrodynamic equation and it describes the conservation of mass. Consider
now the collision invariant mvr. According to the definition of the momentum density

∂t (ρun) = −m
∫
dvvnvs∇sf(v;x, t) = −m∇s

∫
dvvnvsf(v;x, t)

= −∇s
∫
dv (munus +m(vn − un)(vs − us)) f(v;x, t)

= −∇s (ρunus + Pδns + πns) , (5.30)

where we introduced the hydrostatic pressure

P (x, t) =
1
3
m
∫
dv|v − u|2f(v;x, t), (5.31)

and the dissipative pressure tensor is

πrs(x, t) = m
∫
dv(vr − ur)(vs − us)f(v;x, t)− δrsP (x, t). (5.32)

Note the ideal gas relations

P (x, t) = n(x, t)T (x, t), ρ(x, t)e(x, t) =
3
2
n(x, t)T (x, t). (5.33)
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with 3/2 being the heat capacity of the ideal gas.

Considering the last collision invariant, we find the balance equation for the energy

∂t (ρe) = −∇ · (ρeu+ q)− P∇ · u− π : ∇u. (5.34)

with the heat flux
qr(x, t) =

1
2
m
∫
dv(vr − ur)|v − u|2f(v;x, t). (5.35)

5.5 Exercises

1. Show that from the conservation of momentum and energy we can write

v′1 =
1
2
(v1 + v2 + ge) , v′2 =

1
2
(v1 + v2 − ge) , (5.36)

where e is an unit vector in an arbitrary direction.

2. Derive the balance equation for the energy.

3. Write down the linearized Boltzmann equation
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6 More on the Boltzmann equation
We will complete the derivation of the Boltzmann equation and rewrite the Boltzmann equation
using the scattering cross-section. We will also recall the original arguments of Boltzmann that
led him to write down his equation. We start with discussion of the scattering process.

We need to study a 2-body problem with particles interacting with V (|q1 − q2|) potential.
The Hamiltonian is

H2body =
mv21
2
+
mv22
2
+ V (q1 − q2). (6.1)

We introduce the center of mass and relative coordinates and velocities

QG =
q1 + q2
2

, r = q1 − q2,

VG =
v1 + v2
2

, g = v1 − v2.
(6.2)

The Hamiltonian becomes

H2body =
m|VG|2

2
+
µ|g|2

2
+ V (|r|), (6.3)

where we introduced reduced mass = µ = m/2. The center of mass velocity is a constant of
motion, whereas the fictitious particle follows the relative trajectory r = q1−q2 and experiences
potential V (|r|). Because the potential is central it is convenient to work in the spherical
coordinates (r, θ, φ). Due to symmetry around the polar axis φ we can choose φ = 0. The
(fictitious) particle energy is

E =
µ

2

(dr
dt

)2
+ r2

(
dθ

dt

)2+ V (r) = constant, (6.4)

wheres the angular momentum L is

L = µr2
(
dθ

dt

)
= constant, (6.5)

and both are constants of motion and they are fixed by the initial conditions. Take the initial
velocity to be g0. Then (to compute both quantities it is useful to momentarily go back to the
Cartesian coordinates and assume that at large r the potential is zero)

E =
µg20
2
, L = µg0b, g0 = |g0|. (6.6)

From expressions for the two conservation laws we find

dr

dt
= ±

[
2
µ

(
E − V (r)− L2

2µr2

)]1/2
. (6.7)

The trajectory θ(r) can be written in a differential form as

dθ =
L

µr2(dr/dt)
dr, (6.8)
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which can be integrated now from the initial condition (r = ∞, θ = 0) to the point of the
closest approach (r = rmin, θ = θmin). The latter is determined by the largest root of

E − V (rmin)−
L2

2µr2min
= 0. (6.9)

Integrating the differential trajectory we obtain

θ = −L
∫ rmin
∞

dr

µr2
[
2
µ

(
E − V (r)− L2

2µr2

)]1/2 . (6.10)

The angle describing the final trajectory is 2θ and the deflection angle is

χ = |π − 2θ|. (6.11)

The final velocity of the particle is g′0 = g0(cosχ, sinχ, 0) or e = (cosχ, sinχ, 0) with χ depend-
ing on the initial velocity g0 and the impact parameter b.

6.1 Cross section

We introduce a concept of cross section. This will allow us to characterize the collisions through
a concept familiar from the scattering theory.

Instead of a single particle, we think about a beam of particles, all moving with the same
velocity g. We introduce also I, the flow of incident particles crossing a unit area perpendicular
to g. The cross section σ is then defined by the following relation

dN = IσdΩdt (6.12)

We now want to relate σ to the deflection angle. To this end we observe that number of particles
scattered into the solid angle defined by the cones of aperture χ and χ+ dχ (by ring given by
these two angles) is.

dN = 2πb(χ)db(χ)Idt (6.13)

Comparing the two expressions we obtain

σ =
b(χ)
sinχ

∣∣∣∣∣db(χ)dχ

∣∣∣∣∣ . (6.14)

where we used the element of a solid angle dΩ = 2π sinχdχ.
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Figure 5: The inverse scattering process has the same cross-section since |g| = |g′| and the
deflection angles are the same.

We note that the cross section σ = σ(|g|, χ) namely its a function of the velocity and the
deflection angle. For a hard-sphere potential (tutorials)

σ =
1
4
a2. (6.15)

With the notion of the cross section we can rewrite the Boltzmann collision integral as

KB(f, f) = 2π
∫
dv2

∫ ∞
0
db bg (f(q,v′1; t)f(q,v

′
2; t)− f(q,v1; t)f(q,v2; t))

=
∫
dv2dΩσg (f(q,v′1; t)f(q,v

′
2; t)− f(q,v1; t)f(q,v2; t)) . (6.16)

6.2 Heuristic derivation of the Boltzmann equation

The central object is the one-body function f(q,v; t). Quantity f(q,v; t)dqdv is the number of
particles that at time t are within volume dq around point q and have velocity in the element
dv around v.

It is crucial that dv is microscopically large but macroscopically small, namely inside the
volume there are many particles and in the same time the volume is small enough that macro-
scopic properties of the system do not vary over it.

If we observe f(q,v; t)dqdv it will fluctuate. We observe it over time ∆t, which is large
compared with the average time spent by a single particle inside the volume element but again
small with respect to the macroscopic properties. Therefore, we can think about it probabilis-
tically – f(q,v; t)dqdv is the most probable number of molecules in the physical element dqdv
during the time ∆t.

From both deterministic and probabilistic perspective it is natural to assume that the one-
body function, in the case of noninteracting particles, obeys a continuity equation

(∂t + v · ∇) f = 0 (6.17)

The idea of Boltzmann was to modify the right hand side as the effect of collisions (interactions)
between the particles

(∂t + v · ∇) f = (∂tf1)coll. (6.18)
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We will heuristically come up with an expression for (∂tf1)coll. We shall make two assumptions.
First one, is the dilute gas limit. Namely we assume that we only need to consider two-body
processes. This is the same assumption that we did when deriving the Boltzmann equation
from the BBGKY hierarchy.

With this assumption we write

(∂tf1)coll = C ′′ − C ′, (6.19)

where

1. C ′ describes a process in which a particle with initial velocity v scatters with any other
particle. More precisely C ′dqdvdt is the number of such collisions in time dt.

2. C ′′ describes a process in which one particle, in the aftermath of the scattering process,
has velocity v. Again more precisely, C ′′dqdvdt is the number of such collisions in time
dt.

The two types of processes are respectively loss and gain processes where the occupancy of the
monitored velocity either decreases or increases due to the scattering events.

To describe the two-body collision we need to know the distribution function for the distribu-
tion of the two velocities that assign to the two colliding particles. Here comes the molecular-
chaos assumption: the number of pairs of particles with respective velocities v and v1 that
participate in the collision is

f1(q,v; t)dqdv × f1(q,v1; t)dqdv1. (6.20)

In other words, the velocities prior to the collision are uncorrelated. They are clearly correlated
after the collision at least for a short time before the two particles collide with other particles
and the correlations average out to zero.

Let us describe now the situation in the language of the scattering theory. Consider a single
particle with velocity v, we will think about it as a target and let us put ourselves in a coordinate
system in which it is stationary. We then have an incident beam of particles

dI = gf1(q,v1; t)dv1 (6.21)

which, due to the molecular-chaos assumption is not correlated with the target. The number
of particles deflected by the target into the solid angle dΩ during time dt is

dN = σdIdΩdt = σgf1(q,v1; t)dv1dΩdt. (6.22)

Number of the target particles is f1(q,v; t)dqdv and therefore

σgf1(q,v; t)f1(q,v1; t)dv1dΩdtdqdv (6.23)

is the number of collisions with initial velocities v and v1 in which particles are deflected into
the solid angle dΩ in time dt and in volume dq.

To describe now the loss process it is enough to integrate over all velocities v1 and over all
deflection angles

C ′dqdvdt =
∫
dv1dΩσgf1(q,v; t)f1(q,v1; t)dtdqdv, (6.24)

or
C ′ =

∫
dv1dΩσgf1(q,v; t)f1(q,v1; t), (6.25)
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To describe the gain process we can look at the inverse scattering event, that is the one

with the initial velocities v′ and v′1 and consider processes in which one of the final velocities
is v. We can write

C ′′ =
∫
dv′dv′1dΩ δ(v − v(v′,v′1))σgf1(q,v′; t)f1(q,v′1; t). (6.26)

In writing this expression we think about an inverse scattering process with initial velocities v′
and v′1 and final velocities v and v′. The inverse scattering process is geometrically related to
the original one, see fig. 5 and where σ = σ(|g′|, χ′) is the cross section for the inverse scattering.
By changing the integration variables from (v′,v′1) to (v,v′), this expression becomes

C ′′ =
∫
dv′1dΩσgf1(q,v

′; t)f1(q,v′1; t), (6.27)

with now v′ and v′1 being functions of the velocities v and v1.
Combing the partial results we find

(∂t + v · ∇) f =
∫
dv1dΩ gσ [f1(q,v′; t)f1(q,v′1; t)− f1(q,v; t)f1(q,v1; t)] . (6.28)

6.3 Exercise

1. Compute the scattering cross-section for the hard-sphere model (see Balescu eq. (7.45))

2. Complete the computation of the "gain" term by deriving (6.27) from (6.26).
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7 Linearized Boltzmann equation and transport coefficients
The balance equations we found in Section 5.4 still require the knowledge of the full one-body
distribution f(v;x, t). In order to turn the balance equations into a closed set of equations for
5 hydrodynamic fields we need to "integrate out" the dynamics of non-hydrodynamic fields.
One way to achieve this is by considering a linearized problem. On the side of the Boltzmann
equation this will allow us to solve for the dynamics of the hydrodynamic fields. We will then
match this solution to a solution obtained from the linearized Navier-Stokes equation. In the
process we will determine the dissipative terms in the Navier-Stokes equations and find formulas
for the transport coefficients which control how strong the dissipative processes are.

7.1 Linearized Boltzmann equation

We consider a situation in which the one-body distribution is close to the equilibrium distribu-
tion

f = f eq + δf, (7.1)

where f eq is homogeneous (x independent) and KB(f eq, f eq) = 0. The Boltzmann equation for
the perturbation is

∂tδf + v · ∇δf = nCδf +O(δf 2), (7.2)

where
Cδf =

∫
dv1

∫
dΩσg

[
δf ′φeq1

′ + δf ′1φ
eq
1 − δfφ

eq
1 − δf1φeq

]
, (7.3)

where we used that f eq = nφeq with Maxwell distribution φeq. Using the equilibrium condition

φeq1
′φeq′ = φeq1 φ

eq, (7.4)

we find a more symmetric form

Cδf =
∫
dv1

∫
dΩσgφeqφeq1

[(
δf

φeq

)′
+
(
δf

φeq

)′
1

−
(
δf

φeq

)
−
(
δf

φeq

)
1

]
, (7.5)

To analyze further the linearized Boltzmann equation we go to the Fourier space in the position
variable. Because the fluid is isotropic, at linear regime we can assume that the perturbation
is along a single direction, say x-axis.

δfq(v; t) =
∫
dxe−iqxδf(x,v; t), (7.6)

which gives
∂tfq = (nC − iqvx)fq. (7.7)

Imagine that we have now a solution to the eigenvalue problem

(nC − iqvx)|φqj⟩ = λ
q
j |φ
q
j⟩, (7.8)

and that functions φkj (v) form a complete basis. Then the solution to the linearized Boltzmann
equation is

fq(v; t) =
∑
j

cqj exp
(
λqjt
)
φqj(v), (7.9)

with ckj determined from the initial value.
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We need to study the eigenvalue problem (7.7). Because we are interested in the hydrody-

namic limit described by small wavelengths, we can solve it perturbatively in k. The zeroth
order in k reduces to the spectral problem of the linearized Boltzmann operator C. We introduce
a scalar product

⟨g|h⟩ =
∫
dvφeq(v)−1g∗(v)h(v). (7.10)

It can be shown that operator C is hermitian

⟨g|C|h⟩ = ⟨h|C|g⟩∗, (7.11)

and hence the eigenvalues of the problem nC|φ0j⟩ = λ0j |φ0j⟩ are real. We also have that

⟨h|C|h⟩ ¬ 0. (7.12)

This implies that λ0j ¬ 0 as well. The equality sign holds only for eigenfunctions related to
the collision invariants. Hence, there are exactly five zero eigenvalues and the corresponding
eigenfunctions we denote φ0α with α = 0, 1, . . . , 4. Their explicit form is

φ00(v) = φ
eq(v),

φ0i (v) =
vi√

kBT/m
φeq(v),

φ04(v) =

√
2
3

(
mv2

2kBT
− 3
2

)
φeq(v),

(7.13)

and they are orthonormalized ⟨φ0j |φ0j′⟩ = δj,j′ .
Let’s now go back to the full, k-dependent, problem. We wrote the solution in (7.9). If we

assume that the eigenvalues λqj can be expanded in q, then 5 of them will tend to zero with q,
while others remain finite. Therefore, at small momenta (q → 0) and at large times (t→∞)

fq(v; t) ≈
4∑
α=0

cqα exp (λ
q
αt) . (7.14)

In such regime, dynamics is described by the 5 hydrodynamic degrees of freedom and all the
information about the dynamics is encoded through the 5 eigenvalues λqα. Using the relation
between the moments of the one-body distribution and the hydrodynamic fields we have

Ψq(t) = m
∫
dvfq(v; t)×


1
v
ρ
mv2

3kBρ

 = m 4∑
α=0

cqα exp (λ
q
αt)

∫
dvφqα(v)×


1
v
ρ
mv2

3kBρ


= m

4∑
α=0

cqα exp (λ
q
αt) Φ

q
α, (7.15)

where

Φqα =
∫
dvφqα(v)×


1
v
ρ
mv2

3kBρ

 . (7.16)

In writing the equations we changed from the energy field e to the temperature field T using
the equation of state of ideal gas

p =
ρkBT

m
=
2ρe
3
. (7.17)

To see this more directly let us turn now our attention to the linearized Navier-Stokes
equations
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7.2 Linearised hydrodynamics

We assume that the hydrodynamic fields are close to their equilibrium values

ρ(x, t) = ρ+ δρ(r, t), u(x, t) = δu(x, t), e(x, t) = e+ δe(x, t). (7.18)

The full nonlinear hydrodynamic equations are

∂tρ = −∇ · (ρu) ,
∂t (ρun) = −∇s (ρunus +Pns) ,
∂t (ρe) = −∇ · (ρeu+ q)−Pns : ∇nus,

(7.19)

with hydrodynamic pressure tensor P and heat current q,

Prs = m
∫
dv(vr − ur)(vs − us)f(v;x, t),

qr(x, t) =
1
2
m
∫
dv(vr − ur)|v − u|2f(v;x, t).

(7.20)

We were also using the notation

Prs = Pδrs + πrs, πrs(x, t) = m
∫
dv(vr − ur)(vs − us)f(v;x, t)− δrsP (x, t). (7.21)

To linearize the equations around the equilibrium values we need to understand the form of the
pressure tensor and heat current in the equilibrium. Let us look at the pressure tensor

Peqrs = m
∫
dvvrvsf eq(v) = δrsm

∫
dvv2rf

eq(v) = δrs
2
3

∫
dv
mv2

2
f eq(v) = δrs

2ρe
3
, (7.22)

while the heat current vanishes in the equilibrium. Note that in the process we got P = 2ρe/3.
The dissipative part πrs of the pressure tensor vanishes for constant u and hence in the first
approximation it should be proportional to ∂ui/∂xj. Moreover, since no friction should appear
if fluid rotates with uniform angular velocity (u = ω×x) it should depend only on combinations
∂ui/∂xj + ∂uj/∂xi. The most general tensor that satisfies the two conditions is

πrs = a
(
∂ur
∂xs
+
∂us
∂xr

)
+ b

∑
j=1

∂uj
∂xj

 δrs, (7.23)

where a, b are scalars. It is customary to rewrite it in the following form

πrs = −η

∂ur
∂xs
+
∂us
∂xr
− 2
3

∑
j=1

∂uj
∂xj

 δrs
− ζ

∑
j=1

∂uj
∂xj

 δrs, (7.24)

with the first part traceless and η being the shear viscosity and ζ the bulk viscosity.
For the heat current, we use an experimental fact, that gradient of the temperature generates

the heat current, hence
q = −κ∇T. (7.25)

We now linearize the equations finding

∂tδρ = −ρ∇ · δu,
ρ∂tδun = −∂nP − ∂sπns,
ρ∂tδe = κ∇2T − P∇ · δu,

(7.26)
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where in writing the third equation we used the first one to rewrite the time derivative of δρ.
It’s convenient to eliminate the pressure P and energy e in favour of the temperature T and
density ρ. We use

δP =
(
∂P

∂T

)
ρ

δT +
(
∂P

∂ρ

)
T

δρ, δe =
(
∂e

∂T

)
ρ

δT +
(
∂e

∂ρ

)
T

δρ, (7.27)

and further from the thermodynamics (see Resibois, pg. 104)(
∂e

∂T

)
ρ

= Cv,
(
∂e

∂ρ

)
T

=
P

ρ2
− T

ρ2

(
∂P

∂T

)
ρ

. (7.28)

After further algebraic manipulations we obtain

∂tδρ = −ρ∇ · δu,

ρ∂tδun = −
1
ρ

(
∂P

∂T

)
ρ

∇δT + 1
ρ

(
∂P

∂ρ

)
T

∇δρ− ∂sπns,

ρ∂tδT = −
T

ρCv

(
∂P

∂T

)
ρ

∇ · δu+ κ∇2T.

(7.29)

The derivative of the dissipative pressure is

∂sπns = η∇2δun +
(
ζ +

η

3

)
∂n (∇ · δu) . (7.30)

We consider now Fourier expansion of the hydrodynamic fields in the position

ρq(t) =
∫
dxe−iq·xδρ(x, t), (7.31)

and similarly for uq(t) and Tq(t). The spatial derivative ∂q becomes iq and

∂tρq(t) = −iρq · uq,
∂tuq(t) = −iαqρq − iβqTq − νq2uq − δq(q · uq),
∂tTq(t) = −iµq · uq − ξq2Tq,

(7.32)

where we introduced the following notation

α =
1
ρ

(
∂P

∂ρ

)
T

, β =
1
ρ

(
∂P

∂T

)
ρ

, ν =
η

ρ
,

δ =
1
ρ

(
ζ +

η

3

)
, µ =

T

ρCv

(
∂P

∂T

)
ρ

, ξ =
κ

ρCv
.

(7.33)

Because of the spatial isotropy of the fluid we can assume that the dynamics is only along the
x-axis such that q = qx̂.

We can write the linearized hydrodynamics equations more compactly by introducing 5-
dimensional vector

Ψq(t) =

ρq(t)uq(t)
Tq(t)

 , (7.34)
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such that

∂tΨq(t) =Mq ·Ψq(t). (7.35)

The matrix M reads

Mq =


0 −iqρ 0 0 0
−iαq −(ν + δ)q2 0 0 −iβq
0 0 −νq2 0 0
0 0 0 −νq2 0
0 −iµq2 0 0 −ξq2

 (7.36)

The matrix can be diagonalized and in the limit of small q, keeping terms up to order q2 we
find

λq1,2 = ∓ivsq − Γsq2, λq3,4 = −
η

ρ
q2, λq5 = −

κ

ρCp
q2, (7.37)

where the specific heat at constant pressure is

Cp = Cv +
T

ρ2

(
∂P

∂T

)2
ρ

/

(
∂P

∂ρ

)
T

, (7.38)

and the sound velocity and sound absorption coefficient are

vs =
[
Cp
Cv

(
∂p

∂ρ

)
T

]1/2
, Γs =

1
2ρ

[
4η
3
+ ζ +

(
1
Cv
− 1
Cp

)
κ

]
. (7.39)

The general solution to the dynamics of the hydrodynamic fields is then

Ψq(t) =
4∑
α=0

cqα(0) exp (λ
q
αt) Φ

q
α, (7.40)

with Φqα eigenvectors associated with eigenvalues λqα.
The eigenvalues λqj are now computed in two ways, either from linearized hydrodynamics

or from the linearized Boltzmann equation. Equating results of the two computations we find
formulas for the transport coefficients.

The computations give

η = − ρm

kBT

∫
dvvxvyχxy(v), ζ = 0, (7.41)

κ = − ρm

kBT 2

∫
dv
v2

2
vxχ

x(v), (7.42)

where

nCχxy = vxvyφeq, nCχx = vx

(
v2

2
− 5kBT
2m

)
φeq, (7.43)

subject to conditions

⟨φ0α|χxy⟩ = 0, ⟨φ0α|χx⟩ = 0, α = 0, 1, . . . , 4. (7.44)
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8 Self-diffusion
Imagine a fluid with some number of particles which are tagged but otherwise identical with
other particles We denote by c(x, t) their concentration. Their number is conserved

∂tc(x, t) +∇ · j⃗(x, t) = 0, (8.1)

with current j⃗(x, t) of the concentration. We can find the current in two ways.

8.1 Boltzmann equation

Let’s write the Boltzmann equation for two distribution functions fc of the tagged particles and
f of the remaining (untagged) particles

(∂t + v⃗ · ∇) fc = K(fc, f) +K(fc, fc), (8.2)
(∂t + v⃗ · ∇) f = K(fc, f) +K(f, f). (8.3)

We assume that the density of the tagged particles is much less than the density of the other
particles. Under this assumption, it is reasonable to expect that the distribution f will evolve
at slower rate than the distribution fc. We can go to a large imbalance limit in which we take
f to be constant in time. This reduces the pair of Boltzmann equation to

(∂t + v⃗ · ∇) fc = K(fc, f). (8.4)

In writing the equation we also took into account that since density of tagged particles is low
a collision between the two tagged particles is less likely then collision between a tagged and
untagged particle. Note that because f is constant this equation conserves only the particle
number but not momentum nor energy. This gives a single balance equation

∂tc+∇ · (cu⃗c) = 0, (8.5)

where we used

c(x, t) = m
∫
dvfc(v,x, t), c(x, t)u⃗c(x, t) = m

∫
dv vfc(v,x, t). (8.6)

Equation (8.5) is not closed. To close we can consider a linearized theory as we did for the
Navier-Stokes equations. Instead we pursue here a more phenomenological approach.

8.2 Phenomenology

We assume that current j⃗c can be expanded in gradients of c(x, t),

j⃗c = D(c)∇c+ higher derivatives, (8.7)

Note that there is no gradient free term because if the concentration is constant we don’t expect
any current. The result is the diffusion equation

∂tc+∇ · (D(c)∇c) = 0. (8.8)

This is a non-linear diffusion equation since, at this level, D(c) is some unknown function of c.
Under the assumption that D is actually constant we get the usual diffusion equation

∂tc+D∇2c = 0. (8.9)
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Let us solve it for the initial configuration

c(x, t = 0) = Nδ(x− x0)/Ax. (8.10)

The solution is

c(x, t|x0, 0) =
N

2Ax
√
Dπ
exp

[
−(x− x0)

2

4Dt

]
. (8.11)

We can now compute the second moment∫
dx(x− x0)2c(x, t|x0, 0) =

2NDt
Ax

. (8.12)

Inverting this relation we find a formula for the diffusion coefficient

D =
Ax
2Nt

∫
dx(x− x0)2c(x, t|x0, 0). (8.13)

8.3 Green-Kubo formula

We would like to express now this formula in terms of the distribution function f(v,q, t).
The observable is the total concentration of tagged particles at given point in space and given
time. From the assumption of axial symmetry the dependence is only in x-direction and time.
Moreover, since the tagged particles are identical, we have

N∑
j=0

δ(qj, x− x)/Ax = Nδ(qj,x − x)/Ax, (8.14)

such that the concentration is

c(x, t|x0, 0) =
N

Ax

∫
dqdvδ(qj,x − x)f0(q,p, t) =

N

Ax

∫
dqdvδ(qj,x(t)− x)f0(q,p). (8.15)

In the second step we moved the dynamics from the distribution function to the observable.
The time-independent distribution function f0(q,v) is fixed by the initial condition as a subset
of thermal distribution functions f(q,p) for which the x-coordinate of the j-th particle is equal
to x0,

f0(q,v) = lxδ(qj,x − x0)f(q,p). (8.16)

This gives

c(x, t|x0, 0) =
Nlx
Ax

∫
dqdvδ(qj,x(t)− x)δ(qj,x(0)− x0)f(q,p). (8.17)

Consider now the diffusion coefficient (multiplied by 2t) averaged over the initial position
x0,

2Dt =
Ax
Nlx

∫
dx0

∫
dx(x− x0)2c(x, t|x0, 0). (8.18)
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The expression for the concentration in terms of the distribution function gives

2Dt =
∫
dqdv (qj,x(t)− qj,x(0))2 f(q,v). (8.19)

This is the sought after expression for the diffusion coefficient expressing it in terms of the
thermal equilibrium data. We can further manipulate it by taking time derivative of both sides.
The result is

D =
∫
dqdvq̇j,x(t) (qj,x(t)− qj,x(0)) f(q,v) =

∫
dt′
∫
dqdvvj,x(t)vj,x(t′)f(q,v). (8.20)

Finally, taking t→∞ we obtain the Green-Kubo formula for the diffusion coefficient,

D =
∫ ∞
0
dt⟨vj,x(t)vj,x(t′)⟩. (8.21)

where we introduced the auto-correlation function of the velocities

⟨vj,x(t)vj,x(t′)⟩ =
∫
dqdv vj,x(t)vj,x(t′)f(q,v) (8.22)

9 Additional exercises
1. Write down the Liouville equation for a two component system made of N1 particles of

mass m1 and N2 particles of mass m2. The particles interact with two-body conservative
forces described by the potential energy V (ij) with (11) and (22) describing interactions
between particles of the same type and (12) between particles of different types.

2. Consider a system that contains N particles in equilibrium (hence ∂tF = 0) whose Hamil-
tonian is given by

H(q,p) = K(p) + V (q),

with kinetic and potential parts respectively. Show that if the distribution function is of
the product form

F (q,p) = X(q)P (p),

where P (p) =
∏N
j=1 gj(p

2
j), then the Liouville equation implies the canonical distribution

Fc(q,p) = A exp[−βH(q,p)],

with A and β > 0 constant.

3. Is the Boltzmann equation time reversible? If f(q,v, t) is a solution, is f(q,−v,−t) also
a solution?

4. Show that the stress tensor πrs vanishes if u = Ω × v, where Ω is a constant angular
velocity vector.

5. Consider fluid at rest and in equilibrium with homogeneous density ρ0 and temperature
T0. Starting with the Euler equations, write down equations for the dynamics of a small
perturbation around this equilibrium state ρ = ρ0 + δρ, u = 0 + δu and T = T0 + δT .
Find the equation for the sound velocity.
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