$b \rightarrow X_{s} \gamma @ \mathrm{~N}^{2} \mathrm{LO}^{(t)}$ and feasibility of $b \rightarrow X_{c} \ell \bar{\nu} @ \mathrm{~N}^{3} \mathrm{LO}$

Mikołaj Misiak
University of Warsaw

${ }^{(*)}$ In collaboration with Abdur Rehman and Matthias Steinhauser [arXiv:2002.01548], as well as Mateusz Czaja, Tobias Huber and Go Mishima

1. Introduction
2. The radiative decay
(i) $\mathcal{O}\left(\alpha_{s}^{2}\right)$ contributions to \hat{G}_{17} and \hat{G}_{27}
(ii) Non-perturbative effects in $\bar{B} \rightarrow X_{s} \gamma$
(iii) Updated SM predictions for $\mathcal{B}_{s \gamma}$ and \boldsymbol{R}_{γ}
3. The semileptonic decay
(i) Motivation for $\mathcal{O}\left(\alpha_{s}^{3}\right)$
(ii) Challenges
4. Summary
$\boldsymbol{R}(\boldsymbol{D})$ and $\boldsymbol{R}\left(\boldsymbol{D}^{*}\right)$ "anomalies" [https://hflav.web.cern.ch] (3.1 σ)

$$
\boldsymbol{R}\left(\boldsymbol{D}^{(*)}\right)=\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \mu \bar{\nu}\right)
$$

$b \rightarrow s \ell^{+} \ell^{-}$"anomalies" $(>5 \sigma)$
[see, e.g., J. Aebischer et al., arXiv:1903.10434]

$$
\begin{aligned}
Q_{9}^{\ell}= & \stackrel{i}{\mathrm{~b}_{\mathrm{L}}} \gamma_{\alpha} / \mathrm{s}_{\mathrm{L}} \\
Q_{10}^{\ell}= & \stackrel{\lambda}{\mathrm{b}_{\mathrm{L}}} \gamma_{\alpha} \gamma_{5} / \mathrm{s}_{\mathrm{L}}
\end{aligned} \quad \begin{aligned}
& \ell=e \text { or } \mu
\end{aligned}
$$

C_{7}, the Wilson coefficient of $\quad Q_{7}=\frac{\mathrm{b}_{\mathrm{R}} \quad \mathrm{s}_{\mathrm{L}}}{} \quad$ is an important input in the fits.

Sample Leading-Order (LO) contributions to C_{7} in the SM and beyond:

Sample Leading-Order (LO) contributions to C_{7} in the SM and beyond:

The strongest experimental constraint on C_{7} comes from $\mathcal{B}_{s \gamma}$ -- the CP- and isospin-averaged BR of $\underset{\left(\bar{B}^{0}, B^{-}\right)}{\bar{C}} \rightarrow X_{s} \gamma$ and $\underset{\left(B^{0}, B^{+}\right)}{B} \rightarrow X_{\bar{s}} \gamma$.

Sample Leading-Order (LO) contributions to C_{7} in the SM and beyond:

The strongest experimental constraint on C_{7} comes from $\mathcal{B}_{s \gamma}$ -- the CP- and isospin-averaged BR of $\underset{\left(\bar{B}^{0}, B^{-}\right)}{\bar{B}} \rightarrow X_{s} \gamma$ and $\underset{\left(B^{0}, B^{+}\right)}{B} \rightarrow X_{\bar{s}} \gamma$. HFLAV, arXiv:1909.12524: $\mathcal{B}_{s \gamma}^{\exp }=\left(3.32 \pm \underset{(\pm 4.5 \%)}{0.15)} \underset{\left(10^{-4} \text { for } \boldsymbol{E}_{\gamma}>\boldsymbol{E}_{0}=1.6 \mathrm{GeV} \simeq \frac{m_{b}}{3}, ~(1)\right.}{ }\right.$ averaging CLEO, BELLE and BABAR with $E_{0} \in[1.7,2.0] \mathrm{GeV}$, and then extrapolating to $E_{0}=1.6 \mathrm{GeV}$. TH requirement: E_{0} should be large $\left(\sim \frac{m_{b}}{2}\right)$ but not too close to the endpoint ($m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}$).

Sample Leading-Order (LO) contributions to C_{7} in the SM and beyond:

The strongest experimental constraint on C_{7} comes from $\mathcal{B}_{s \gamma}$ -- the CP- and isospin-averaged BR of $\underset{\left(\bar{B}^{0}, B^{-}\right)}{\bar{B}} \rightarrow X_{s} \gamma$ and $\underset{\left(B^{0}, B^{+}\right)}{B} \rightarrow X_{\bar{s}} \gamma$. HFLAV, arXiv:1909.12524: $\mathcal{B}_{s \gamma}^{\exp }=\left(3.32 \pm \underset{(\pm 4.5 \%)}{0.15)} \times 10^{-4}\right.$ for $\boldsymbol{E}_{\gamma}>\boldsymbol{E}_{0}=1.6 \mathrm{GeV} \simeq \frac{m_{b}}{3}$, averaging CLEO, BELLE and BABAR with $E_{0} \in[1.7,2.0] \mathrm{GeV}$, and then extrapolating to $E_{0}=1.6 \mathrm{GeV}$. TH requirement: E_{0} should be large $\left(\sim \frac{m_{b}}{2}\right)$ but not too close to the endpoint ($m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}$). With the full BELLE-II dataset, a $\pm 2.6 \%$ uncertainty in the world average for $\mathcal{B}_{s \gamma}^{\exp }$ is expected.

SM calculations must be improved to reach a similar precision.

Determination of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in the SM :

$$
\begin{aligned}
& \frac{\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]_{E_{\gamma}>E_{0}}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u}^{p} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} P\left(E_{0}\right) \\
& C=\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \frac{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right]}{\Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]}
\end{aligned}
$$

Determination of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in the SM :

$$
\begin{aligned}
& \frac{\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]_{E_{\gamma}>E_{0}}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u}^{p} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} P\left(E_{0}\right) \\
& C=\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \frac{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right]}{\Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]} \\
& \text { semileptonic phase-space factor }
\end{aligned}
$$

The effective Lagrangian: $\quad L_{\text {weak }} \sim \sum_{i} C_{i} Q_{i}$
Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{S M}$ when the NLO EW and/or CKM-suppressed effects are neglected:

Determination of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in the SM :

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \overline{\boldsymbol{\nu}}\right)_{\exp }\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi C} \underset{\substack{\text { pert. } \\ \sim 96 \%}}{P\left(E_{0}\right)}+\underset{\substack{\text { non-pert. } \\ \sim 4 \%}}{\left.N\left(E_{0}\right)\right]}
$$

$$
\frac{\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]_{E_{\gamma}>E_{0}}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u}^{p} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} P\left(E_{0}\right)
$$

$$
C=\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \frac{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right]}{\Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]}
$$

semileptonic phase-space factor

The effective Lagrangian: $\quad L_{\text {weak }} \sim \sum_{i} C_{i} Q_{i}$
Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{S M}$ when the NLO EW and/or CKM-suppressed effects are neglected:

current-current	photonic dipole	gluonic dipole	

$$
\Gamma\left(b \rightarrow X_{s}^{p} \gamma\right)=\frac{G_{F}^{2} m_{b, \text { pole }}^{5} \alpha_{\mathrm{e} m}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) \hat{G}_{i j}, \quad\left(\hat{G}_{i j}=\hat{G}_{j i}\right)
$$

Determination of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in the SM :

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \overline{\boldsymbol{\nu}}\right)_{\exp }\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi C} \underset{\substack{\text { pert. } \\ \sim 96 \%}}{P\left(E_{0}\right)}+\underset{\substack{\text { non-pert. } \\ \sim 4 \%}}{\left.N\left(E_{0}\right)\right]}
$$

$$
\frac{\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]_{E_{\gamma}>E_{0}}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u}^{p} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} P\left(E_{0}\right)
$$

$C=\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \frac{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right]}{\Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]}$
semileptonic phase-space factor

The effective Lagrangian: $\quad L_{\text {weak }} \sim \sum_{i} C_{i} Q_{i}$
Eight operators Q_{i} matter for $\mathcal{B}_{s \gamma}^{S M}$ when the NLO EW and/or CKM-suppressed effects are neglected:

	photonic dipole	gluonic dipole	penguin

$$
\Gamma\left(b \rightarrow X_{s}^{p} \gamma\right)=\frac{G_{F}^{2} m_{b, \text { pole }}^{5} \alpha_{\mathrm{e} m}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) \hat{G}_{i j}, \quad\left(\hat{G}_{i j}=\hat{G}_{j i}\right)
$$

NLO $\left(\mathcal{O}\left(\alpha_{s}\right)\right)$ - last missing pieces being evaluated by Tobias Huber and Lars-Thorben Moos
Most important @ NNLO $\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right): \hat{G}_{77}, \hat{G}_{17}, \hat{G}_{27}$
[arXiv:1912.07916]
known interpolated
between the $m_{c} \gg m_{b}$ and $m_{c}=0$ limits [arXiv:1503.01791]
$\Rightarrow \quad \pm 3 \%$ uncertainty in $\mathcal{B}_{s \gamma}^{\mathrm{SM}}$

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts $(\mathcal{O}(500)$ families).

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts $(\mathcal{O}(500)$ families).
2. Reduction to master integrals with the help of Integration By Parts (IBP) [KIRA, FIRE, LiteRed]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts $(\mathcal{O}(500)$ families).
2. Reduction to master integrals with the help of Integration By Parts (IBP) [KIRA, FIRE, LiteRed]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.
3. Extending the set of master integrals \boldsymbol{M}_{k} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} M_{k}(z, \epsilon)=\sum_{l} R_{k l}(z, \epsilon) M_{l}(z, \epsilon) \tag{*}
\end{equation*}
$$

where $\boldsymbol{R}_{\boldsymbol{n k}}$ are rational functions of their arguments.

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts $(\mathcal{O}(500)$ families).
2. Reduction to master integrals with the help of Integration By Parts (IBP) [KIRA, FIRE, LiteRed]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.
3. Extending the set of master integrals M_{k} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} M_{k}(z, \epsilon)=\sum_{l} R_{k l}(z, \epsilon) M_{l}(z, \epsilon) \tag{*}
\end{equation*}
$$

where $\boldsymbol{R}_{\boldsymbol{n k}}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $\boldsymbol{m}_{\boldsymbol{c}}$ \qquad

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts $(\mathcal{O}(500)$ families).
2. Reduction to master integrals with the help of Integration By Parts (IBP) [KIRA, FIRE, LiteRed]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.
3. Extending the set of master integrals M_{k} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} M_{k}(z, \epsilon)=\sum_{l} R_{k l}(z, \epsilon) M_{l}(z, \epsilon) \tag{*}
\end{equation*}
$$

where $\boldsymbol{R}_{\boldsymbol{n k}}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $\boldsymbol{m}_{\boldsymbol{c}}$ \qquad
5. Calculating three-loop single-scale master integrals for the boundary conditions.

Sample diagrams contributing to $\hat{G}_{27} @$ NNLO:

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of (a few) $\times 10^{5}$ four-loop two-scale scalar integrals with unitarity cuts $(\mathcal{O}(500)$ families).
2. Reduction to master integrals with the help of Integration By Parts (IBP) [KIRA, FIRE, LiteRed]. $\mathcal{O}(1 \mathrm{~TB})$ RAM and weeks of CPU needed for the most complicated families.
3. Extending the set of master integrals M_{k} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} M_{k}(z, \epsilon)=\sum_{l} R_{k l}(z, \epsilon) M_{l}(z, \epsilon) \tag{*}
\end{equation*}
$$

where $\boldsymbol{R}_{n k}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $\boldsymbol{m}_{\boldsymbol{c}}$ \qquad
5. Calculating three-loop single-scale master integrals for the boundary conditions.
6. Solving the system (*) numerically [A.C. Hindmarsch, http://www.netlib.org/odepack] along an ellipse in the complex \boldsymbol{z} plane. Doing so along several different ellipses allows us to estimate the numerical error.

Sample three-loop propagator-type integrals that parameterize large- z expansions of the master integrals:

Sample three-loop propagator-type integrals that parameterize large- z expansions of the master integrals:

Contributions to $\hat{G}_{27}\left(E_{0}=0\right)$ from diagrams with closed loops of massless fermions

UV renormalization has been carried out using the results from arXiv:1702.07674.

Non-perturbative contribution from gluon-to-photon conversion in the QCD medium.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.

Suppression by Λ / m_{b} can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Non-perturbative contribution from gluon-to-photon conversion in the QCD medium.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.

Suppression by Λ / m_{b} can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$

Non-perturbative contribution from gluon-to-photon conversion in the QCD medium.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.

Suppression by Λ / m_{b} can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{c}$

Non-perturbative contribution from gluon-to-photon conversion in the QCD medium.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.

Suppression by Λ / m_{b} can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{c}$

Isospin asymmetry: $\quad \Delta_{0-} \simeq \frac{C-B}{2 \Gamma}\left(Q_{u}-Q_{d}\right)$

Non-perturbative contribution from gluon-to-photon conversion in the QCD medium.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.

Suppression by Λ / m_{b} can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{c}$

Isospin asymmetry: $\quad \Delta_{0-} \simeq \frac{C-B}{2 \Gamma}\left(Q_{u}-Q_{d}\right)$
$\Rightarrow \frac{\delta \Gamma_{c} / \Gamma}{\Delta_{0-}} \simeq \frac{(B+C)\left(Q_{u}+Q_{d}\right)+2 D Q_{s}}{(C-B)\left(Q_{u}-Q_{d}\right)}=\frac{Q_{u}+Q_{d}}{Q_{d}-Q_{u}}\left[1+2 \frac{D-C}{C-B}\right]$

Non-perturbative contribution from gluon-to-photon conversion in the QCD medium.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.

Suppression by Λ / m_{b} can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{c}$

Isospin asymmetry: $\quad \Delta_{0-} \simeq \frac{C-B}{2 \Gamma}\left(Q_{u}-Q_{d}\right)$
$\Rightarrow \frac{\delta \Gamma_{c} / \Gamma}{\Delta_{0-}} \simeq \frac{(B+C)\left(Q_{u}+Q_{d}\right)+2 D Q_{s}}{(C-B)\left(Q_{u}-Q_{d}\right)} \stackrel{Q_{u}+Q_{d}+Q_{s}=0}{=} \frac{Q_{u}+Q_{d}}{Q_{d}-Q_{u}}[1+\overbrace{2 \frac{D-C}{C-B}}^{S U(3)_{F}}] \quad$ Miolation \quad MM, \quad arXiv:0911.1651

Non-perturbative contribution from gluon-to-photon conversion in the QCD medium.

It was first considered by Lee, Neubert \& Paz in hep-ph/0609224. It originates from hard gluon scattering on the valence quark or a "sea" quark that produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ / m_{b} can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).

Dominant in $\Delta_{0-:}: \quad \Gamma\left[B^{-} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{u}+C Q_{d}+D Q_{s}, \quad \Gamma\left[\bar{B}^{0} \rightarrow X_{s} \gamma\right] \simeq A+B Q_{d}+C Q_{u}+D Q_{s}$ Isospin-averaged decay rate: $\quad \Gamma \simeq A+\frac{1}{2}(B+C)\left(Q_{u}+Q_{d}\right)+D Q_{s} \equiv A+\delta \Gamma_{c}$

Isospin asymmetry: $\quad \Delta_{0-} \simeq \frac{C-B}{2 \Gamma}\left(Q_{u}-Q_{d}\right)$
$\Rightarrow \frac{\delta \Gamma_{c} / \Gamma}{\Delta_{0-}} \simeq \frac{(B+C)\left(Q_{u}+Q_{d}\right)+2 D Q_{s}}{(C-B)\left(Q_{u}-Q_{d}\right)} \stackrel{Q_{u}+Q_{d}+Q_{s}=0}{=} \frac{Q_{u}+Q_{d}}{Q_{d}-Q_{u}}[1+\overbrace{2 \frac{D-C}{C-B}}^{S U(3)_{F} \text { violation }} \quad$ MM, \quad arXiv:0911.1651
$\frac{\delta \Gamma_{c}}{\Gamma} \simeq-\frac{1}{3} \Delta_{0-}\left[1+2 \frac{D-C}{C-B}\right]=-\frac{1}{3}(\underbrace{-0.48 \pm 1.49 \pm 0.97 \pm 1.15}) \% \times(1 \pm 0.3)=(0.16 \pm 0.74) \%$
Belle, arXiv:1807.04236, $E_{0}=1.9 \mathrm{GeV}$
Recall: $\quad\left(x \pm \sigma_{x}\right)\left(y \pm \sigma_{y}\right)=x y \pm \sqrt{\left(x \sigma_{y}\right)^{2}+\left(y \sigma_{x}\right)^{2}+\left(\sigma_{x} \sigma_{y}\right)^{2}}$

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.
M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.
M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

$\omega_{1} \leftrightarrow$ gluon momentum, $\quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})$

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

The soft function h_{17} :

$$
h_{17}\left(\omega_{1}, \mu\right)=\int \frac{d r}{4 \pi M_{B}} e^{-i \omega_{1} r}\langle\bar{B}|\left(\bar{h} S_{\bar{n}}\right)(0) \ddot{h} i \gamma_{\alpha}^{\perp} \bar{n}_{\beta}\left(S_{\bar{n}}^{\dagger} g G_{s}^{\alpha \beta} S_{\bar{n}}\right)(r \bar{n})\left(S_{\bar{n}}^{\dagger} h\right)(0)|\bar{B}\rangle \quad\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)
$$

A class of models for $h_{17}: \quad \boldsymbol{h}_{17}\left(\omega_{1}, \boldsymbol{\mu}\right)=e^{-\frac{\omega_{1}^{2}}{2 \sigma^{2}}} \sum_{n} \boldsymbol{a}_{2 n} \boldsymbol{H}_{2 n}\left(\frac{\omega_{1}}{\sigma \sqrt{2}}\right), \quad \sigma<1 \mathrm{GeV}$
Hermite polynomials

Constraints on moments (e.g.): $\quad \int d \omega_{1} h_{17}=\frac{2}{3} \mu_{G}^{2}, \quad \int d \omega_{1} \omega_{1}^{2} h_{17}=\frac{2}{15}\left(5 m_{5}+3 m_{6}-2 m_{9}\right)$.

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

$$
\begin{equation*}
\delta N\left(E_{0}\right)=\left(C_{2}-\frac{1}{6} C_{1}\right) C_{7} \underbrace{\left.-\frac{\mu_{G}^{2}}{27 m_{e}^{2}}+\frac{\Lambda_{17}}{m_{b}}\right]} \tag{B}
\end{equation*}
$$

$$
\begin{aligned}
& \Lambda_{17}=\frac{2}{3} \operatorname{Re} \int_{-\infty}^{\infty} \frac{d \omega_{1}}{\omega_{1}}\left[1-F\left(\frac{m_{c}^{2}-i \varepsilon}{m_{b} \omega_{1}}\right)+\frac{m_{b} \omega_{1}}{12 m_{c}^{2}}\right] h_{17}\left(\omega_{1}, \mu\right) \\
& \omega_{1} \leftrightarrow \text { gluon momentum, } \quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})
\end{aligned}
$$

The soft function h_{17} :

$$
h_{17}\left(\omega_{1}, \mu\right)=\int \frac{d r}{4 \pi M_{B}} e^{-i \omega_{1} r}\langle\bar{B}|\left(\bar{h} S_{\bar{n}}\right)(0) \vec{n} i \gamma_{\alpha}^{\perp} \bar{n}_{\beta}\left(S_{\bar{n}}^{\dagger} g G_{s}^{\alpha \beta} S_{\bar{n}}\right)(r \bar{n})\left(S_{\bar{n}}^{\dagger} h\right)(0)|\bar{B}\rangle \quad\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)
$$

A class of models for $h_{17}: \quad \boldsymbol{h}_{17}\left(\omega_{1}, \boldsymbol{\mu}\right)=e^{-\frac{\omega_{1}^{2}}{2 \sigma^{2}}} \sum_{n} \boldsymbol{a}_{2 n} \boldsymbol{H}_{2 n}\left(\frac{\omega_{1}}{\sigma \sqrt{2}}\right), \quad \sigma<1 \mathrm{GeV}$
Hermite polynomials

Constraints on moments (e.g.): $\quad \int d \omega_{1} h_{17}=\frac{2}{3} \mu_{G}^{2}, \quad \int d \omega_{1} \omega_{1}^{2} h_{17}=\frac{2}{15}\left(5 m_{5}+3 m_{6}-2 m_{9}\right)$.

The resolved photon contribution to the $Q_{7}-Q_{1,2}$ interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

$$
\delta N\left(E_{0}\right)=\left(C_{2}-\frac{1}{6} C_{1}\right) C_{7}[\underbrace{\left.-\frac{\mu_{G}^{2}}{27 m_{c}^{2}}+\frac{\Lambda_{17}}{m_{b}}\right]}_{2}
$$

$$
\Lambda_{17}=\frac{2}{3} \operatorname{Re} \int_{-\infty}^{\infty} \frac{d \omega_{1}}{\omega_{1}}\left[1-F\left(\frac{m_{c}^{2}-i \varepsilon}{m_{b} \omega_{1}}\right)+\frac{m_{b} \omega_{1}}{12 m_{c}^{2}}\right] h_{17}\left(\omega_{1}, \mu\right)
$$

$$
\omega_{1} \leftrightarrow \text { gluon momentum, } \quad F(x)=4 x \arctan ^{2}(1 / \sqrt{4 x-1})
$$

The soft function h_{17} :

$$
h_{17}\left(\omega_{1}, \mu\right)=\int \frac{d r}{4 \pi M_{B}} e^{-i \omega_{1} r}\langle\bar{B}|\left(\bar{h} S_{\bar{n}}\right)(0) \nexists i \gamma_{\alpha}^{\perp} \bar{n}_{\beta}\left(S_{\bar{n}}^{\dagger} g G_{s}^{\alpha \beta} S_{\bar{n}}\right)(r \bar{n})\left(S_{\bar{n}}^{\dagger} h\right)(0)|\bar{B}\rangle \quad\left(m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}\right)
$$

A class of models for h_{17} :

Hermite polynomials
Constraints on moments (e.g.): $\quad \int d \omega_{1} h_{17}=\frac{2}{3} \mu_{G}^{2}, \quad \int d \omega_{1} \omega_{1}^{2} h_{17}=\frac{2}{15}\left(5 m_{5}+3 m_{6}-2 m_{9}\right)$.

$\mathrm{G}+\mathrm{P}$ numerically:
$\Lambda_{17} \in[-24,5] \mathrm{MeV}$ for $m_{c}=1.17 \mathrm{GeV}$. Factor-of-3 improvement w.r.t. BLNP.

In our code: $\kappa_{V}=1.2 \pm 0.3$.
Warning: scheme for m_{c} !

Non-perturbative contribution proportional to $\left|C_{8}\right|^{2}$

A. Kapustin, Z. Ligeti \& H. D. Politzer [hep-ph/9507248],
A. Ferroglia \& U. Haisch [arXiv:1009.2144],
focused on the collinear logs $\ln \frac{m_{b}}{m_{s}}$ in the corresponding contribution to $P\left(E_{0}\right)$. \Rightarrow fragmentation functions \Rightarrow effects below 1% in $\mathcal{B}_{s \gamma}$.

Non-perturbative contribution proportional to $\left|C_{8}\right|^{2}$

A. Kapustin, Z. Ligeti \& H. D. Politzer [hep-ph/9507248],
A. Ferroglia \& U. Haisch [arXiv:1009.2144],
focused on the collinear logs $\ln \frac{m_{b}}{m_{s}}$ in the corresponding contribution to $P\left(E_{0}\right)$.
\Rightarrow fragmentation functions \Rightarrow effects below 1% in $\mathcal{B}_{s \gamma}$.
Such logs were varied in the range $[\ln 10, \ln 50] \simeq\left[\ln \frac{m_{B}}{m_{K}}, \ln \frac{m_{B}}{m_{\pi}}\right]$ in the phenomenological analyses, which roughly reproduced
 the fragmentation function estimates.

Non-perturbative contribution proportional to $\left|C_{8}\right|^{2}$

A. Kapustin, Z. Ligeti \& H. D. Politzer [hep-ph/9507248],
A. Ferroglia \& U. Haisch [arXiv:1009.2144],
focused on the collinear logs $\ln \frac{m_{b}}{m_{s}}$ in the corresponding contribution to $P\left(E_{0}\right)$.
\Rightarrow fragmentation functions \Rightarrow effects below 1% in $\mathcal{B}_{s \gamma}$.
Such logs were varied in the range $[\ln 10, \ln 50] \simeq\left[\ln \frac{m_{B}}{m_{K}}, \ln \frac{m_{B}}{m_{\pi}}\right]$ in the phenomenological analyses, which roughly reproduced the fragmentation function estimates.
M. Benzke, S.J. Lee, M. Neubert \& G. Paz [arXiv:1003.5012]
pointed out non-perturbative effects that are unrelated to the collinear logs. Their estimated range is $[-0.3,1.9] \%$ of $\mathcal{B}_{s \gamma}$ for the overall non-perturbative effect being proportional to $\left|C_{8}\right|^{2}$, w.r.t. the $\frac{m_{b}}{m_{s}}=50$ case in $P\left(E_{0}\right)$, for $\mu_{b}=1.5 \mathrm{GeV}$ and $\boldsymbol{E}_{0}=1.6 \mathrm{GeV}$.

Non-perturbative contribution proportional to $\left|C_{8}\right|^{2}$

A. Kapustin, Z. Ligeti \& H. D. Politzer [hep-ph/9507248],
A. Ferroglia \& U. Haisch [arXiv:1009.2144],
focused on the collinear logs $\ln \frac{m_{b}}{m_{s}}$ in the corresponding contribution to $P\left(E_{0}\right)$.
\Rightarrow fragmentation functions \Rightarrow effects below 1% in $\mathcal{B}_{s \gamma}$.
Such logs were varied in the range $[\ln 10, \ln 50] \simeq\left[\ln \frac{m_{B}}{m_{K}}, \ln \frac{m_{B}}{m_{\pi}}\right]$ in the phenomenological analyses, which roughly reproduced the fragmentation function estimates.
M. Benzke, S.J. Lee, M. Neubert \& G. Paz [arXiv:1003.5012]
pointed out non-perturbative effects that are unrelated to the collinear logs. Their estimated range is $[-0.3,1.9] \%$ of $\mathcal{B}_{s \gamma}$ for the overall non-perturbative effect being proportional to $\left|C_{8}\right|^{2}$, w.r.t. the $\frac{m_{b}}{m_{s}}=50$ case in $P\left(E_{0}\right)$, for $\mu_{b}=1.5 \mathrm{GeV}$ and $\boldsymbol{E}_{0}=1.6 \mathrm{GeV}$.

Numerically, we can reproduce this range by performing a replacement
$\ln \frac{m_{b}}{m_{s}} \rightarrow \kappa_{88} \ln 50 \quad$ with $\quad \kappa_{88}=1.7 \pm 1.1$
in all the perturbative contributions proportional to $\left|C_{8}\right|^{2}$.

Non-perturbative contribution proportional to $\left|C_{8}\right|^{2}$

A. Kapustin, Z. Ligeti \& H. D. Politzer [hep-ph/9507248],
A. Ferroglia \& U. Haisch [arXiv:1009.2144],
focused on the collinear logs $\ln \frac{m_{b}}{m_{s}}$ in the corresponding contribution to $P\left(E_{0}\right)$.
\Rightarrow fragmentation functions \Rightarrow effects below 1% in $\mathcal{B}_{s \gamma}$.
Such logs were varied in the range $[\ln 10, \ln 50] \simeq\left[\ln \frac{m_{B}}{m_{K}}, \ln \frac{m_{B}}{m_{\pi}}\right]$ in the phenomenological analyses, which roughly reproduced the fragmentation function estimates.
M. Benzke, S.J. Lee, M. Neubert \& G. Paz [arXiv:1003.5012]
pointed out non-perturbative effects that are unrelated to the collinear logs. Their estimated range is $[-0.3,1.9] \%$ of $\mathcal{B}_{s \gamma}$ for the overall non-perturbative effect being proportional to $\left|C_{8}\right|^{2}$, w.r.t. the $\frac{m_{b}}{m_{s}}=50$ case in $P\left(E_{0}\right)$, for $\mu_{b}=1.5 \mathrm{GeV}$ and $\boldsymbol{E}_{0}=1.6 \mathrm{GeV}$.

Numerically, we can reproduce this range by performing a replacement
$\ln \frac{m_{b}}{m_{s}} \rightarrow \kappa_{88} \ln 50 \quad$ with $\quad \kappa_{88}=1.7 \pm 1.1$
in all the perturbative contributions proportional to $\left|C_{8}\right|^{2}$.

The $[\ln 10, \ln 50]$ range remains used in other (small) terms where collinear logs arise.

Updated SM predictions for $\mathcal{B}_{s \gamma}$ and $\boldsymbol{R}_{\gamma} \equiv \mathcal{B}_{(s+d) \gamma} / \mathcal{B}_{c t \bar{\nu}} \quad$ (with $E_{0}=1.6 \mathrm{GeV}$):

$$
\begin{aligned}
& \mathcal{B}_{s \gamma}=\left(3.40 \pm \underset{(\pm 5.0 \%)}{0.17)} \times 10^{-4}\right. \\
& \boldsymbol{R}_{\gamma}=\left(3.35 \pm \underset{(\pm 4.8 \%)}{0.16)} \times 10^{-3}\right.
\end{aligned}
$$

compare to $\left(3.36 \pm \underset{(\pm 6.9 \%)}{0.23)} \times 10^{-4}\right.$ in arXiv: 1503.01789
compare to $\left(3.31 \underset{(\pm 6.7 \%)}{0.22)} \times 10^{-3}\right.$ in arXiv:1503.01789

Updated SM predictions for $\mathcal{B}_{s \gamma}$ and $\boldsymbol{R}_{\gamma} \equiv \mathcal{B}_{(s+d) \gamma} / \mathcal{B}_{c \bar{\nu} \bar{\nu}} \quad$ (with $\left.E_{0}=1.6 \mathrm{GeV}\right)$:

$$
\begin{aligned}
& \mathcal{B}_{s \gamma}=\left(3.40 \pm \underset{(\pm 5.0 \%)}{0.17)} \times 10^{-4}\right. \\
& \boldsymbol{R}_{\gamma}=\left(3.35 \pm \underset{(\pm 4.8 \%)}{0.16)} \times 10^{-3}\right.
\end{aligned}
$$

$$
\text { compare to }\left(3.36 \underset{(\pm 6.9 \%)}{0.23)} \times 10^{-4}\right. \text { in arXiv:1503.01789 }
$$

$$
\text { compare to }\left(3.31 \underset{(\pm 6.7 \%)}{0.22)} \times 10^{-3}\right. \text { in arXiv:1503.01789 }
$$

Current uncertainty budget in $\mathcal{B}_{s \gamma}$:
$\pm 3 \%$ higher-order, $\pm 3 \%$ interpolation in $m_{c}, \quad \pm 2.5 \%$ parametric (including $\frac{\delta \Gamma_{c}}{\Gamma}, \kappa_{V}$ and κ_{88})

Updated SM predictions for $\mathcal{B}_{s \gamma}$ and $\boldsymbol{R}_{\gamma} \equiv \mathcal{B}_{(s+d) \gamma} / \mathcal{B}_{c t \bar{\nu}} \quad$ (with $E_{0}=1.6 \mathrm{GeV}$):

$$
\begin{aligned}
& \mathcal{B}_{s \gamma}=\left(3.40 \pm \underset{(\pm 5.0 \%)}{0.17)} \times 10^{-4}\right. \\
& \boldsymbol{R}_{\gamma}=\left(3.35 \pm \underset{(\pm 4.8 \%)}{0.16)} \times 10^{-3}\right.
\end{aligned}
$$

$$
\text { compare to }\left(3.36 \underset{(\pm 6.9 \%)}{0.23)} \times 10^{-4}\right. \text { in arXiv:1503.01789 }
$$

$$
\text { compare to }\left(3.31 \underset{(\pm 6.7 \%)}{0.22)} \times 10^{-3}\right. \text { in arXiv:1503.01789 }
$$

Current uncertainty budget in $\mathcal{B}_{s \gamma}$:
$\pm 3 \%$ higher-order, $\pm 3 \%$ interpolation in $m_{c}, \quad \pm 2.5 \%$ parametric (including $\frac{\delta \Gamma_{c}}{\Gamma}, \kappa_{V}$ and κ_{88})

When the interpolation gets removed but nothing else changes:
$\sqrt{3^{2}+2.5^{2}} \%=3.9 \%$ - still somewhat behind the expected experimental $\pm 2.6 \%$.

Updated SM predictions for $\mathcal{B}_{s \gamma}$ and $\boldsymbol{R}_{\gamma} \equiv \mathcal{B}_{(s+d) \gamma} / \mathcal{B}_{c t \bar{\nu}} \quad$ (with $E_{0}=1.6 \mathrm{GeV}$):

$$
\begin{aligned}
& \mathcal{B}_{s \gamma}=\left(3.40 \pm \underset{(\pm 5.0 \%)}{0.17)} \times 10^{-4}\right. \\
& \boldsymbol{R}_{\gamma}=\left(3.35 \pm \underset{(\pm 4.8 \%)}{0.16)} \times 10^{-3}\right.
\end{aligned}
$$

$$
\text { compare to }\left(3.36 \underset{(\pm 6.9 \%)}{0.23)} \times 10^{-4}\right. \text { in arXiv:1503.01789 }
$$

Current uncertainty budget in $\mathcal{B}_{s \gamma}$:
$\pm 3 \%$ higher-order, $\pm 3 \%$ interpolation in $m_{c}, \quad \pm 2.5 \%$ parametric (including $\frac{\delta \Gamma_{c}}{\Gamma}, \kappa_{V}$ and κ_{88})

When the interpolation gets removed but nothing else changes:
$\sqrt{3^{2}+2.5^{2}} \%=3.9 \%$ - still somewhat behind the expected experimental $\pm 2.6 \%$.

Shifts in uncertainties related to $\frac{\delta \Gamma_{c}}{\Gamma}, \kappa_{V}$ and κ_{88} :
formerly: $1.25 \%+2.85 \%+1.10 \%=5.20 \%$ (in quadrature: 3.30%) at present: $0.74 \%+0.88 \%+0.92 \%=2.54 \%$ (in quadrature: 1.48%)
$\sqrt{1.48^{2}+2.01^{2}} \%=2.49 \% \simeq 2.5 \%$

Summary for the radiative decay

- Perturbative NNLO calculations of $\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]$ that aim at removing the $\boldsymbol{m}_{\boldsymbol{c}}$-interpolation have been finalized for diagrams involving closed fermion loops on the gluon lines. We confirm several published results, and supplement them with a previously unknown (tiny) piece.

Summary for the radiative decay

- Perturbative NNLO calculations of $\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]$ that aim at removing the m_{c}-interpolation have been finalized for diagrams involving closed fermion loops on the gluon lines. We confirm several published results, and supplement them with a previously unknown (tiny) piece.
- The isospin asymmetry Δ_{0-} measured by Belle in 2018 helps to suppress non-perturbative uncertainties in $\mathcal{B}_{s \gamma}$, especially those arising in the $Q_{7}-Q_{8}$ interference.

Summary for the radiative decay

- Perturbative NNLO calculations of $\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]$ that aim at removing the m_{c}-interpolation have been finalized for diagrams involving closed fermion loops on the gluon lines. We confirm several published results, and supplement them with a previously unknown (tiny) piece.
- The isospin asymmetry Δ_{0-} measured by Belle in 2018 helps to suppress non-perturbative uncertainties in $\mathcal{B}_{s \gamma}$, especially those arising in the $Q_{7}-Q_{8}$ interference.
- The 2019 reanalysis of non-perturbative effects in the $Q_{1,2}-Q_{7}$ interference by Gunawardana and Paz implies that the corresponding uncertainty gets reduced by a factor of three.

Summary for the radiative decay

- Perturbative NNLO calculations of $\Gamma\left[b \rightarrow X_{s}^{p} \gamma\right]$ that aim at removing the m_{c}-interpolation have been finalized for diagrams involving closed fermion loops on the gluon lines. We confirm several published results, and supplement them with a previously unknown (tiny) piece.
- The isospin asymmetry Δ_{0-} measured by Belle in 2018 helps to suppress non-perturbative uncertainties in $\mathcal{B}_{s \gamma}$, especially those arising in the $Q_{7}-Q_{8}$ interference.
- The 2019 reanalysis of non-perturbative effects in the $Q_{1,2}-Q_{7}$ interference by Gunawardana and Paz implies that the corresponding uncertainty gets reduced by a factor of three.
- The updated SM predictions read $\mathcal{B}_{s \gamma}=(3.40 \pm 0.17) \times 10^{-4}$ and $\boldsymbol{R}_{\gamma}=(3.35 \pm 0.16) \times 10^{-3}$ for $\boldsymbol{E}_{0}=1.6 \mathrm{GeV}$.

Determination of $\left|V_{c b}\right|$ from the inclusive $\bar{B} \rightarrow X_{c} \ell \nu$ rate and spectra

$$
\begin{gathered}
\left|V_{c b}\right|=(42.00 \pm \underbrace{0.64}_{1.5 \%}) \times 10^{-3} \quad \text { [P. Gambino, K. J. Healey and S. Turczyk, arXiv:1606.06174] } \\
\text { roughly: } \underset{\substack{\text { perturbative } \\
\mathcal{O}\left(\alpha_{s}^{3}\right)}}{\sqrt{(1.0 \%)^{2}+(1.1 \%)^{2}} \simeq 1.5 \%}
\end{gathered}
$$

Determination of $\left|V_{c b}\right|$ from the inclusive $\bar{B} \rightarrow X_{c} \ell \nu$ rate and spectra

$$
\begin{array}{r}
\left|V_{c b}\right|=(42.00 \pm \underbrace{0.64}_{1.5 \%}) \times 10^{-3} \quad[\text { P. Gambino, K. J. Healey and S. Tu } \\
\text { roughly: } \underset{\substack{\text { perturbative } \\
\mathcal{O}\left(\alpha_{s}^{3}\right)}}{\sqrt{(1.0 \%)^{2}+\left(\begin{array}{c}
(1.1 \%)^{2} \\
\text { other }
\end{array}\right.} \simeq 1.5 \%}
\end{array}
$$

Impact on the uncertainty in the SM prediction for $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$:

$$
\sqrt{(3.0 \%)^{2}+(2.3 \%)^{2}} \simeq 3.8 \%
$$

$$
\left|V_{c b}\right|^{2} \quad \text { other }
$$

[C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou and M. Steinhauser, arXiv:1311.0903],
M. Beneke, C. Bobeth and R. Szafron, arXiv:1908.07011].

Determination of $\left|V_{c b}\right|$ from the inclusive $\bar{B} \rightarrow X_{c} \ell \nu$ rate and spectra

$$
\begin{gathered}
\left|V_{c b}\right|=(42.00 \pm \underbrace{0.64}_{1.5 \%}) \times 10^{-3} \quad[\text { P. Gambino, K. J. Healey and S. Turczyk, arXiv:1606.06174] } \\
\text { roughly: } \underset{\substack{\text { perturbative } \\
\text { O(}\left(\alpha_{s}^{3}\right)}}{\sqrt{(1.0 \%)^{2}+(1.1 \%)^{2}}} \simeq 1.5 \% \\
\text { other }
\end{gathered}
$$

Impact on the uncertainty in the SM prediction for $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$:

$$
\underset{\left.\left|V_{c b}\right|^{2}\right)^{2}+(2.3 \%)^{2}}{\sqrt{(3.0 \% e r}} \simeq 3.8 \%
$$

[C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou and M. Steinhauser, arXiv:1311.0903], M. Beneke, C. Bobeth and R. Szafron, arXiv:1908.07011].

Impact on the uncertainty in the SM prediction for ϵ_{K} :

$$
\underset{\left.\left|V_{c b}\right|^{4}\right)^{2}}{\sqrt{(5.3 \%}+\underset{\text { other }}{(6.4 \%)^{2}}} \simeq 8.3 \% \quad(\text { roughly })
$$

using Eq. (17) of [J. Brod, M. Gorbahn and E. Stamou, arXiv:1911.06822].

- Optical Theorem
- OPE - Heavy Quark Expansion (HQE): $\quad p_{b}=m_{b} v_{B}+k$

Observables can be written as:

$$
d \Gamma=d \Gamma_{0}+d \Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+d \Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}}+d \Gamma_{\rho_{0}} \frac{\rho_{D}^{3}}{m_{b}^{3}}+d \Gamma_{\rho_{L S}} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots
$$

- $d \Gamma_{i}$ are computed in perturbative QCD
- The non-perturbative dynamics is enclosed into the HQE parameters: $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{L S} \sim\langle B| \bar{b}_{v} i D^{\mu} \ldots i D^{\nu} \Gamma_{\mu \ldots \nu} b_{v}|B\rangle$
- HQE parameters are extracted from data.

Reviews:

Benson, Bigi, Mannel, Uraltsev, Nucl.Phys. B665 (2003) 367;
Dingfelder, Mannel, Rev.Mod.Phys. 88 (2016) 035008.

	tree	α_{S}	α_{S}^{2}	α_{s}^{3}	
1	\checkmark	\checkmark	\checkmark	!	Jezabek, Kuhn, NPB 314 (1989) 1; Gambino et al., NPB 719 (2005) 77; Melnikov, PLB 666 (2008) 336; Pak, Czarnecki, PRD 78 (2008) 114015.
μ_{π}	\checkmark	\checkmark	!		Becher, Boos, Lunghi, JHEP 0712 (2007) 062.
μ_{G}	\checkmark	\checkmark	!		Alberti, Gambino, Nandi, JHEP 1401 (2014) 147; Mannel, Pivovarov, Rosenthal, PRD 92 (2015) 054025.
ρ_{D}	\checkmark	\checkmark			Mannel, Pivovarov, PRD100 (2019) 093001.
$\rho_{\text {LS }}$	\checkmark	!			
$1 / m_{b}^{4}$	\checkmark				Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
$1 / m_{b}^{5}$	\checkmark				Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109
m_{b}^{kin}		\checkmark	\checkmark	$\langle\hat{i}\rangle$	Bigi, Shifman, Uraltsev, Vainshtein, PRD 56 (1997) 4017; Czarnecki, Melnikov, Uraltsev, PRL 80 (1998) 3189.

Feasibility of $b \rightarrow X_{c} \ell \bar{\nu} @ N^{3} \mathrm{LO}$

Feasibility of $b \rightarrow X_{c} \ell \bar{\nu} @ N^{3} \mathrm{LO}$

contribution to Γ

Let us consider $q^{2}=m_{c}^{2}$:

from

Real boundary condition for the differential equations at $m_{c} \gg m_{b}$

Feasibility of $b \rightarrow X_{c} \ell \bar{\nu} @ N^{3} \mathrm{LO}$

contribution to Γ

contribution to $d \Gamma / d q^{2}$ for $q^{2}=M^{2}$

Let us consider $q^{2}=m_{c}^{2}$:

from

Real boundary condition for the differential equations at $m_{c} \gg m_{b}$

Possible IBP outsourcing: Fraunhofer Institute for Industrial Mathematics
[D. Bendle et al., arXiv:1908.04301]

BACKUP SLIDES

Goal: calculate the inclusive sum $\left.\sum_{X_{s}}\left|C_{7}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{7}\right| \bar{B}\right\rangle+C_{2}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{2}|\bar{B}\rangle+\left.\ldots\right|^{2}$
The " 77 " term in this sum is "hard". It is related via the optical theorem to the imaginary part of the elastic forward scattering amplitude $\bar{B}(\vec{p}=0) \gamma(\vec{q}) \rightarrow \bar{B}(\vec{p}=0) \gamma(\vec{q})$:

When the photons are soft enough, $m_{X_{s}}^{2}=\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2} \Rightarrow$ Short-distance dominance \Rightarrow OPE. However, the $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum is dominated by hard photons $\boldsymbol{E}_{\gamma} \sim m_{b} / 2$.

Once $\boldsymbol{A}\left(\boldsymbol{E}_{\gamma}\right)$ is considered as a function of arbitrary complex \boldsymbol{E}_{γ}, $\operatorname{Im} A$ turns out to be proportional to the discontinuity of A at the physical cut. Consequently,

$$
\int_{1 \mathrm{GeV}}^{E_{\gamma}^{\max }} d E_{\gamma} \operatorname{Im} A\left(E_{\gamma}\right) \sim \oint_{\text {circle }} d E_{\gamma} A\left(E_{\gamma}\right)
$$

Since the condition $\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2}$ is fulfilled along the circle,
 the OPE coefficients can be calculated perturbatively, which gives

$$
\left.A\left(E_{\gamma}\right)\right|_{\text {circle }} \simeq \sum_{j}\left[\frac{F_{\text {polynomial }}^{(j)}\left(2 E_{\gamma} / m_{b}\right)}{m_{b}^{n_{j}}\left(1-2 E_{\gamma} / m_{b}\right)^{k_{j}}}+\mathcal{O}\left(\alpha_{s}\left(\mu_{\text {hard }}\right)\right)\right]\langle\bar{B}(\vec{p}=0)| Q_{\text {local operator }}^{(j)}|\bar{B}(\vec{p}=0)\rangle
$$

Thus, contributions from higher-dimensional operators are suppressed by powers of Λ / m_{b}.
At $\left(\Lambda / m_{b}\right)^{0}: \quad\langle\bar{B}(\vec{p})| \bar{b} \gamma^{\mu} b|\bar{B}(\vec{p})\rangle=2 p^{\mu} \quad \Rightarrow \quad \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)+\mathcal{O}\left(\Lambda / m_{b}\right)$.
At $\left(\Lambda / m_{b}\right)^{1}$: Nothing! All the possible operators vanish by the equations of motion.
At $\left(\Lambda / m_{b}\right)^{2}: \quad\langle\bar{B}(\vec{p})| \bar{b}_{v} D^{\mu} D_{\mu} b_{v}|\bar{B}(\vec{p})\rangle \sim m_{B} \mu_{\pi}^{2}$,

$$
\langle\bar{B}(\vec{p})| \bar{b}_{v} g_{s} G_{\mu \nu} \sigma^{\mu \nu} b_{v}|\bar{B}(\vec{p})\rangle \sim m_{B} \mu_{G}^{2},
$$

The HQET heavy-quark field: $b_{v}(x)=\frac{1}{2}(1+\not ้) b(x) \exp \left(i m_{b} v \cdot x\right)$ with $v=p / m_{B}$.

The same method has been applied to the 3-loop counterterm diagrams [MM, A. Rehman, M. Steinhauser, PLB 770 (2017) 431]

Master integrals:

Results for the bare NLO contributions up to $\mathcal{O}(\epsilon)$:

$\hat{G}_{27}^{(1) 2 P}=-\frac{92}{81 \epsilon}+f_{0}(z)+\epsilon f_{1}(z) \xrightarrow{z \rightarrow 0}-\frac{92}{81 \epsilon}-\frac{1942}{243}+\epsilon\left(-\frac{26231}{729}+\frac{259}{243} \pi^{2}\right)$

Dots: solutions to the differential equations and/or the exact $z \rightarrow 0$ limit. Lines: large- and small- z asymptotic expansions

Small-z expansions of $\hat{G}_{27}^{(1) 2 P}$:

f_{0} from C. Greub, T. Hurth, D. Wyler, hep-ph/9602281, hep-ph/9603404,
A. J. Buras, A. Czarnecki, MM, J. Urban, hep-ph/0105160,
f_{1} from H.M. Asatrian, C. Greub, A. Hovhannisyan, T. Hurth and V. Poghosyan, hep-ph/0505068.

Analogous results for the 3 -body final state contributions $(\delta=1)$:

$$
\hat{G}_{27}^{(1) 3 P}=g_{0}(z)+\epsilon g_{1}(z) \xrightarrow{z \rightarrow 0}-\frac{4}{27}-\frac{106}{81} \epsilon
$$

Dots: solutions to the differential equations and/or the exact $z \rightarrow 0$ limit.
Lines: exact result for g_{0}, as well as large- and small- z asymptotic expansions for g_{1}.
$g_{0}(z)= \begin{cases}-\frac{4}{27}-\frac{14}{9} z+\frac{8}{3} z^{2}+\frac{8}{3} z(1-2 z) s L+\frac{16}{9} z\left(6 z^{2}-4 z+1\right)\left(\frac{\pi^{2}}{4}-L^{2}\right), & \text { for } z \leq \frac{1}{4} \\ -\frac{4}{27}-\frac{14}{9} z+\frac{8}{3} z^{2}+\frac{8}{3} z(1-2 z) t A+\frac{16}{9} z\left(6 z^{2}-4 z+1\right) A^{2}, & \text { for } z>\frac{1}{4}\end{cases}$
where $s=\sqrt{1-4 z}, \quad L=\ln (1+s)-\frac{1}{2} \ln 4 z, \quad t=\sqrt{4 z-1}, \quad$ and $A=\arctan (1 / t)$.

