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@ Introduction: basics of cosmological phase transitions
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Motovation

| 2

>

Cosmological phase transitions are present in a variety
of particle-physics models beyond SM.

If they are first order, they could create an environ-
ment for the generation of baryon asymmetry and
production of a stochastic gravitational wave back-
ground, which could be potentially observed with the
next generation of detectors.

Evaluation of the bubble-wall velocity in the station-
ary state, which has a crucial impact both on the
amplitude of GW signal and baryon-asymmetry pro-
duction, remains one of the most problematic issues.
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Cosmological first order phase transitions

Let us consider theory of scalar field given Scalar effective potential V (¢, T)
by Lagrangian density:

L= 5(0,0)@"6) ~ V(6,T),

leading to the equation of motion in the
form:

Po 200 V(6T

G2 car 96 false vacuum

(¢) =0

true vacuum

(¢) #0
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where T is temperature.
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Tunneling bubbles

Nucleation rate:
I(T) = A(T) - exp (= S)

For tunneling in finite temperatures:

3

-2 am -1 ()
T 27T
where S5 is an action of O(3)-symmetric
solution of the eom.
Nucleation condition:
[(Tn)
A

S

=B

(¢) =0
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Phase transition parameters

5

» Critical and nucleation temperatures: 7.7,
» Level of supercooling: 7,,/7.
» Transition strength: oo ~ AV/p,

In this work:
A . . p
oz(;:3ws, with 9:6—%

with the speed of sound in the broken phase
¢, and model-dependent energy ¢, pressure
» and enthalpy w.

» Bubble-wall velocity: v,
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Expansion of bubbles 6

Different modes depending on bubble-wall velocity v,, and transition strength ay:

deflagration hybrid detonation
Uy < Cs Cs < Uy < CJ cy < Uy

000

Where Jouget velocity is c; = \/Lgl*'— Vﬁf‘im
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Overview for analyzing cosmological phase transitions 17

Particle physics model Signal to noise ratio

PT parameters: GW power spectrum: LISA sensitivity:
Effective action — 3, H, Numerical simulations Configuration + noise level
Energy budget — o, { 1l
Bubble-wall dynamics — v,, |l h?Qcw (f, Hs, @, 3, v) h2Qgens (f)

This talk: Real-time hydrodynamical simulations of the bubble-wall and plasma dynamics

to determine v,,, comparison with analytical methods.
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® Bubble-wall expansion: analytical approach
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Dynamics of the steady state expansion
Integrated EoM of the growing bubble:

d oV, d3p
/dzdf <D¢>+ H+Z /2 )32E6fz(p, )) 0

hdaﬁ Vg _ Ve Ve AT

dz 9¢  dz  OT dz

[ VerdT dmi(¢) [ d’p
A‘/eff—/dz 8T$ —;/dﬁs d¢ /( )32E5fz(pa )

driving force = hydrodynamic backreaction 4  non-equilibrium friction

» Boltzmann eq. + EoM (different approaches: e.g fluid ansatz)
» LTE approximation (only hydrodynamic backreaction)
» Numerical simulations with effective friction n parametrizing o f FA_;/;?’UHLJS‘ g;



Stationary profiles

Energy-momentum tensor for the plasma is given by
T = wutu” — g"'p
Conservation of T"" along the flow and its projection orthogonal to the flow leads to
Op(uf'w) — u,0"p =0 wurwdyu, —u”d,p = 0.
Spherical symmetry + scale invariance:

W ——2e—pe 0= 11—

Hydrodynamic equation )

22’ Y2(1 — vf) [C - 1] Oev,

S

—r/t. FACULTY OF
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Stationary profiles 11

Solving hydrodynamic equation assuming

Hydrodynamic equation
bag model and proper boundary conditions

2 . .
9l _ V(1 — ve) M_2 — 1| &, (1 an.d 2), we get analytical profiles v(§) de-
§ Cs pending on &, ay.
0.5
Matching eqUationS — deflagrations — hybrids — detonations
0.4 -
1 w_ylu_ = w+’y§rv+ 0
2 wAlvl4+p. =wiyiel +py =
. 0.2
3 s y-v_ =syy4vy (f0f =0)
0.1 -
Bag equation of state /‘
0.0 V\_Ib\\\\/
€s = SaSTS4 + 0, € = 3ang1 + 0, 0.0 0.2 0.4 0.6 0.8 1.0
13
Ps = asT54 - 05 Py = ale:L - eb

FACULTY OF
-sPHYSICS

Mateusz Zych Bubble-Wall Velocity from Hydrodynamical Simulations University of Warsaw



LTE approximation (J§f = 0)

Matching method: conservation of entropy accross the bubble-wall (matching eq. 3)

Pressure

. Evaluation of bubble-wall velocity based on
4 )
» transition strength ay
2 . w
» enthalpy ratio ¥ = o
0 » speed of sound in the plasma ¢, ¢
—21 Deflagration/Hybrid Detonation
! Stationary state (deflagration or hybrid)
| can be typically found for not too large ay
-6 : ‘ i : There are no stable detonations in LTE.
0.0 0.2 0.4 0.6 0.8 1.0
Ew
Figure: Total pressure acting on the wall
I\Wen-Yuan Ai, Benoit Laurent, Jorinde van de Vis, FACULTY OF
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© Benchmark model: scalar singlet extension
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Scalar singlet extension

Model: SM Higgs dublet H and Zs-symmetric real singlet s.
Tree-level potential (unitary gauge):
1 1 1 1 1
Vo(h,s) = 5”%’12 + ZAhh“ + ZAhSh%? + 5,@32 + ZAS#
2
m
A = 2—0’; and ,u,% = —)\hU2,
with my, = 125.09 GeV and v = 246.2 GeV.

‘ free parametres: mg, Ag, Aps

Effective potential:
‘/eff(hv S, T) = ‘/O(h‘v S) + VCW(h, 5, T) + VT(h7 S, T)

» Vow(h, s, T) - Coleman-Weinberg potential (here neglected)

» Vp(h,s,T) - thermal potential FACULTY OF

-sPHYSICS



Thermal potential

hermal functions
J, x ——:I:/ d 210 (1$ex (—\/ 2+m2>>
b/f( ) O yy g p Yy

High-temperature expansion: (z < 1):

4 2 7 4 2
Jo(x) ~ £+—x +0(z%)  Jp(2) = - gngﬂx +O(a* log 2?)
niT4 ml(h, S) m; LT g* Cznz T2
V= X s (M) AT

Effectively tree-level potential with temperature—dependent mass terms
pn(T) = pi + e T% and  p3(T) = pg + 217,
1 1
& =— (9g2 + 392 + 12y7 + 24\, + zAhs) and ¢ = — (2\hs + 3)s)

48 127 EACULTY OF
“SPHYSICS



Transition pattern 116
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Parameter space

» Scan of the parameter space with \, =1.

|17

> Wall velocity determined analytically with matching conditions assuming LTE.
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O Bubble-wall expansion: real-time simulations
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Scalar fields and perfect fluid
Equation of state

The system consists of p(h,s,T) = —Veg(h, s, T),

> relativistic perfect fluid

d‘/veﬁ(h, S, T)

> real scalar fields h, s. e(h,s,T) = Ve(h, s, T) — ngT )
The fields acquires a temperature- dVeg(h, s, T)
dependent effective potential Vg. w(h,s,T) = =T dT :

Energy-momentum tensor
T* = Tferg + Thua
uv " 14 v 1 le%
Tﬁeld = 0"p0" ¢ — g §aa¢8 o

woo_ v v
Thq = wutu” + ¢"p
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Equations of motion

Total energy-momentum tensor in conserved, but both contributions are not, due to
the extra coupling term parametrized by effective non-equilibrium friction

OVeft o, y OVeft y
V#Tfil;d - a; 0 ¢)+ nuuaﬂ¢8 ¢7 V#Té}’llllld - - 8;) 0 ¢) - nuuaﬂd)a (b

Local thermal equilibrium: 7 =0

EoM - scalar fields

1 OVeg
_ 92 - 2 o eff
Ofh+ —0,(r%0,h) = = =0
A

1
—o? — 2 —
ofs+ r28r(r OrS) 5
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Equations of motion

Total energy-momentum tensor in conserved, but both contributions are not, due to
the extra coupling term parametrized by effective non-equilibrium friction

v _ Ve v Vet 1,y ,
ViTfa = —gg 00 + M 0u00"6, VTfiy = =506 = 0,600
Local thermal equilibrium: 7 =0
EoM - plasma
1 2 _ Vg OVegr
Oy + ﬁ&(r (T +p)v) = - Oth + o ;s
1 OVest OVest
Z+ =0, (r’Z = —
0.7 + —50, (1 Zv) + 0p =~ 7 0ch — =0y

where Z := wvy?v and 7 := wy? — p EACULTY OF
- PHYSICS



Spatial discretization 22

Spatial discretization of the field: discontinous Galerkin method

Ti+1

0=, [T fro).oee > Y, z [ a6 ot 60

with an auxiliary variable i := 0,¢. We introduce following interpolations:

¢(t’ T) |Ii = ¢Z(t)

Tig1 — T - r—r
Pt )|, =i t) ———— () ————.
( ) )’I, ) ( )TiJrl — z+1( )ri+1 —r;
di
o—r 0 Boundary conditions:
;O—CD : H ¢’T:0 - O
: or or ¢|r:oo =0

. . . FACULTY OF
Similar approach for the thermodynamic variables: 7, 7 “SPHYSICS
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Temporal discretization for the fields 2

Temporal discretization of the fields: Stromer-Verlet method
Gijr1/2 = Gij + %513@,3‘
Giji1 = Gij — Ot (?;(@,;’-&-1/2) - Ad¢i,j+1/2>
Gij+1 = Gijr1/2 + %&@'JH

Can be interpreted as discontinuous Galerkin method in time.
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Temporal discretization for plasma

For high order spacial discretization we use explicit midpoint method:

e
Uijyr2 = Usj + % []:z'+1/2(U~, ) = Fic1y2(U ) + Q(U,g,@,;quﬁw@,],n)} :
Uij+1 = Usj + (tjit1 — 1) [E+1/2(U~,j+1/2) = Fic12(U.jr1/2)

+G ( 4,5+1/25 ¢Z,j+1/27 vd¢l,j+1/27 ¢z J+1/25 Tz)} .

Temporal discretization of low order scheme: forward/backward Euler method:

Uj+1 = Uyj + ot [9 (E+1/2(U-,j+1) — Fic172(U 1) + G(U, ,g+1))
+(1=0) (Fia2(U5) = Finao(Ug) +G(Usy))]

We use implicit (6 = 1) for low order spacial discretization since explicit one (6 = 0)

turned out to be unstable. FACULTY OF
! " " -PHYSICS



Flux corrected transport

1 Compute F'¥ using low order method guaranteed not to generate unphysical values.
2 Compute F'¥ using high order method accurate in smooth regions of the solution.
3 Compute the "antidiffusive fluxes™:
A=F"—F*"
4 Compute numerical solution U” with low order method.
5 Limit the "antidiffusive fluxes":
A, = aA, 0<a<l
such that a ~ 1 in the smooth regions of the solution and a ~ 0 around shocks.

6 Apply the limited "antidiffusive fluxes” to U” in order to obtain final solution
reproducing high order scheme in the smooth regions of the solution.
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Evolution: early stages 126

» Evolution is initialized with h(r) and s(r) profiles correspond to the critical bubble
at nucleation temperature 7,.

» Plasma initially remains at rest v(r) = 0 with T'(r) =T,

> Bubble-wall quickly achieves constant velocity v,

Nateusz Zych

Bubble-Wall Velocity from

Hydrodynami

cal Simulations
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Evolution: late stages

| 27
Self-similar profiles: & =/t
0.08 1.0 0.04 1.0
. . matching method . . matching method
— simulation --- prediction — simulation --- prediction
0.06 & 0.8 0.03 ; 0.8
N . .
0.04 7 . 0-6 g 0.02 0.6 :
bS] ‘1 \ 45 B =
P 0.4 ¥ 0.4 ¥
0.02 N 0.01
/s 0.2 0.2
0.00 . 0.00
T T T T 0.0 T T T T 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
g §

Two possible scenarios for the growing bubble in LTE:

> rapid expansion beyond Chapman-Jouguet velocity leading to a runaway scenario
> evolution toward a stationary state predicted by matching conditions
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Analytical treatment vs real-time simulations 128

o simulations . matching method
10° poa——

1074 3 107" 3
© i a—2 ] E e s h—2 ]
s 10 is § 1077 5

10732 1072 4

1074 107* T T T T i =00

0.5 0.6 0.7 0.8 0.9 1.0

Tn/Te

While matching equations predict significant number of stationary deflagrations and
hybrids, in real-time simulations only few indeed evolve towards stationary state.
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Analytical treatment vs real-time simulations 129
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If the stationary state is achieved for a given model, bubble-wall velocity is very

accurately predicted by the matching equations.
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©® Conclusions
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Conclusions

We investigated fluid solutions in the presence of growing bubbles of the scalar field in
cosmological FOPT using numerical lattice simulations:

» Without non-equilibrium friction bubbles generically expand as runaways.
> Stationary profiles are dynamically achieved only for tiny supercooling (7,,/T. < 1).

~

> If steady state is achieved, it matches to equilibrium prediction with high precision.
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Conclusions

We investigated fluid solutions in the presence of growing bubbles of the scalar field in
cosmological FOPT using numerical lattice simulations:

» Without non-equilibrium friction bubbles generically expand as runaways.
> Stationary profiles are dynamically achieved only for tiny supercooling (7,,/T. < 1).

~

> If steady state is achieved, it matches to equilibrium prediction with high precision.

Thank you for your attention!
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