New insights on neutrino interactions with dark matter from CMB data

Sebastian Trojanowski National Centre for Nuclear Research (NCBJ), Poland

Theory of Particle Physics and Cosmology seminar

Faculty of Physics, University of Warsaw March 26, 2024

P. Brax, C.v.d. Bruck, E. Di Valentino, W. Giare, ST, 2303.16895 (MNRAS:Letters) 2305.01383 (Phys. Dark Univ.)

OUTLINE

- *Cosmolo gy*
- *analysis*
- *Data*
- ♦ Cosmic Microwave Background (CMB) radiation – the role of dark matter & neutrinos
	- ♦ Dark matter neutrino (DM-ν) interactions & CMB data
- ♦ High-multipole CMB data in the presence of DM-ν interactions & confronting current data
	- ♦ Sample BSM model

COSMIC MICROWAVE BACKGROUND – EXTREMELY POWERFUL TOOL

CMB – ONGOING & FUTURE EXPERIMENTAL PROGRAM

Snowmass2021 Cosmic Frontier:

Cosmic Microwave Background Measurements White Paper; 2203.07638

CMB POWER SPECTRUM

Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper; 2203.07638

CMB POWER SPECTRUM

CAN WE LEARN MORE FROM THE DAMPING TAIL?

Credit: Daniel Eisenstein also CMBfast code

BASICS OF ACOUSTIC OSCILLATIONS

ACOUSTIC OSCILLATIONS & CMB

- ♦ Photon-baryon fluid: balance between pressure and gravity **oscillations**
- \triangle Propagation with the speed of sound, $c_s \sim 57\%$ c
- ♦ Decomposition into standing waves
- ♦ Pattern of overdensities frozen around recombination, it translates into photon temperatures

♦ Finite-time recombination: damping of small structures

♦ Modeling:

- small perturbations in density, velocity, and gravitational potential

 $\rho(\vec{r}, t) = \rho_0(t) + \delta \rho(\vec{r}, t)$

- apply continuity, Euler, and Poisson equations
- standing wave solution for $\delta := \frac{\delta \rho}{\rho}$

$$
\delta(x,\tau) = \delta_0 \cos(kx + \varphi) \cos\left(\frac{c}{\sqrt{3}}k[\tau - \tau_{\text{start}}(k)]\right)
$$

C.-P. Ma, E. Bertschinger; 9506072 I.M. Oldengott, etal; 1409.1577 J. Stadler, etal; 1903.00540 M.R. Mosbech, etal, 2011.04206

HOW DO WE MODEL THIS?

♦ Neutrino distribution function

 $f(\mathbf{x}, \mathbf{P}, \tau) dx^1 dx^2 dx^3 dP^1 dP^2 dP^3 = dN$.

♦ Boltzmann equation

$$
\frac{d}{dt}f(\mathbf{x},\mathbf{p},t) = C\left[f(\mathbf{x},\mathbf{p},t)\right].
$$

♦ Collision term

$$
C(p) = \frac{1}{E_{\nu}(\mathbf{p})} \int \frac{d^3 \mathbf{p}'}{(2\pi)^3 2E_{\nu}(\mathbf{p}')} \frac{d^3 \mathbf{q}}{(2\pi)^3 2E_{\chi}(\mathbf{q})} \frac{d^3 \mathbf{q}'}{(2\pi)^3 2E_{\chi}(\mathbf{q}')} (2\pi)^4 |M|^2
$$

$$
\times \delta^4 (q + p - q' - p') [g(\mathbf{q}') f(\mathbf{p}') (1 - f(\mathbf{p})) - g(\mathbf{q}) f(\mathbf{p}) (1 - f(\mathbf{p}'))]
$$

♦ Assumptions: non-relativistic DM, Thomson-like scattering amplitude

$$
C(p) = \frac{\sigma_0 n_\chi p^2}{E_\nu^2(p)} \left[\begin{array}{c}\right] & C_\chi = a u_{\nu \chi} \frac{\sigma_{\text{Th}} \rho_\chi}{100 \text{ GeV}} \frac{p^2}{E_\nu^2}\end{array}\right]
$$

$$
u_{\nu\chi}=\frac{\sigma_0}{\sigma_{\rm Th}}\left(\frac{m_{\chi}}{100\,\text{GeV}}\right)^{-1}
$$

♦ Constant (energy-independent) scattering cross section; Other examples include $\sigma \sim E^2/m^2$

HOW DO WE MODEL THIS? (2)

♦ This is used to derive the Boltzmann hierarchy

$$
f(\mathbf{x}, \mathbf{p}, \tau) = f_0(p) \left[1 + \Psi(\mathbf{x}, \mathbf{p}, \tau) \right]
$$

\n
$$
\Psi(\mathbf{k}, \hat{\mathbf{n}}, p, \tau) = \sum_{l=0}^{\infty} (-i)^l (2l+1) \Psi_l(\mathbf{k}, p, \tau) P_l(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})
$$

\n
$$
\frac{\partial \Psi_0}{\partial \tau} = -\frac{pk}{E_{\nu}(p)} \Psi_1(p) + \frac{1}{6} \hbar \frac{d \ln f^{(0)}(p)}{d \ln p}
$$

\n
$$
\frac{\partial \Psi_1}{\partial \tau} = \frac{1}{3} \frac{pk}{E_{\nu}(p)} (\Psi_0(p) - 2\Psi_2(p)) - C_{\chi}(p) \frac{v_{\chi} E_{\nu}(p)}{3f^{(0)}(p)} \frac{df^{(0)}(p)}{dp} - C_{\chi}(p) \Psi_1(p).
$$

- ♦ Numerical Boltzmann solver (CLASS)
- ♦ Challenge: regimes of the fluid approximation, expected error on the CMB power spectrum $\sim 0.01\%$

DM-ν INTERACTIONS & CMB

- ◆ Standard cosmology: neutrinos free stream **booking and a stream of the stream** credit: Daniel Eisenstein & can "drag" baryon photon fluid
	- ♦ In the presence of DM-neutrino interactions:

 $-$ DM can take part in oscillations \rightarrow gravitational boost & enhanced CMB peaks R.J. Wilkinson, etal, 1401.7597

– DM-ν interactions can affect ν free streaming

 \rightarrow stronger clustering & enhanced CMB peaks >1 G. Magano, etal 0606190

 $-$ DM-neutrino fluid has a lower sound speed \rightarrow drag effect, CMB peaks shifted and more… P. Serra, etal, 0911.4411

♦ CMB peaks can be significantly affected

bounds on DM-ν interactions

♦ **Focus of this talk is on more subtle effects**

C. Boehm, R. Schaeffer, 0410591 J. Stadler, C. Boehm, O. Mena, 1903.00540

MIXED DAMPING

♦ Mixed damping: DM is coupled to a relativistic fluid which is itself free streaming

 $\Gamma_{DM-v} > H > (\Gamma_v \equiv \Gamma_{v-e} + \Gamma_{v-DM}),$

♦ The difference in the individual interaction rates is

due to the difference in the (target) number densities

 $\Gamma_{\rm v-DM} = n_{\rm DM} \sigma_{\rm vDM}$ $\Gamma_{\rm DM-\nu} = \frac{4\rho_{\rm v}}{3\rho_{\rm DM}}\,\Gamma_{\rm v-DM}$

- ♦ Neutrinos are free streaming while…
- ♦ ...DM is dragged by neutrino free streaming
- ♦ DM perturbation growth is slowed down
- ♦ For low interactions strength:
- effect to subtle to impact large scales (low-multiplicity)
- significantly more important for small-scale perturbations (high-l)

SMALL-SCALE CMB & ν-DM INTERACTIONS

- DM-ν interactions:
- suppression of high-multipole peaks at few % level or so
- negligible effect at low multipoles for $u_{\nu DM}$ < 10⁻⁵
- Similar effect in the temperature (TT) & polarization (EE) distributions
- Current data: Atacama Cosmology Telescope (ACT), South Pole Telescope (SPT)
- Future surveys can further improve: CMB-S4, ...

High-multipole CMB data = new window to study DM-ν interactions

CURRENT DATA & ANALYSIS

DATA

● **Planck** 2018 temperature & polarization 1907.12875, 1807.06209, 1807.06205

lensing

1807.06210

- Atacama Cosmology Telescope (**ACT**) temp. & polar. DR4 new confirmation: + ACT-DR6 & SPT W. Giare, etal, 2311.09116 2007.07289
- Baryon Acoustic Oscillations (**BAO**) & Redshift Space Distortions BOSS DR12 1208.0022

ANALYSIS

- (modified) CLASS + DM-ν 1104.2933, 1903.00540, 2011.04206
- Sampling: COBAYA (with CosmoMC) 2005.05290, 0205436, 1304.4473
- **Parameter** $\sigma_{\nu {\rm DM}} \sim T^0$ $\Omega_{\rm b}h^2$ $[0.005, 0.1]$ $\Omega_{c}^{\nu \text{DM}} h^2$ $[0.005, 0.1]$ $100 \theta_{\rm MC}$ $[0.5, 10]$ $[0.01, 0.8]$ τ $log(10^{10} A_{\rm S})$ $[1.61, 3.91]$ $n_{\rm s}$ $[0.8, 1.2]$ $N_{\rm eff}$ $[0, 10]$ DM-ν $\log_{10} u_{\nu \rm DM}$ $[-8, -1]$

● Adding ACT:

- $-$ weaker bounds on U_{WDM}
- non-zero coupling preferred

STERILE NEUTRINO PORTAL TO DARK MATTER

$$
-\mathcal{L} \supset m_{\phi}^2 |\phi|^2 + m_{\chi} \bar{\chi} \chi + m_N \bar{N} N + \left[\lambda_{\ell} \bar{L}_{\ell} \hat{H} N_R + \phi \bar{\chi} (y_L N_L + y_R N_R) + \text{h.c.} \right]
$$

♦ After EWSB and mass matrix diagonalization

$$
\nu_4 = \begin{pmatrix} U_{N4}^* N_L + \sum_{k} U_{\ell 4}^* \nu_{\ell L} \\ N_R \end{pmatrix} \qquad m_4 = \sqrt{m_N^2 + \sum_{\ell} \lambda_{\ell}^2 v^2},
$$

♦ Mixing angles:

$$
U_{\ell 4} = \frac{\lambda_{\ell} v}{m_4}, \qquad |U_{N 4}| = \frac{m_N}{m_4} = \sqrt{1 - \sum_{\ell} |U_{\ell 4}|^2}
$$

Assumption: $U_{\tau 4} \neq 0 = U_{e4} = U_{\mu 4}.$

• Coupling between DM and active neutrinos

$$
y_L \phi \bar{\chi}_R N_L + \text{h.c.} \frac{\sum_{\ell} U_{\ell 4}^* \nu_{\ell L}}{\psi_L |\nu_{N 4}| \phi \bar{\chi}_R \nu_{4L} - y_L \sqrt{1 - |U_{N 4}|^2} \phi \bar{\chi}_R \nu_{1L} + \text{h.c.} \qquad \frac{\sum_{\ell} U_{\ell 4}^* \nu_{\ell L}}{\sqrt{\sum_{\ell} |U_{\ell 4}|^2}}
$$

DM-ν CROSS SECTION

 $g = y_L |U_{\tau 4}|$ $\frac{d\sigma_{\nu\chi}}{dE_\nu^\prime} = \frac{g^4}{32\pi} m_\chi \left\{ \frac{1}{\left(m_\phi^2 - m_\chi^2 - 2m_\chi E_\nu\right)^2 + m_\phi^2 \Gamma_\phi^2} \right.$ $+\frac{ {E'_\nu}^2/E_\nu^2} {\left(m_\phi^2-m_\chi^2+2m_\chi E'_\nu\right)^2+m_\phi^2\Gamma_\phi^2} \Bigg\}$

♦ Limiting cases:

a) Heavy mediator $m_{\phi} \gg m_{\chi}, E_{\nu}$,

$$
\sigma_{\chi\nu} \simeq (10^{-52} \,\text{cm}^2) \, \left(\frac{g}{0.1}\right)^4 \, \left(\frac{100 \text{ MeV}}{m_\phi}\right)^4 \, \left(\frac{T}{T_0}\right)^2,
$$

b) Small χ - ϕ mass splitting $(m_{\phi} - m_{\chi}) \ll E_{\nu}$,

$$
\sigma_{\chi\nu} \simeq (10^{-34} \,\text{cm}^2) \left(\frac{g}{0.01}\right)^4 \left(\frac{20 \text{ MeV}}{m_\chi}\right)^2
$$

$$
\times \left[1 + 0.075 \left(\frac{m_\chi}{20 \text{ MeV}}\right)^2 \left(\frac{T_{\text{rec.}}}{T_\nu}\right)^2 \left(\frac{\delta}{10^{-8}}\right)^2\right]
$$

OTHER PHENOMENOLOGY

It decays invisibly, $N \rightarrow \chi \phi$, and avoids bounds from searches for decaying HNLs • We assume the sterile neutrino N is heavier than both x and ϕ (typically $m_N = 10 m_X$)

 $\phi \rightarrow \chi \nu$ decays are allowed and should happen before the BBN

$$
\tau_{\phi} \simeq (0.1 \text{ sec}) \left(\frac{0.01}{g}\right)^2 \left(\frac{20 \text{ MeV}}{m_{\phi}}\right) \left(\frac{10^{-8}}{\delta}\right)
$$

- \rightarrow xx \rightarrow vv annihilations are very efficient:
- a) mχ >~ 10 MeV to avoid BBN bounds
- b) thermal χ relic density too low; need for additional mechanism, e.g., asymmetry

c) potential strong DM indirect detection (ID) bounds;

can be avoided, e.g., for asymmetric DM

 \bullet One could consider ϕ DM scenario (m_{ϕ} < m_x); here $\phi \phi \rightarrow \nu \nu$ annihilations p-wave suppressed

FITTING THE DATA

CHALLENGES OF THE TOY MODEL

 Upscattering rate (& environment) depends on the mass splitting. Self $\chi\chi \to \chi\chi$ scattering can also be good (small-scale tensions of ΛCMD)

CONCLUSIONS

- CMB observations are crucial for our understanding of dark matter
- **small-scale CMB measurements with few % accuracy open a new window to study DM interactions with neutrinos**
- **preference for non-zero DM-ν coupling in the high-multipole ACT data & agreement with low-multipole Planck data + BAO & RSD**
- Similar earlier hints from Lyman- α
- Toy model: sterile neutrino portal to DM
- Can accommodate the data but careful checking of other effects needed (cutoff scale, DM self-interactions...)
- Future data: ACT, CMB-S4, DESI, … + accelerator-based bounds on sterile neutrinos

$\frac{1}{\pi}$ [H][A][N][K] $\frac{1}{\pi}$ [Y][O][U] $\frac{1}{\pi}$

