Nuclear ab initio studies for neutrino oscillations (and beyond)

Joanna Sobczyk

Theory of Particle Physics and Cosmology, 21 March 2024

Alexander von Humbold Stiftung/Foundatio

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101026014

Outline

- Neutrino oscillation programs @
 Precision Frontier
- Ab initio nuclear methods & uncertainty quantification
- Electroweak physics with nuclear probes
- From matrix elements to continuous nuclear responses
- ...and beyond

Neutrino oscillations

Next generation experiments

- ✓ CP-violation measurement
- ✓ Proton decay searches
- ✓ Determining ν mass ordering ✓ Co
 - ering ✓ Cosmic neutrino observation

Aims & challenges

DUNE T₂HK From: Diwan et al, Ann. Rev.Nucl. Part. Sci 66 (2016) 0.15 0.15 v_{μ} flux (AU) v_{μ} flux (AU) $\delta_{CP} = 0^{\circ}, NH$ $\delta_{CP} = 0^{\circ}, \text{NH}$ $\delta_{CP} = 0^{\circ}, \text{IH}$ $\delta_{CP} = 0^{\circ}, \text{IH}$ ${\sf P}(
u_\mu o
u_e)$ 0.10 $\delta_{CP} = 90^{\circ}, \text{NH}$ 0.10 Height of the $P(\nu_{\mu} \rightarrow \nu_{e})$ $\delta_{CP} = 270^\circ$, NH oscillation peak (event rate) \propto total 0.05 0.05 cross section 0.00 0.00 4 8 10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 6 E_v (GeV) E_v (GeV) Position of the oscillation peak depends on DUNE aims at uncertainties < 1% meaning energy reconstruction O(25) MeV precision of energy reconstruction

Systematic errors should be small since statistics will be high

Motivation

"Ab initio" nuclear theory

$$\mathscr{H} | \Psi \rangle = E | \Psi \rangle$$

What is the dynamics of our system?

$$\mathscr{H} = \sum_{i=1}^{A} t_{kin} + \sum_{i>j=1}^{A} v_{ij} + \sum_{i>j>k=1}^{A} v_{ijk} + \dots$$

How the nuclear force is rooted in the fundamental theory of QCD?

Nuclei & nuclear matter

Nuclear Hamiltonian

- S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett B295, 114 (1992)
- Effective chiral Lagrangian $\mathscr{L}_{eff}(\pi, N, \Delta) \rightarrow \text{obtain}$ nuclear potential
- Power counting scheme $\left(\frac{Q}{\Lambda_{u}}\right)^{n}$
- LEC fitted to data
- Uncertainty quantification possible

Electroweak interactions

• Chiral EFT allows to construct electroweak currents consistently with the chiral potential

To describe:

- → Electroweak form-factors
- → Gamow-Teller ME (β decays)
- → Magnetic moments
- → Radiative/weak captures
- → Electroweak response functions

9

Ab initio nuclear theory

 $\mathscr{H} | \Psi \rangle = E | \Psi \rangle$

"we interpret the ab initio method to be a systematically improvable approach for quantitatively describing nuclei using the finest resolution scale possible while maximizing its predictive capabilities."

A. Ekström et al, Front. Phys.11 (2023) 29094

Ab initio nuclear theory

$\mathscr{H} | \Psi \rangle = E | \Psi \rangle$

"we interpret the ab initio method to be a systematically improvable approach for quantitatively describing nuclei using the finest resolution scale possible while maximizing its predictive capabilities."

A. Ekström et al, Front. Phys.11 (2023) 29094

Coupled cluster theory

Reference state (Hartree-Fock): $|\Psi\rangle = a_i^{\dagger} a_j^{\dagger} \dots a_k^{\dagger} |0\rangle$

Include **correlations** through e^T operator

$$\mathcal{H}_N e^T |\Psi\rangle = E e^T |\Psi\rangle$$

✓ Controlled approximation through truncation in T

 ✓ Polynomial scaling with A (predictions for ¹3²Sn and ²⁰⁸Pb)

> ←coefficients obtained through coupled cluster equations

$$\begin{split} \langle \Psi | \, \overline{\mathcal{H}} \, | \, \Psi \rangle &= E \\ \langle \Psi_i^a | \, \overline{\mathcal{H}} \, | \, \Psi \rangle &= 0 \\ \langle \Psi_{ij}^{ab} \, | \, \overline{\mathcal{H}} \, | \, \Psi \rangle &= 0 \end{split}$$

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D. J. Dean, Rep. Prog. Phys. 77, 096302 (2014).

Expansion:
$$T = \sum_{a} t_{a}^{\dagger} a_{a}^{\dagger} a_{i} + \frac{1}{4} \sum_{a} t_{ab}^{ij} a_{a}^{\dagger} a_{b}^{\dagger} a_{i} a_{j} + \dots$$

singles doubles

Some results

Beyond groundstate: nuclear responses

Electrons for neutrinos

$$\frac{d\sigma}{dE'd\Omega}\Big|_{\nu/\bar{\nu}} = \sigma_0 \Big(v_{CC}R_{CC} + v_{CL}R_{CL} + v_{LL}R_{LL} + v_TR_T \pm v_{T'}R_{T'} \Big)$$
$$\frac{d\sigma}{dE'd\Omega}\Big|_e = \sigma_M \Big(v_L R_L(\omega, \bar{q}) + v_T R_T(\omega, \bar{q}) \Big)$$

 \checkmark much more precise data

✓ we can get access to R_L and R_T separately (Rosenbluth separation)

 \checkmark experimental programs of electron scattering in JLab, MAMI, MESA

Low/high energies

 $\hat{H} | \psi_A \rangle = E | \psi_A \rangle$

Many-body problem

Electroweak responses consistent treatment of final states

Low/high energies

$$\hat{H} | \psi_A \rangle = E | \psi_A \rangle$$

Many-body problem

Coulomb sum rule

charge operator $\hat{\rho}(q) = \sum_{j=1}^{Z} e^{iqz'_j}$

$$m_0(q) = \int d\omega R_L(\omega, q) = \sum_{f \neq 0} |\langle \Psi_f | \hat{\rho} | \Psi \rangle|^2 = \langle \Psi | \hat{\rho}^{\dagger} \hat{\rho} | \Psi \rangle - |F_{el}(q)|^2$$

JES, B. Acharya, S.Bacca, G. Hagen Phys.Rev.C 102 (2020) 064312

JES, B. Acharya, S. Bacca, G. Hagen PRL 127 (2021) 7, 072501

Longitudinal response

Lorentz Integral Transform + Coupled Cluster (LIT-CC)

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

Consistent treatment of final state interactions.

Lorentz Integral Transform (LIT)

$$R_{\mu\nu}(\omega, q) = \int_{\mathcal{F}} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

Continuum spectrum
Integral
transform

$$S_{\mu\nu}(\sigma, q) = \int d\omega K(\omega, \sigma) R_{\mu\nu}(\omega, q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathscr{H} - E_{0}, \sigma) J_{\nu} | \Psi$$

Lorentzian kernel: $K_{\Gamma}(\omega, \sigma) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (\omega - \sigma)^2}$

 $S_{\mu\nu}$ has to be inverted to get access to $R_{\mu\nu}$

Longitudinal response ⁴⁰Ca

Lorentz Integral Transform + Coupled Cluster (LIT-CC)

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

✓ Coupled cluster singles & doubles
 ✓ Two different chiral Hamiltonians
 ✓ Uncertainty from LIT inversion

First ab-initio results for many-body system of 40 nucleons

Chiral expansion for 40Ca (Longitudinal response)

B. Acharya, S. Bacca, JES et al. Front. Phys. 1066035(2022)

- \checkmark Two orders of chiral expansion
- ✓ Convergence better for lower q (as expected)
- \checkmark Higher order brings results closer to the data

Transverse response

23

- This allows to predict electronnucleus cross-section
- Currently only 1-body current

Low/high energies

Q²/2M

4He spectral function

growing **q** momentum transfer \rightarrow final state interactions play minor role

¹⁶O spectral function

Error propagation to cross sections

JES, S. Bacca arXiv:2309.00355 (accepted in PRC)

dada [nb/sr/MeV]

¹⁶O spectral function Error propagation to cross sections

Comparison with T₂K long baseline ν oscillation experiment

- CC 0π events
- Spectral function implemented into NuWro Monte Carlo generator

 $\nu_{\mu} + {}^{16}\mathrm{O} \to \mu^- + X$

Spectral function calculation

$$S(E, \mathbf{p}) = \sum_{\alpha, \alpha'} \int_{\Psi_{A-1}} |\langle \Psi | a_{\alpha}^{\dagger} | \Psi_{A-1} \rangle \langle \Psi_{A-1} | a_{\alpha'} | \Psi \rangle \langle \mathbf{p} | \alpha \rangle^{\dagger} \langle \mathbf{p} | \alpha' \rangle \delta(E + E_f^{A-1} - E_0)$$

Spectral reconstruction using expansion in Chebyshev polynomials + building histograms

 $S_{\Lambda}(E, \mathbf{p}) = \int K_{\Lambda}(E, E') S(E', \mathbf{p}) dE'$ 100 Integral transform 80 $K_{\Lambda}(\omega,\sigma) = \sum c_k(\sigma) T_k(\omega)$ 60 expansion in [/ev] Chebyshev polynomials 40 17.5 20 ħΩ = 12 MeV $\hbar\Omega = 14 \text{ MeV}$ 15.0 $\hbar\Omega = 20 \text{ MeV}$ 0 12.5 0 100 50 **d**_ε*p*(**j** 10.0) 7.5 1.0 0.5 5.0 2.5 0.0 40 10 20 30 50 E [MeV] 28

A. Roggero Phys.Rev.A 102 (2020) 2, 022409 JES, A. Roggero Phys.Rev.E 105 (2022) 055310

Nuclear ab initio studies for neutrino oscillations (and beyond)

Tests of CKM matrix

The "Cabbibo angle anomaly"

Neutrino propagation in neutron stars

Source: https://www.nature.com/articles/s42254-022-00420-y

- Neutrino emission mechanism of cooling in neutron stars
- Neutrino energies are low ($\omega \approx 30$ MeV) \rightarrow the long-wavelength limit is a good approximation. Then: **spin response** becomes important.
- Spin fluctuations strongly depend on many-body effects + the coupling of spin and space in the nuclear force
 - Coupled-cluster theory for nuclear matter (possible UQ)

Outlook

- Next step: from electromagnetic to electroweak processes
- Extension of the formalism to 4°Ar
- Role played by 2-body currents in LIT-CC predictions
- Development in spectral functions (accounting for final state interactions, adding 2-body currents)
- Bayesian analysis of uncertainties in nuclear responses

Thank you!