### **CP violation in Higgs sector** (A phenomenological & first principle overview)



NATIONAL SCIENCE CENTRE

Norway grants The research leading to the results presented in this talk has received funding from the Norwegian Financial Mechanism for years 2014-2021, grant nr 2019/34/H/ST2/00707

Dibyakrupa Sahoo University of Warsaw, Warsaw, Poland



Understanding the Early Universe: interplay of theory and collider experiments

Joint research project between the University of Warsaw & University of Bergen



Based on arXiv:2311.16211 [hep-ph] in collaboration with

Janusz Rosiek, Stefan Pokorski,

(University of Warsaw, Poland)

E. Aakvaag, N. Fomin & Anna Lipniacka

(University of Bergen, Norway)

Particle Physics and Cosmology Seminar (Faculty of Physics, University of Warsaw) 29 February 2024

### **Outline of CP violation studies in Higgs sector**



### **Part 1: Introduction**

- 125 GeV Higgs boson (H) is a scalar (CP-even) particle
   ⇒ H has dominant CP-even couplings
- Any discovery of *non-zero* CP-odd couplings of Higgs
   ⇒ Clear sign of New Physics (NP)
- Effective field theory formalism:

• CP-odd Gauge couplings through higher dimension operators ( $\Lambda$  = scale of NP)

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(6)} O_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i} c_i^{(8)} O_i^{(8)} + \cdots$$

- 125 GeV Higgs boson (H) is a scalar (CP-even) particle
   ⇒ H has dominant CP-even couplings
- Any discovery of *non-zero* CP-odd couplings of Higgs
   ⇒ Clear sign of New Physics (NP)
- Effective field theory formalism:

• CP-odd Gauge couplings through higher dimension operators ( $\Lambda$  = scale of NP)

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{\Lambda^2} \sum_i c_i^{(6)} \mathcal{O}_i^{(6)} + \frac{1}{\Lambda^4} \sum_i c_i^{(8)} \mathcal{O}_i^{(8)} + \cdots$$

Some gauge invariant dimension-6 operators (CP-even as well as CP-odd) are:

 $\begin{array}{ll} O_{HB} \propto H^{\dagger} H B_{\mu\nu} B^{\mu\nu}, & O_{H\widetilde{B}} \propto H^{\dagger} H B_{\mu\nu} \widetilde{B}^{\mu\nu}, \\ O_{HW} \propto H^{\dagger} H W_{k\mu\nu} W_{k}^{\mu\nu}, & O_{H\widetilde{W}} \propto H^{\dagger} H W_{k\mu\nu} \widetilde{W}_{k}^{\mu\nu}, \\ O_{HWB} \propto H^{\dagger} \tau_{k} H W_{k\mu\nu} B^{\mu\nu}, & O_{HW\widetilde{B}} \propto H^{\dagger} \tau_{k} H W_{k\mu\nu} \widetilde{B}^{\mu\nu}, \quad (k = 1, 2, 3) \end{array}$ 

where  $\widetilde{V}^{\mu\nu}=\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}\,V_{\rho\sigma}$  is the dual field strength tensor.



- 125 GeV Higgs boson (H) is a scalar (CP-even) particle
   ⇒ H has dominant CP-even couplings
- Any discovery of *non-zero* CP-odd couplings of Higgs
   ⇒ Clear sign of New Physics (NP)
- Effective field theory formalism:

• CP-odd Gauge couplings through higher dimension operators ( $\Lambda$  = scale of NP)

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{\Lambda^2} \sum_i c_i^{(6)} \mathcal{O}_i^{(6)} + \frac{1}{\Lambda^4} \sum_i c_i^{(8)} \mathcal{O}_i^{(8)} + \cdots$$

The effective NP Lagrangian can also be recast in the following form for doing phenomenological studies,

$$\mathcal{L}_{\mathsf{NP}} \supset \frac{H}{4v} \left( 2 A_2^{Z\gamma} F^{\mu\nu} Z_{\mu\nu} + 2 A_3^{Z\gamma} F^{\mu\nu} \widetilde{Z}_{\mu\nu} + A_2^{\gamma\gamma} F^{\mu\nu} F_{\mu\nu} + A_3^{\gamma\gamma} F^{\mu\nu} \widetilde{F}_{\mu\nu} \right)$$

- 125 GeV Higgs boson (H) is a scalar (CP-even) particle
   ⇒ H has dominant CP-even couplings
- Any discovery of *non-zero* CP-odd couplings of Higgs

   Clear sign of New Physics (NP)
- Effective field theory formalism:

• CP-odd Gauge couplings through higher dimension operators ( $\Lambda$  = scale of NP)

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{\Lambda^2} \sum_i c_i^{(6)} \mathcal{O}_i^{(6)} + \frac{1}{\Lambda^4} \sum_i c_i^{(8)} \mathcal{O}_i^{(8)} + \cdots$$

**CP-odd pseudoscalar** *Hff* **couplings at tree level** ( $\alpha$  = CP mixing angle,  $\kappa_f$  = Yukawa coupling)

$$\mathscr{L}_{Yuk} = -\sum_{f} \frac{m_f}{v} H\left[\overline{f} \kappa_f \left(\cos \alpha + i \sin \alpha \gamma^5\right)\right]$$
CP-even:  $\alpha = 0$ , CP-odd:  $\alpha = \frac{\pi}{2}$ , maximal CP violation:  $\alpha = \frac{\pi}{4}$ .  
SM:  $\kappa_f = 1, \alpha = 0$ . NP:  $\kappa_f \neq 1, \alpha \neq 0$ .  
Analogous parametrization:  $a_f = \kappa_f \cos \alpha, b_f = \kappa_f \sin \alpha$ .

### In principle "feedback" of CP violation at loop level



### In principle "feedback" of CP violation at loop level



### Signature of CP violation in Higgs sector

Various process independent perspectives from first principle analysis

 Amplitude decomposition in terms of contributions of operators of 4, 6 and higher dimensions:

$$\mathcal{M} = \mathcal{M}^{(4)} + \mathcal{M}^{(6)} + \mathcal{M}^{(8)} + \cdots$$
$$\implies |\mathcal{M}|^2 = |\mathcal{M}^{(4)}|^2 + \underbrace{2\operatorname{Re}\left(\mathcal{M}^{(4)}\mathcal{M}^{(6)*}\right)}_{\text{suppressed by }\Lambda^{-2}} + \cdots$$

Optimal Observable: Search for how large this 4- and 6-dimension interference can be.

Amplitude decomposition in terms of CP property:

$$\mathcal{M} = \underbrace{\mathcal{M}_{e}}_{\text{CP-even}} + \underbrace{\mathcal{M}_{o}}_{\text{CP-odd}} \qquad \left( \text{ where, for example, } \mathcal{M}_{e/o} = \mathcal{M}_{e/o}^{\text{Tree}} + \mathcal{M}_{e/o}^{\text{Loop}} \right)$$
$$\implies |\mathcal{M}|^{2} = \underbrace{|\mathcal{M}_{e}|^{2} + |\mathcal{M}_{o}|^{2}}_{\text{CP-even}} + \underbrace{2 \operatorname{Re}\left(\mathcal{M}_{e} \mathcal{M}_{o}^{*}\right)}_{\text{CP-odd}}$$

Optimal Observable: Search for non-zero CP-odd interference term effects.

### Signature of CP violation in Higgs sector

Various process independent perspectives from first principle analysis

#### • Formalism analogous to CP violation in meson decays:

Amplitude in terms of SM and NP contributions with different CP-even and CP-odd phases (CP-even phase  $\equiv$  'strong' phase  $= \delta$ , CP-odd phase  $\equiv$  'weak' phase  $= \phi$ ):

$$\mathcal{M} = \mathcal{M}_{\rm SM} + \mathcal{M}_{\rm NP} = |\mathcal{M}_{\rm SM}| \ e^{i(\delta_{\rm SM} + \phi_{\rm SM})} + |\mathcal{M}_{\rm NP}| \ e^{i(\delta_{\rm NP} + \phi_{\rm NP})},$$
$$\overline{\mathcal{M}} = \overline{\mathcal{M}_{\rm SM}} + \overline{\mathcal{M}_{\rm NP}} = |\mathcal{M}_{\rm SM}| \ e^{i(\delta_{\rm SM} - \phi_{\rm SM})} + |\mathcal{M}_{\rm NP}| \ e^{i(\delta_{\rm NP} - \phi_{\rm NP})},$$

such that

$$\mathcal{A} = \frac{\left|\mathcal{M}\right|^{2} - \left|\overline{\mathcal{M}}\right|^{2}}{\left|\mathcal{M}\right|^{2} + \left|\overline{\mathcal{M}}\right|^{2}} \propto \left|\mathcal{M}_{\mathsf{SM}}\right| \left|\mathcal{M}_{\mathsf{NP}}\right| \sin\left(\delta_{\mathsf{SM}} - \delta_{\mathsf{NP}}\right) \sin\left(\phi_{\mathsf{SM}} - \phi_{\mathsf{NP}}\right),$$

which is non-zero only when  $|\mathcal{M}_{NP}| \neq 0$ ,  $\delta_{SM} \neq \delta_{NP}$  and  $\phi_{SM} \neq \phi_{NP}$ .

#### **Optimal Observable:** Search for asymmetry $\mathcal{R}$ .

### Two complimentary ways to probe CP violation

1. Exploring correlations in Higgs production process

Probe does not depend on details of the subsequent *H* decay



Study CP-odd triple product asymmetry with respect to angle  $\Phi$  between the two planes:

$$\cos \Phi = \hat{n}_{QQ'} \cdot \hat{n}_{qq'}, \quad \sin \Phi = \left(\hat{n}_{QQ'} \times \hat{n}_{qq'}\right) \cdot \hat{z}$$



### Two complimentary ways to probe CP violation

#### 2. Exploring correlations in Higgs decay

Probe does not depend on details of how the *H* boson was produced



Study CP-odd triple product asymmetry with respect to angle  $\Phi$  between the two planes:

 $\cos \Phi = \hat{n}_{+-} \cdot \hat{n}_{+-}', \quad \sin \Phi = (\hat{n}_{+-} \times \hat{n}_{+-}') \cdot \hat{z}$ 



### Two complimentary ways to probe CP violation

#### 2. Exploring correlations in Higgs decay

Probe does not depend on details of how the *H* boson was produced



Study CP-odd triple product asymmetry with respect to angle  $\Phi$  between the two planes:

 $\cos \Phi = \hat{n}_{+2} \cdot \hat{n}_{-1}, \qquad \sin \Phi = (\hat{n}_{+2} \times \hat{n}_{-1}) \cdot \hat{z}$ 



### Part 2: $H\tau\tau$ Yukawa interaction

#### Goal: Probe the CP violating $H\tau\tau$ Lagrangian

CP-even CP-odd

$$\mathscr{L}_{H\tau\tau} = -\frac{m_{\tau}}{v} \,\overline{\tau} \left( \begin{array}{c} a_{\tau} \\ + i \gamma^5 \end{array} \right) \tau \, H$$
  
Standard Model  $\implies a_{\tau} = 1 \qquad b_{\tau} = 0$ 

New Physics  $\implies a_{\tau} \neq 1$   $b_{\tau} \neq 0$ 

where  $v = (\sqrt{2} G_F)^{-1/2} \approx 246$  GeV. Constraint from  $e^-$  EDM measurement:  $|b_\tau| \leq 0.29$  at 90% C.L. [J. Alonso-Gonzalez, A. de Giorgi, L. Merlo and S. Pokorski, JHEP **05**, 041 (2022).]

### The 2-body decay $H \rightarrow \tau^+ \tau^$ is *not* suitable to probe $b_{\tau} \neq 0$ .

• Br  $(H \to \tau^+ \tau^-) = (6.0^{+0.8}_{-0.7})\%$ [PDG 2023]



 Only 2 allowed helicity configurations Partial decay rate

$$\begin{split} \Gamma_{\tau\tau} &= \frac{m_H}{8\,\pi} \left(\frac{m_\tau}{v}\right)^2 \left(a_\tau^2 \left(1 - \frac{4\,m_\tau^2}{m_H^2}\right) + b_\tau^2\right) \\ &\times \sqrt{1 - \frac{4\,m_\tau^2}{m_H^2}} \,. \end{split}$$

- Experimental constraint:
  - $a_{\tau}^2 + b_{\tau}^2 \approx 0.93^{+0.14}_{-0.12}$

[inferred from G. Aad *et al.* [ATLAS], JHEP **08**, 175 (2022), neglecting  $m_{\tau}$ ]

• Much richer kinematics: 3 uni-angular distributions possible.



• Much richer kinematics: 3 uni-angular distributions possible.

• Full angular distribution:  

$$\frac{d^{3}\Gamma_{\pi\pi\nu\bar{\nu}}}{d\cos\theta_{+}d\cos\theta_{-}d\varphi} = \frac{\left\langle \left|\mathcal{M}_{\pi\pi\nu\bar{\nu}}\right|^{2}\right\rangle}{2^{15}\pi^{6}m_{H}} \left(1 - \frac{4m_{\tau}^{2}}{m_{H}^{2}}\right)^{\frac{1}{2}} \left(1 - \frac{m_{\pi}^{2}}{m_{\tau}^{2}}\right)^{2}, \\ \left\langle \left|\mathcal{M}_{\pi\pi\nu\bar{\nu}}\right|^{2}\right\rangle = \left(\frac{G_{F}}{\sqrt{2}}f_{\pi}V_{ud}\right)^{4} \left(\frac{m_{\tau}}{\nu}\right)^{2} \left(\frac{\pi}{m_{\tau}\Gamma_{\tau}}\right)^{2} \\ \times \left(8\frac{a_{\tau}^{2}}{a_{\tau}}m_{\tau}^{4}\left(m_{H}^{2} - 4m_{\tau}^{2}\right)\left(m_{\tau}^{2} - m_{\pi}^{2}\right)^{2}\left(1 - \cos\theta_{+}\cos\theta_{-} - \sin\theta_{+}\sin\theta_{-}\cos\varphi\right) \\ + 8\frac{b_{\tau}^{2}}{b_{\tau}}m_{H}^{2}m_{\tau}^{4}\left(m_{\tau}^{2} - m_{\pi}^{2}\right)^{2}\left(1 - \cos\theta_{+}\cos\theta_{-} + \sin\theta_{+}\sin\theta_{-}\cos\varphi\right) \\ - 16\frac{a_{\tau}b_{\tau}}{a_{\tau}}m_{H}m_{\tau}^{4}\sqrt{m_{H}^{2} - 4m_{\tau}^{2}}\left(m_{\tau}^{2} - m_{\pi}^{2}\right)^{2}\sin\theta_{+}\sin\theta_{-}\sin\varphi\right).$$

• Much richer kinematics: 3 uni-angular distributions possible.

Only the uni-angular distribution 
$$\frac{d\Gamma_{\pi\pi\nu\bar{\nu}}}{d\varphi} \text{ gets contribution from } a_{\tau} b_{\tau}.$$
Rest frame of  $\tau$ 

$$\frac{1}{\Gamma_{\pi\pi\nu\bar{\nu}}} \frac{d\Gamma_{\pi\pi\nu\bar{\nu}}}{d\varphi} = \frac{\begin{pmatrix} a_{\tau}^2 \left(m_H^2 - 4m_{\tau}^2\right) \left(16 - \pi^2 \cos\varphi\right) \\ + b_{\tau}^2 m_H^2 \left(16 + \pi^2 \cos\varphi\right) \\ -2 \pi^2 \left[a_{\tau} b_{\tau} m_H \sqrt{m_H^2 - 4m_{\tau}^2} \sin\varphi\right] \\ -2 \pi^2 \left[a_{\tau} b_{\tau} m_H \sqrt{m_H^2 - 4m_{\tau}^2} \sin\varphi\right].$$

... It is sensitive to CP violation.



- In *H* rest frame, τ's are highly boosted
   ⇒ final π's and ν/ν
   are almost
   collinear to the parent τs
  - $\implies$  constructing  $\tau$  decay planes and measuring  $\varphi$  not straightforward.

• Experimentalists prefer  $\rho^{\pm}$  instead of  $\pi^{\pm}$  as  $\rho^{\pm} \rightarrow \pi^{\pm} \pi^{0}$  make the plane reconstruction easier.

$$\therefore \text{ Only } H \to \tau^+ \tau^- \to \pi^+ \pi^- \pi^0 \pi^0 \nu_\tau \overline{\nu}_\tau$$

6-body final state

events useful.

Constraint on  $b_{\tau}$  from such studies:

 $|b_{\tau}| \lesssim 0.34$ 

[A. Tumasyan *et al.* [CMS], JHEP **06**, 012 (2022)]

- Way forward: More data + improved decay plane reconstruction + better angular resolutions.
- Is there an alternative method, of probing CP violation in  $H\tau\tau$  Yukawa interaction, which does not require reconstruction of  $\tau$  decay planes?

# The 3-body decay $H \rightarrow \tau^+ \tau^- \gamma$ offers an alternative methodology.

Decay proceeds via both tree and loop diagrams



 $Br(H \rightarrow \tau^+ \tau^- \gamma)_{SM} \sim 3.24 \times 10^{-3}$  with  $E_{\gamma} > 5$  GeV and angular separation  $> 5^\circ$  in rest frame of H

[See for example Phys. Rev. D **55**, 5647-5656 (1997); Phys. Rev. D **90**, no.11, 113006 (2014); Eur. Phys. J. C **74**, no.11, 3141 (2014); JHEP **12**, 111 (2016).]

# The 3-body decay $H \rightarrow \tau^+ \tau^- \gamma$ offers an alternative methodology.

Decay proceeds via both tree and loop diagrams



 $Br(H \to \tau^+ \tau^- \gamma)_{SM} \sim 3.24 \times 10^{-3}$  with  $E_{\gamma} > 5$  GeV and angular separation > 5° in rest frame of H

[See for example Phys. Rev. D **55**, 5647-5656 (1997); Phys. Rev. D **90**, no.11, 113006 (2014); Eur. Phys. J. C **74**, no.11, 3141 (2014); JHEP **12**, 111 (2016).]

# Idea: The 3-body decay $H \rightarrow \tau^+ \tau^- \gamma$ must exhibit forward-backward asymmetry if CP is violated.

A first-principle analysis



 $\begin{aligned} \mathsf{CP violation} &\Leftrightarrow \mathsf{Asymmetry} \text{ under } \theta \leftrightarrow \pi - \theta \equiv \cos \theta \leftrightarrow - \cos \theta \\ &\equiv \mathsf{Forward}\text{-}\mathsf{Backward} \text{ asymmetry} \end{aligned}$ 

# Idea: The 3-body decay $H \rightarrow \tau^+ \tau^- \gamma$ must exhibit forward-backward asymmetry if CP is violated.

A first-principle analysis



### Feynman Diagrams and Amplitude for $H \rightarrow \tau^+ \, \tau^- \, \gamma$



### Feynman Diagrams and Amplitude for $H \rightarrow \tau^+ \, \tau^- \, \gamma$

$$\begin{aligned} \mathscr{L}_{H\tau\tau} &= -\frac{m_{\tau}}{v} \,\overline{\tau} \left( a_{\tau} + i \gamma^5 \, b_{\tau} \right) H & \tau^{-} \\ H & \tau^{+} \\ \mathscr{M}_{\tau\tau\gamma} &= \mathcal{M}_{\tau\tau\gamma}^{(Yuk)} + \mathcal{M}_{\tau\tau\gamma}^{(Z\gamma)} + \mathcal{M}_{\tau\tau\gamma}^{(\gamma\gamma)} \\ \mathscr{M}_{\tau\tau\gamma} &= \mathcal{M}_{\tau\tau\gamma}^{(Yuk)} + \mathcal{M}_{\tau\tau\gamma}^{(Z\gamma)} + \mathcal{M}_{\tau\tau\gamma}^{(\gamma\gamma)} \\ \mathscr{L}_{HV\gamma} &= \frac{H}{4v} \left( 2 \, A_{2}^{Z\gamma} \, F^{\mu\nu} Z_{\mu\nu} + 2 \, A_{3}^{Z\gamma} \, F^{\mu\nu} \widetilde{Z}_{\mu\nu} \\ &+ \, A_{2}^{\gamma\gamma} \, F^{\mu\nu} F_{\mu\nu} + \, A_{3}^{\gamma\gamma} \, F^{\mu\nu} \widetilde{F}_{\mu\nu} \right), \\ \text{where } \mathcal{V}_{\mu\nu} &= \partial_{\mu} \mathcal{V}_{\nu} - \partial_{\nu} \mathcal{V}_{\mu}, \quad \widetilde{\mathcal{V}}_{\mu\nu} &= \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \mathcal{V}^{\rho\sigma}, \\ \text{for } \mathcal{V} &= Z, \gamma. \end{aligned}$$

### Feynman Diagrams and Amplitude for $H \rightarrow \tau^+ \, \tau^- \, \gamma$

$$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{v} \overline{\tau} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{M}_{\tau\tau\gamma} \left( a_{\tau} + i\gamma^{5} b_{\tau} \right) H$$

$$\mathcal{T}_{\tau} = \mathcal{T}_{\tau} = \mathcal{T}_{\tau} + \mathcal{T}$$

### The interference of tree-level and loop-level amplitudes of $H \rightarrow \tau^+ \tau^- \gamma$ is sensitive to $b_\tau \neq 0$ .

$$|\mathcal{M}|^{2} = \left|\mathcal{M}^{(\mathrm{Yuk})}\right|^{2} + \left|\mathcal{M}^{(Z\gamma)}\right|^{2} + \left|\mathcal{M}^{(\gamma\gamma)}\right|^{2} + 2\operatorname{Re}\left(\mathcal{M}^{(\mathrm{Yuk})}\mathcal{M}^{(\gamma\gamma)*}\right)$$

even under  $\cos \theta \leftrightarrow -\cos \theta$ 

+ 
$$\frac{2 \operatorname{Re} \left( \mathscr{M}^{(\gamma\gamma)} \mathscr{M}^{(Z\gamma)*} \right)}{\operatorname{has} \operatorname{a} \operatorname{term} \operatorname{linear} \operatorname{in}}$$
 + 
$$\frac{2 \operatorname{Re} \left( \mathscr{M}^{(\operatorname{Yuk})} \mathscr{M}^{(Z\gamma)*} \right)}{\operatorname{has} \operatorname{a} \operatorname{term} \infty b_{\tau} \&}$$
 has a term  $\infty b_{\tau} \&$  linear in  $\cos \theta$ , which survives even when  $A_3^{\gamma\gamma} = 0 = A_3^{Z\gamma}$ 

• non-zero CP-odd ("weak") phase difference  $\iff b_{\tau} \neq 0, A_3^{\gamma\gamma} \neq 0, A_3^{Z\gamma} \neq 0$ ,

• non-zero CP-even ("strong") phase difference  $\leftarrow$  Im  $\left| \left( (p_+ + p_-)^2 - m_Z^2 + i m_Z \Gamma_Z \right)^{-1} \right|$ .

# The amplitude square can be expressed using Lorentz invariant mass-squares.

• Only 3 Lorentz invariant mass-squares possible,

$$\begin{split} m_{+-}^2 &\equiv (p_H - p_0)^2 = (p_+ + p_-)^2, & \Longrightarrow 4 \, m_\tau^2 \leq m_{+-}^2 \leq m_H^2 \\ m_{+0}^2 &\equiv (p_H - p_-)^2 = (p_+ + p_0)^2, & \Longrightarrow m_\tau^2 \leq m_{+0}^2 \leq (m_H - m_\tau)^2 \\ m_{-0}^2 &\equiv (p_H - p_+)^2 = (p_- + p_0)^2. & \Longrightarrow m_\tau^2 \leq m_{-0}^2 \leq (m_H - m_\tau)^2 \end{split}$$

Note:  $m_{+-}^2 + m_{+0}^2 + m_{-0}^2 = m_H^2 + 2 m_{\tau}^2$ .  $\implies$  Only 2 *independent* mass-squares.

• In the GJ frame,

wher

$$\begin{split} m_{+0}^2 &= M^2 - M'^2 \cos \theta, \\ m_{-0}^2 &= M^2 + M'^2 \cos \theta, \end{split} \implies \begin{cases} \theta \leftrightarrow \pi - \theta \\ \equiv &\cos \theta \leftrightarrow -\cos \theta \\ \equiv &m_{+0}^2 \leftrightarrow m_{-0}^2 \end{cases} \\ e \quad M^2 &= \frac{1}{2} \left( m_H^2 + 2 \, m_\tau^2 - m_{+-}^2 \right), \quad M'^2 &= \frac{1}{2} \left( m_H^2 - m_{+-}^2 \right) \, \sqrt{1 - 4 \, m_\tau^2 / m_{+-}^2}. \end{split}$$

### Other choices of variables are frame dependent.

|                         | $\left(m_{+0}^2, m_{-0}^2\right)$                                                  | $\left(m_{+-}^2,\cos\theta\right)$                                                   | $\left(E_{+},E_{-}\right)$                                             |
|-------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Differential Decay rate | $\frac{\mathrm{d}^2\Gamma_{\tau\tau\gamma}}{\mathrm{d}m_{+0}^2\mathrm{d}m_{-0}^2}$ | $\frac{\mathrm{d}^2\Gamma_{\tau\tau\gamma}}{\mathrm{d}m_{+-}^2\mathrm{d}\cos\theta}$ | $\frac{\mathrm{d}^2\Gamma_{\tau\tau\gamma}}{\mathrm{d}E_+\mathrm{d}E}$ |
| Frame of reference      | Any frame                                                                          | GJ frame                                                                             | H rest frame                                                           |
| Need to boost?          | No                                                                                 | Yes                                                                                  | Yes                                                                    |

•  $E_{\pm}$  = energy of  $\tau^{\pm}$  in *H* rest frame.  $m_{\pm 0}^2 = m_H^2 - 2 m_H E_{\pm}$  &  $m_{\pm 0}^2 \leftrightarrow m_{-0}^2 \equiv E_+ \leftrightarrow E_-$ • Differential decay rate is frame dependent:

$$\left(\frac{\mathrm{d}^{2}\Gamma_{\tau\tau\gamma}}{\mathrm{d}m_{+0}^{2}\,\mathrm{d}m_{-0}^{2}}\right)_{\mathrm{H\ rest}} = \frac{\left|\mathcal{M}_{\tau\tau\gamma}\right|^{2}}{256\,\pi^{3}\,m_{H}^{3}}, \qquad \left(\frac{\mathrm{d}^{2}\Gamma_{\tau\tau\gamma}}{\mathrm{d}m_{+-}^{2}\,\mathrm{d}\cos\theta}\right)_{\mathrm{H\ rest}} = \frac{m_{H}^{2}-m_{+-}^{2}}{512\,\pi^{3}\,m_{H}^{3}}\sqrt{1-\frac{4\,m_{\tau}^{2}}{m_{+-}^{2}}} \left|\mathcal{M}_{\tau\tau\gamma}\right|^{2},$$

$$\left(\frac{\mathrm{d}^{2}\Gamma_{\tau\tau\gamma}}{\mathrm{d}m_{+-}^{2}\,\mathrm{d}\cos\theta}\right)_{\mathrm{GJ}} = \frac{m_{+-}\left(m_{H}^{2}-m_{+-}^{2}\right)}{256\,\pi^{3}\,m_{H}^{2}\left(m_{H}^{2}+m_{+-}^{2}\right)}\sqrt{1-\frac{4\,m_{\tau}^{2}}{m_{+-}^{2}}} \left|\mathcal{M}_{\tau\tau\gamma}\right|^{2}.$$

Notations, Regions & Expectations



• Let 
$$\mathcal{D}(m_{+0}^2, m_{-0}^2) \equiv \frac{\mathrm{d}^2 \Gamma_{\tau\tau\gamma}}{\mathrm{d} m_{+0}^2 \, \mathrm{d} m_{-0}^2}$$

denote distribution of events in the  $m_{+0}^2$  vs.  $m_{-0}^2$  Dalitz plot.

- Area of the Dalitz plot
   ∞ Available phase space
- One can also choose to work with  $\mathcal{D}(m_{+0}, m_{-0}) \equiv \frac{\mathrm{d}^2 \Gamma_{\tau\tau\gamma}}{\mathrm{d}m_{+0} \,\mathrm{d}m_{-0}}$



Notation:

| Region        | "Forward"                                     | "Backward"                                    |
|---------------|-----------------------------------------------|-----------------------------------------------|
| $\cos 	heta$  | [0, 1]                                        | [-1,0]                                        |
| $m_{\pm 0}^2$ | $m_{+0}^2 < m_{-0}^2$                         | $m_{+0}^2 > m_{-0}^2$                         |
| Distribution  | $\mathcal{D}\left(m_{+0}^2 < m_{-0}^2\right)$ | $\mathcal{D}\left(m_{+0}^2 > m_{-0}^2\right)$ |
| No. of events | $N_F$                                         | $N_B$                                         |

**Expectation:** CP violation  $(b_{\tau} \neq 0) \implies$ 

- $\mathcal{D}\left(m_{+0}^2 < m_{-0}^2\right) \neq \mathcal{D}\left(m_{+0}^2 > m_{-0}^2\right)$
- $N_F \neq N_B$

How to quantify Dalitz Plot Asymmetries to probe CP violation?

 Non-integrated or distribution asymmetry: Compare the distribution of events across the Dalitz plot in the "forward" and "backward" regions.

$$\mathcal{A}\left(m_{+0}^{2}, m_{-0}^{2}\right) = \frac{\left|\mathcal{D}\left(m_{+0}^{2} < m_{-0}^{2}\right) - \mathcal{D}\left(m_{+0}^{2} > m_{-0}^{2}\right)\right|}{\mathcal{D}\left(m_{+0}^{2} < m_{-0}^{2}\right) + \mathcal{D}\left(m_{+0}^{2} > m_{-0}^{2}\right)}.$$

Or equivalently,

$$\mathcal{A}(m_{+0}, m_{-0}) = \frac{|\mathcal{D}(m_{+0} < m_{-0}) - \mathcal{D}(m_{+0} > m_{-0})|}{\mathcal{D}(m_{+0} < m_{-0}) + \mathcal{D}(m_{+0} > m_{-0})}.$$

How to quantify Dalitz Plot Asymmetries to probe CP violation?

• **Regional integrated asymmetries:** Count and compare the number of events in 'islands' sitting in opposite regions of the Dalitz plot, e.g. in the forward and backward regions surrounding the *Z*-pole,

$$A(n) = \frac{\left| \iint \left[ \mathcal{D}\left( m_{+0}^2 < m_{-0}^2 \right) - \mathcal{D}\left( m_{+0}^2 > m_{-0}^2 \right) \right] \Pi\left( m_{+-}^2, n \right) dm_{+0}^2 dm_{-0}^2}{\iint \mathcal{D}\left( m_{+0}^2, m_{-0}^2 \right) \Pi\left( m_{+-}^2, n \right) dm_{+0}^2 dm_{-0}^2}$$

where the function  $\Pi(m_{+-}^2, n)$  is defined as,

$$\Pi\left(m_{+-}^{2},n\right) = \begin{cases} 1, & \text{for } |m_{+-} - m_{Z}| \leq n \, \Gamma_{Z}, \\ 0, & \text{otherwise.} \end{cases}$$















# Probing the forward-backward asymmetry in the neighbourhood of Z pole could be tricky.



$$|m_{+-} - m_Z| \leq n \Gamma_Z$$

### Summary of theoretical expectation

We have noticed that

- (1) CP violation  $(b_{\tau} \neq 0) \implies$  Forward-Backward asymmetry in Gottfried-Jackson frame
- (2) Forward-Backward asymmetry  $\equiv$  Asymmetry in  $m_{+0}^2$  vs.  $m_{-0}^2$  (or equivalently  $m_{+0}$  vs.  $m_{-0}$ ) Dalitz plot under  $m_{+0} \leftrightarrow m_{-0}$ :

$$\mathcal{R}\left(m_{+0}^{2}, m_{-0}^{2}\right) \neq 0, \qquad \left(\text{maximum is } \sim 4 \times 10^{-3} \text{ for } b_{\tau} = 0.1\right), \qquad \underbrace{A(n) \neq 0.}_{\text{asymmetry around } Z \text{ pole}}$$

full distribution asymmetry

- (3)  $m_{+0}^2$  vs.  $m_{-0}^2$  (or  $m_{+0}$  vs.  $m_{-0}$ ) Dalitz plot can be obtained in *any frame of reference* including the laboratory frame, and
- (4) the asymmetry is most prominent in region surrounding the Z pole.

# Studying Lorentz invariant Dalitz plot distribution to probe CP violation would be new for HL-LHC.

- We expect that at HL-LHC,
  - 1. about  $1.6 \times 10^8$  Higgs will be produced via gluon-gluon fusion,
  - 2. about  $2.24\times 10^5$  Higgs would decay via  $H\to \tau^+_{\rm had}\,\tau^-_{\rm had}\,\gamma,$

with appropriate kinematic cuts  $(p_T^{\gamma} > 10 \text{ GeV}, p_T^{\tau} > 15 \text{ GeV}, \text{photon}$  isolation cone with  $\Delta R \leq 0.3$  and radius parameter R = 0.4 for seed jets for hadronically decaying  $\tau$ s).

• In a simple Monte Carlo study we reweight the MC signal sample to emulate the effect of interference term, for many  $b_{\tau}$  values, akin to the "interpolation" approach of G. Aad *et al.* [ATLAS], JHEP **10** (2021), 013.



### Our simple MC study suggests some way forward.

• The  $b_{\tau}$  values extracted from our *simple* MC study yields large uncertainties, e.g.

 $b_{\tau} = 0.32 \pm 2.24$  for the input  $b_{\tau} = 0.1$ .

- Our simple MC study suggests three directions to take in future.
  - 1. Take interference effects at the generator level to avoid reweighting.
    - $\implies$  Better modeled MC event sample to study forward-backward asymmetry.
  - 2. Include events with one of the  $\tau$ s decaying leptonically as well.
    - $\implies$  Increase number of signal events  $\implies$  Bigger dataset  $\implies$  Smaller statistical uncertainty.
  - 3. Employ 2D unbinned analysis techniques for Dalitz plot distribution.
    - $\implies$  We focused on *binned* 1D event distribution w.r.t.  $m_{+-}$  in forward and backward regions.
    - $\implies$  Study of full 2D distribution of events inside the Dalitz plot would be useful.
- Already existing methods to do 2D distribution study of Dalitz plot:
  - 1. 'Miranda' Procedure a.k.a. Dalitz plot significance anisotropy,
  - 2. Method of energy test statistic,
  - 3. Method of Wasserstein (earth mover's) distance.

[e.g. PRD **80** (2009) 096006] [e.g. PRD **84** (2011), 054015] [e.g. JHEP06 (2023) 098]

### **Part 3: Conclusion**

# The 3-body decay $H \rightarrow \tau^+ \tau^- \gamma$ is an interesting and complementary avenue to probe CP violation.

Dalitz plot analysis has a bigger role to play in future.



### **CP** Violation in Higgs Sector

