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Primordial Black Holes

• Hypothetical black holes formed before
stellar formation.

• Come from extremely dense matter
fluctuations in the early Universe.

• These density perturbations are not
produced in standard slow roll
inflation.
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Production of PBHs

• Overdensities in the primordial power
spectrum.

• Phase transitions (pressure variations)
• Cosmic strings
• Bubble Collisions
• Quark confinement
• Multiverse ...

[G. Dvali et. al. 2021]
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Hawking radiation

• Hawking radiation gives a lifetime to
all BHs

tev ∼ (M in
BH)

3/(3M4
pl)

• Since tuniv. ∼ 13 × 109 yr, PBHs with
M in

BH ≲ 1014 g would no longer exist.
• Stable BHs will contribute to ΩDMh2

(Not the topic of this talk).
• However BHs radiate all particles,

regardless of interactions, so they could
produce non-interacting dark matter!
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PBHs as dark matter

[B. Kavanagh and A. Green 2022]

10−18 10−15 10−12 10−9 10−6 10−3 100 103

MPBH [M�]

10−4

10−3

10−2

10−1

100

f P
B

H
=

Ω
P

B
H
/Ω

D
M

Microlensing

Evaporation

D
yn

am
ical

A
ccretion

G
W

s

1015 1018 1021 1024 1027 1030 1033 1036
MPBH [g]

FUW Dec 2022 Andrew Cheek 5



Binary mergers provide hints to primordial black hole populations
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Power spectrum could be very different

[From Florian Kuhnel talk]
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A window of opportunity

• Late time injection of SM particles
disrupts Big Bang Nucleosynthesis.

• Provides strong constraints
MBH ∼ 109 g

• At the lower scale, the limit is taken
from the CMB, which constrains the
Hubble scale during inflation.

• Model dependent lower limit
MBH ∼ 10−1 g

β′ ≡ γ1/2
(
g⋆(Tin)

106.75

)−1/4 ρin
PBH
ρin
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Early matter domination is possible

• Substantial region of parameter space which allows early matter domination.
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Evaporating BHs are a tantalizing prospect

• Hawking radiation is quantum mechanics in a curved spacetime, intrinsically
interesting.

• They will have an active role in Early Universe.

• New physics between electroweak and Planck scales is well motivated, may even be
implied by Higg’s metastability (Gregory et. al. 2015).

• Black hole evaporation would provide such high scales at “late times" (still before
BBN).
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Black Hole evaporation is a very efficient way to produce dark matter!

• If a stable particle exists, it will be
produced in the process of Hawking
evaporation.

• A very small number of BHs needed to
produce the correct relic abundance

• β′ ≡ γ1/2
(
g⋆(Tin)

106.75

)−1/4 ρin
PBH
ρin

[AC, L. Heutier, Y. F. Perez-Gonzalez and J. Turner (2021)]
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Basics of black hole evaporation

• Black hole temperature increases as MBH decreases TBH =
1

8πGMBH
.

• Evaporation goes like
dMBH

dt
= −ε(MBH)

M4
pl

M2
BH

.
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Any particles with m < Mp will be emitted

Since particle i is emitted when TBH ≳ mi

Ni ≈
120ζ(3)
π3

gi
g⋆(TBH)

M2
BH

M2
pl
. Ni ≈

15ζ(3)
8π5

gi
g⋆(TBH)

M2
pl

m2
i
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Particle emission depends on intrinsic particle nature

d2Ni

dp dt
=

gi
2π2

σsi (MBH, µi , p)

exp [Ei (p)/TBH]− (−1)2si
p3

Ei (p)

• Absorption cross-section σ describes
possible back-scattering due to
gravitational and centrifugal potentials.

• Oft-used geometrical optics limit
σsi (E , µ)|GO = 27πG 2M2

BH

• Define ψsi (E , µ) ≡
σsi (E , µ)

27πG 2M2
BH

.
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FRISBHEE tracks dark matter production

ṅDM + 3HnDM = nBH ΓBH→DM(MBH, a⋆)
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Dark Matter from only PBH evaporation

• We calculate ΩDMh2 for different particle spins.

• Effects of spinning BHs (a⋆ ̸= 0).
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Spinning black holes preferentially emit higher spin particles

• It has long been known that Kerr black holes (a⋆ ̸= 0) shed their angular
momentum by emitting higher spin particles.

• Closer to maximal a⋆ → 1, the more pronounced the enhancement is.
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Warm dark matter constraints

• Using CLASS one can get some
constraints on the PBH→DM scenario
from Lyman-α forest.

• For a given dark matter spin,
constraint is independent of the dark
matter mass itself.
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Warm dark matter constraints different spins

• How the constraint depends on particle
spin and BH spin (a⋆) is non-trivial.

• The increased a⋆ comes with a greater
momentum in the distribution fDM.

• At the same time the β′ values
required to produce the correct Ω
alters.

• In the end the particle type most
sensitive to a⋆ is spin-2 dark matter.
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Effect of extended dark sectors

• Multiple particles are predicted in many BSM models, with dark matter (often)
being the lightest one.

• Consider one extra particle and fermionic DM, X → 2DM.
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Freeze-In Dark Matter with PBHs

We considered a vector-mediated,
Fermionic dark matter model

ψ
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X

and systematically explore the parameter
space

Here mDM = 1 MeV and mX = 1 TeV
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Freeze-In Dark Matter with PBHs

• The way PBHs reheat the thermal
plasma depends on a⋆.

• This can mean that T univ. ∼ mX for
longer.

• On this resonance is when more DM
particles are produced through
standard freeze-in.
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Testing the role of PBHs in the early Universe

Detecting dark matter would have huge implications for pbhs in the early
Universe.
• Gravitational wave production.

[Domenech et. al. 2021]

• Charged black hole remnants?
[Lehman et. al. 2019]
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Dark radiation and relativistic degrees of freedom

• All SM particles, including neutrinos are in thermal equilibrium at high
temperatures.

• Around matter-radiation equality, radiation energy density can be accounted for by

ρR ≡ ργ

[
1 +

7
8

(
Tν

Tγ

)
(NSM

eff +∆Neff)

]
• Where ∆Neff parametrises any additional contributions.

• Which, presumably would come from dark radiation ρR = ρSM
R + ρDR

∆Neff ≡
{

8
7

(
4
11

)− 4
3

+ NSM
eff

}
ρDR

ρSM
R

,
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Forms of dark radiation

• Dark radiation: light particles that do
not have significant couplings to the
SM.

• Many proposed extensions to the SM.
• With the next generation of CMB

probes, it seems that both early pbh
domination and DR may become
mutually exclusive.

Hooper et.al. 2019
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The graviton as a form of dark radiation

• Hot take: Graviton is basically a member
of the SM.

• Black hole evaporation will produce them.
So could be a probe of pbhs without
invoking BSM.

• For Schwarzschild bhs, graviton production
is highly suppressed. 0 5 10 15 20 25 30 35
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Likelihood of Kerr population of pbhs?

• It is conceivable that primordial black holes are formed with angular momentum.

• It is even possible that a population of Schwarzschild black holes develop into a
population of Kerr black holes via early binary mergers.

• Expectation when this happens is ⟨a⋆⟩ ≈ 0.7

Hooper et.al. 2020

1.BH formation 3. Mergers 4. Hawking Radiation2. Binary Capture
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Current and Future CMB measurements show promise

• With upcoming improved CMB measurements, it looks like spinning pbhs can be
constrained.

• Two assumptions, pbhs dominate, evaporation is instantaneous.

[Arbey et. al 2021]
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Spin evolution

• Evaporation is dictated by the spin of the black
hole.

dMBH

dt
= −ϵ(MBH, a⋆)

M4
p

M2
BH

,

da⋆
dt

= −a⋆[γ(MBH, a⋆)− 2ϵ(MBH, a⋆)]
M4

p

M3
BH

,

• It has been known for decades that Kerr BHs
shed angular momentum sooner than their
mass. See e.g. Page 1976.

• For maximally spinning BHs only around 40%
of mass has been lost when 90% of the spin has
gone.
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Motivation for FRISBHEE

• To determine the effect of approximating instantaneous evaporation, one would
need to solve the system of coupled Friedmann and Boltzmann equations.

• Our code FRISBHEE, FRIedmann Solver for Black Hole Evaporation in the Early
universe, does just that.

3H2M2
p

8π
= ρSM

R + ρDR + ρPBH ,

ρ̇SM
R + 4HρSM

R = − d logMBH

dt

∣∣∣∣
SM

ρPBH ,

ρ̇DR + 4HρDR = − d logMBH

dt

∣∣∣∣
DR

ρPBH ,

ρ̇PBH + 3HρPBH =
d logMBH

dt
ρPBH ,
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Entropy injection after a⋆ ∼ 0
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Results assuming PBH domination

• The prospects for future
CMB probes are now less
optimistic.

• Paper A = Hooper et.al.
2020

• Paper B = Arbey et.al.
2021

• Paper C = Masina 2021
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Scan results for graviton

• With FRISBHEE we can
perform full scans.

• Can determine the effects
even when there isn’t pbh
domination.

• CMB-HD will constrain
maximally spinning BHs
below βc for very high M in.

BH.
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Distributions of PBHs

• All work above has been monochromatic in MPBH and a⋆.

• Many PBH production mechanisms lead to distributions.

• The updated FRISBHEE can now track mass and spin distributions.
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Distributed PBHs and effects

• The updated FRISBHEE tracks the cosmological evolution with distributed PBHs.

• Evaporation can occur over many e-folds.
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Stasis from a power law

• Pointed out by K. Diernes et. al
(2022) and Barrow et. al. 1991, power
law distributions lead to ‘cosmological
stasis’.

• Abundance of matter and radiation
remains constant despite cosmological
expansion.
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Effect on dark matter production

• Wide distributions with tail at high
masses enable dark matter to be
generated from lower β′ values.

• This is because NDM ∝ (MBH)
2 ,

having larger PBHs even if
sub-dominant drives ΩDM.

• Simultaneously, warm dark matter
constraints get more aggressive.
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Effect on ∆Neff with BSM radiation

• Fairly predictable behaviour for new
dark radiation species with a mass
distribution.

• BBN limits denoted by black dashed
lines.
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Gravitational Waves

• PBH production and evaporation leads
to Gravitational waves in multiple
ways.

• One scenario is where the sudden
transition from the PBH dominated to
radiation dominated Universe causes
the gravitational potential to oscillate,
producing amplified GWs.

• The reliance on sudden transition in
the equation of state is key.

[K. Inomata et. al. 2020]
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Gravitational Waves

• A high frequency gravitational wave
background comes from the gravitons
emitted from BHs.

• Important to note that overall
amplitude is not diminished.
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Spin distributions

• FRISBHEE can also evaluate the effects of non-trivial spin and mass distributions.
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Effect on ∆Neff with SM + graviton

• Returning to our prediction for the
graviton contribution to ∆Neff .

• The red dot-dashed line shows the
monochromatic spin.

• We see modest enhancement and with
wide Gaussian of σ ∼ 0.2, the
enhancement starts to diminish.
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Conclusions

• PBHs may have been a big player in the Early Universe.

• If heavy BSM particles exist, evaporating BHs will produce them.

• One way to exclude PBHs is through measuring ∆Neff .

• The graviton contribution counts as a SM contribution to dark radiation.

• Our tool FRISBHEE calculates this in the most accurate way, including the spin
evolution of BHs.

• Recent update on FRISBHEE allows one to include distributed PBH populations.
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Backup slides
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Black Hole evaporation is a very efficient way to produce dark matter!

Pessimist’s motivation to study it:
• We have a way of producing dark

matter which doesn’t require any
interactions other than gravity.

• This would be very difficult to test.
• We use FRISBHEE to fully track the

coupled system in probably the most
precise way. arXiv:2107.00013.
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Black Hole evaporation is a very efficient way to produce dark matter!

Optimist’s motivation to study it:
• Many models predict interactions

between the SM and dark matter.
• Current and near future experiments

may even measure this interaction.
• Dark matter detection could be an

indirect probe into PBH’s in early
Universe.

• arXiv:2107.00016 is dedicated to this,
where we make use of the code
developed and now include an
interacting dark matter model.
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Any particles with mDM < Mp will be emitted

• Two separate regimes of particle production for stable particles

NDM ≈ 120ζ(3)
π3

gi
g⋆(TBH)

M2
BH

M2
pl
. NDM ≈ 15ζ(3)

8π5
gi

g⋆(TBH)

M2
pl

m2
DM
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FRISBHEE tracks dark matter production

ṅDM + 3HnDM = nBH ΓBH→DM(MBH, a⋆)
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Dark Matter from only PBH evaporation

• We calculate ΩDMh2 for different particle spins.

• Effects of spinning BHs (a⋆ ̸= 0).
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Dark matter distribution

• The dark matter phase space
distribution is calculated by

fDM =
nBH (tin)

gDM

(
a(tin)

a(t)

)3 1
p2

dNDM

dp

∣∣∣∣∣
t=tev

• Where the redshifting of emitted
particles is accounted for in

dNDM

dp
=

∫ τ

0
dt ′

a(τ)

a(t ′)
×d2NDM

dp′dt ′

(
p
a(τ)

a(t ′)
, t ′

)

FUW Dec 2022 Andrew Cheek 50



Lyman-α constraints on dark matter

• Lyman-α forest traces inhomogeneities
in IGM.

• Provides measurements on the matter
power spectrum at high redshift
(2 ≤ z ≤ 5 ) and small scales
(0.5 h/Mpc ≤ k ≤ 20 h/Mpc).

• Measurements down to this scale are
consistent with cold dark matter

Pχ(k) = PCDM(k)T 2
χ(k)
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Consistent η relation

• To determine the constraint, can use

T (k) = (1 + (αk)2µ)−5/µ

• Find the M in
BH value that

α = 1.3 × 10−2 Mpc h−1.
• For a given dark matter spin,

constraint is independent of the dark
matter mass itself.
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Warm dark matter constraints different spins

• How the constraint depends on particle
spin and BH spin (a⋆) is non-trivial.

• The increased a⋆ comes with a greater
momentum in the distribution fDM.

• At the same time the β′ values
required to produce the correct Ω
alters.

• In the end the particle type most
sensitive to a⋆ is spin-2 dark matter.
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Effect of extended dark sectors

• Multiple particles are predicted in many BSM models, with dark matter being the
lightest one.

• Consider one extra particle and fermionic DM, X → 2DM.
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Interplay between interacting dark matter and pbh production
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Interplay between interacting dark matter and pbh production

• The set of Boltzmann equations are now
expanded

ṅDM+3HnDM = gDM

∫
C [fDM]

d3p

(2π)3
+

dnDM

dt

∣∣∣∣
BH

ṅX + 3HnX = gX

∫
C [fX ]

d3p

(2π)3
+

dnX
dt

∣∣∣∣
BH

ρ̇SM + 4HρSM =
dM
dt

∣∣∣∣
SM

• In this work we make use of the momentum
averaged Boltzmann equation.
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Freeze-In Dark Matter with PBHs

We considered a vector-mediated, fermionic
dark matter model

ψ
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X

and systematically explore the parameter
space

Here mDM = 1 MeV and mX = 1 TeV
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Current work: Distributions of PBHs

• All work above has been monochromatic in MPBH and a⋆
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Current work: treating rethermalization

• In the derivation of the momentum averaged Boltzmann equations, only one
explicit use of the phase space distribution from evaporated particles is made.

ΓX

〈
mX

EX

〉
ev

≡ ΓX

∫
mX

EX
fev(pX )

d3pX
(2π)3

• Where we determine the boosting effect on the lifetime of X .

• However, it’s possible that the evaporated particles can self interact or interact
with the plasma such that rethermalization occurs and one would have to calculate

⟨σ · v⟩T1T2 =

∫
σ · vf1f2d3p⃗1d3p⃗2[∫
d3p⃗1f1

] [∫
d3p⃗2f2

]
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Current work: sub-dominant pbh dark matter

• Warm dark matter constraints are for when PBH produces all Ω

• Working on the mixed scenerio, important if dark matter is detected elsewhere.
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BSM dark radiation and Kerr

• Many BSM scenarios predict new light particles.

• The effect of spin evolution is most pronounced on higher spin particles.

• So we focus on dark radiation by way of vector. Fermion and scalar results are
similar for Kerr and Schwarzschild.

• Emmission is less enhanced at a⋆ ∼ 0.99 but less supressed at a⋆ = 0 so dilution is
less pronounced.
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Vector scan results

If there is evidence for a new light and feebly interacting vector boson, CMB-HD will be
able to probe much larger regions of parameter space than with just the graviton.
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