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Background – Parton Distribution Functions

Deep Inelastic Scattering

e−N → e−X – inclusive cross-section: sum over all states X

Optical theorem – relate inclusive cross-section to imaginary part
of forward scattering amplitude:
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Collinear Factorization

Large energy scale: Q2 = −q2 ≫ Λ2 – separate the large- and
short- distance physics.

Infinite momentum frame:

Introduce ± four-vector components v± = 1√
2

(
1, 0, 0,±1

)T
.

Momentum of the nucleon: → p ≈ p+

Nucleon-photon interaction → sum of scattering amplitudes
on a single parton (quark, gluon) carrying the fraction x of
the total momentum.



Collinear Factorization

PDFi (x)

Ai

xp+ xp+
x ∈ (0, 1)

Full amplitude: ∑
i

PDFi (x)×Ai (x ,Q
2)

PDFs defined using matrix elements:∫
dz−

2π
e ixp

+z− ⟨N(p)| q̄f (−z/2)Γqf (z/2) |N(p)⟩
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z=z−
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Generalised Parton Distributions

Exclusive processes

A+ N −→ B + N, all outgoing states measured.
The problem reduces to γ∗ + N −→ B + N.

N(P1) N(P2)

γ∗(q) B

DVCS: γ∗ + N −→ γ + N

TCS: γ + N −→ γ∗ + N → l l̄ + N

DVMP: γ∗ + N −→ N +M
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Generalised Parton Distributions

GPDi (x , ξ, t)

Ai

(x + ξ)p+ (x − ξ)p+

N
(
p1 ≈ (1 + ξ)p+

)
N
(
p2 ≈ (1− ξ)p+

)
ξ ∈ (−1, 1)

t = (p1 − p2)
2

Amplitude:

A =
∑
i

∫ 1

−1
dx Ai (x , ξ,Q

2, ...)×GPDi (x , ξ, t).



Study of exclusive processes

State of the art

DVCS: N2LO – [arXiv.2207.06818]

TCS: NLO – Phys. Rev. D 83, 034009

DVMP: NLO – Phys.Rev. D56 2982-3006

A new process, which we consider: photoproduction of photon
pairs with large invariant mass:

γN → γγN

https://doi.org/10.48550/arXiv.2207.06818


Study of exclusive processes

State of the art

DVCS: N2LO – [arXiv.2207.06818]

TCS: NLO – Phys. Rev. D 83, 034009

DVMP: NLO – Phys.Rev. D56 2982-3006

A new process, which we consider: photoproduction of photon
pairs with large invariant mass:

γN → γγN

https://doi.org/10.48550/arXiv.2207.06818


Study of exclusive processes

State of the art

DVCS: N2LO – [arXiv.2207.06818]

TCS: NLO – Phys. Rev. D 83, 034009

DVMP: NLO – Phys.Rev. D56 2982-3006

A new process, which we consider: photoproduction of photon
pairs with large invariant mass:

γN → γγN

https://doi.org/10.48550/arXiv.2207.06818


Study of exclusive processes

State of the art

DVCS: N2LO – [arXiv.2207.06818]

TCS: NLO – Phys. Rev. D 83, 034009

DVMP: NLO – Phys.Rev. D56 2982-3006

A new process, which we consider: photoproduction of photon
pairs with large invariant mass:

γN → γγN

https://doi.org/10.48550/arXiv.2207.06818


Study of exclusive processes

State of the art

DVCS: N2LO – [arXiv.2207.06818]

TCS: NLO – Phys. Rev. D 83, 034009

DVMP: NLO – Phys.Rev. D56 2982-3006

A new process, which we consider: photoproduction of photon
pairs with large invariant mass:

γN → γγN

https://doi.org/10.48550/arXiv.2207.06818


Why study this process?

The hard part is a 2 → 3 reaction – new type of processes
studied within the framework of QCD collinear factorization
(w.r.t. 2 → 2 processes mentioned before).

pγ → pγγ – the “theoretical laboratory” to study
factorization in 2 → 3 reactions.

Also phenomenologically interesting: the amplitude depends
only on charge-odd combinations of GPDs (only valence
quarks contribute).
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Kinematics
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The leading order analysis

Pedrak et al. Phys. Rev. D 96 (2017) [arXiv:1708.01043]

GPDq(x , ξ, t)

(x + ξ)p+ (x − ξ)p+

LO results: the process can be studied at intense quasi-real photon
beam facilities in JLab or EIC.

https://arxiv.org/abs/1708.01043v3


Next-to-leading order diagrams

NLO factorization and the amplitude

Phys. Rev. D 104 (2021) [2110.00048]

Figure: Considered 1-loop diagrams

https://arxiv.org/abs/2110.00048


Collinear divergences



Collinear divergences

Momentum of the gluon k collinear with the one of the parton
(x ± ξ)p

=⇒ k2 = 0 and
(
(x ± ξ)p + k

)2
= 0

=⇒ Singularities in loop momenta integrals
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General form of a leading-power graph

GPDq(x , ξ, t)

Higher-order leading power graphs – can attach an arbitrary
numbers of collinear, longitudinally polarized gluon to the hard
part.



Collinear gluons

−→

At leading-order in Q2/Λ2, the collinear gluons can be taken into
accout by inserting the Wilson line operator between the parton
field operators in the definition of GPDs → preserved form of the
factorization formula, but GPDs acquire corrections.
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Interactions between spectator partons
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Factorization at NLO

After including the QCD corrections to GPD, we obtain:

GPDq(x , ξ, t) = GPDq
R(x , ξ, t;µF )

+
αS

2π

(
− 1

ε
+ ln

µ2
F

µ2
R

)∫
dx ′Kqq(x , x ′, ξ)GPDq

R(x
′, ξ, t;µF ). (2)

d = 4− 2ε, µR - renormalization scale, µF - factorization scale.

Hard-scattering amplitude:

Aq(x) = Aq
0(x) +

αS

2π

(M2
γγ

µ2
R

)−ε(1
ε
Aq

coll .(x) +Aq
1(x)

)
. (3)
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Cancelation of divergences

IR divergences present in GPDs and hard-scattering amplitudes
cancel, if

Aq
coll .(x) =

∫ 1

−1
dx ′ Kqq(x ′, x)Aq

0(x
′) . (4)

If that is true, then the full amplitude is:

A =
∑
q

∫ 1

−1
dx GPDq

R(x , ξ, t;µF )

×
(
Aq

0 +
αS

2π

[
Aq

1 + ln
( µ2

F

M2
γγ

)
Aq

coll .

])
. (5)
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Next-to-leading order results

2- and 3-point loops → relatively simple results.

5-point loop integral can be reduced to a sum 4-point ones.

Finite part of a 4-point diagrams: expressible in terms of

Fnab :=

∫ 1

0
dy

∫ 1

0
dz yazb

(
α1y + α2z + α3yz + iϵ

)−n
,

G :=

∫ 1

0
dy

∫ 1

0
dz z2

(
α1y + α2z + α3yz + iϵ

)−2

× log
(
α1y + α2z + α3yz + iϵ

)
.

Large computational power is needed to get stable results.
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PARTONS

PARtonic Tomography Of Nucleon Software
B. Berthou et al., Eur. Phys. J. C 78, 478 (2018),
hep-ph/1512.06174

http://partons.cea.fr

https://arxiv.org/abs/1512.06174
http://partons.cea.fr


Considered GPD models
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Figure: Comparison between GK [hep-ph/0708.3569] (solid magenta) and
MMS [hep-ph/1304.7645] (dotted green) GPD models for
t = −0.1 GeV2 and the scale µ2

F = 4 GeV2.

https://arxiv.org/abs/0708.3569
https://arxiv.org/abs/1210.6975


Differential cross section: u′-dependence
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Figure: Differential cross-section as a function of u′ for SγN = 20 GeV2,
M2

γγ = 4 GeV2 (ξ ≈ 0.12) and t = t0 ≈ −0.05 GeV2 for proton target.
LO: solid (dashed) red line, NLO: dotted (dash-dotted) blue line for GK
(MMS) GPD model.



Differential cross section: SγN-dependence
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Figure: Differential cross-section as a function of SγN (bottom axis) and
the corresponding ξ (top axis) for M2

γγ = 4 GeV2, t = t0 and

u′ = −1 GeV2.
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Figure: The same, but for neutron target.



Differential cross section: M2
γγ-dependence
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Figure: Differential cross-section as a function of M2
γγ (bottom axis) and

the corresponding ξ (top axis) for SγN = 20 GeV2, t = t0 and
u′ = −1 GeV2.



Differential cross section: ϕ-dependence
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Figure: Differential cross-section as a function of ϕ – the angle between
the initial photon polarization and one of the final photon momentum in
the transverse plane for SγN = 20 GeV2, M2

γγ = 4 GeV2 (which

corresponds to ξ ≈ 0.12), u′ = −1 GeV2 and t = t0 ≈ −0.05 GeV2.



Summary

pγ → pγγ – the simplest process, for which the hard partonic
sub-process is a 2 → 3 scattering.

NLO factorization has been verified. It opens a new class of
processes in which the collinear factorization can be studied.

γN → γγN can provide valuable information about
charge-odd combinations of GPDs.

We obtained a next-to-leading order scattering amplitude and
perfomed phenomenological analysis of the diphoton
photoproduction.
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