Large-invariant-mass photon pairs production in nucleon-photon scattering at next-to-leading order

Oskar Grocholski

Deutsches Elektronen-Synchrotron DESY

in collaboration with B. Pire, P. Sznajder, L. Szymanowski and J. Wagner. DOI: 10.1103/PhysRevD.104.114006 DOI: 10.1103/PhysRevD.105.094025

November 17, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Background – Parton Distribution Functions

Deep Inelastic Scattering

 $e^-N
ightarrow e^-X$ – inclusive cross-section: sum over all states X

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Deep Inelastic Scattering

 $e^-N
ightarrow e^-X$ – inclusive cross-section: sum over all states X

Optical theorem – relate inclusive cross-section to imaginary part of forward scattering amplitude:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Large energy scale: $Q^2 = -q^2 \gg \Lambda^2$ – separate the large- and short- distance physics.

Infinite momentum frame:

- Introduce \pm four-vector components $v^{\pm} = \frac{1}{\sqrt{2}} (1, 0, 0, \pm 1)^{T}$.
- Momentum of the nucleon: $ightarrow p pprox p^+$
- Nucleon-photon interaction → sum of scattering amplitudes on a single parton (quark, gluon) carrying the fraction x of the total momentum.

Collinear Factorization

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Collinear Factorization

Full amplitude:

 $\sum_{i} PDF_i(x) \times \mathcal{A}_i(x, Q^2)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Collinear Factorization

Full amplitude:

$$\sum_{i} PDF_i(x) \times \mathcal{A}_i(x, Q^2)$$

PDFs defined using matrix elements:

$$\int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \left\langle N(\mathbf{p}) \right| \bar{q}_{f}(-z/2) \Gamma q_{f}(z/2) \left| N(\mathbf{p}) \right\rangle \Big|_{z=z^{-}}$$
(1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $A + N \longrightarrow B + N$, all outgoing states measured. The problem reduces to $\gamma^* + N \longrightarrow B + N$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Generalised Parton Distributions

Exclusive processes

 $A + N \longrightarrow B + N$, all outgoing states measured. The problem reduces to $\gamma^* + N \longrightarrow B + N$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $A + N \longrightarrow B + N$, all outgoing states measured. The problem reduces to $\gamma^* + N \longrightarrow B + N$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• DVCS: $\gamma^* + N \longrightarrow \gamma + N$

 $A + N \longrightarrow B + N$, all outgoing states measured. The problem reduces to $\gamma^* + N \longrightarrow B + N$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- DVCS: $\gamma^* + N \longrightarrow \gamma + N$
- TCS: $\gamma + N \longrightarrow \gamma^* + N \rightarrow I\overline{I} + N$

 $A + N \longrightarrow B + N$, all outgoing states measured. The problem reduces to $\gamma^* + N \longrightarrow B + N$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- DVCS: $\gamma^* + N \longrightarrow \gamma + N$
- TCS: $\gamma + N \longrightarrow \gamma^* + N \to I\overline{I} + N$
- DVMP: $\gamma^* + N \longrightarrow N + M$

Generalised Parton Distributions

$$t=(p_1-p_2)^2$$

Amplitude:

$$\mathcal{A} = \sum_{i} \int_{-1}^{1} dx \, \mathcal{A}_{i}(x,\xi,Q^{2},...) \times \mathrm{GPD}_{i}(x,\xi,t).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

State of the art

• DVCS: N²LO - [arXiv.2207.06818]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- DVCS: N²LO [arXiv.2207.06818]
- TCS: NLO Phys. Rev. D 83, 034009

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- DVCS: N²LO [arXiv.2207.06818]
- TCS: NLO Phys. Rev. D 83, 034009
- DVMP: NLO Phys.Rev. D56 2982-3006

- DVCS: N²LO [arXiv.2207.06818]
- TCS: NLO Phys. Rev. D 83, 034009
- DVMP: NLO Phys.Rev. D56 2982-3006

A new process, which we consider: photoproduction of photon pairs with large invariant mass:

$$\gamma N \to \gamma \gamma N$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Why study this process?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

 The hard part is a 2 → 3 reaction – new type of processes studied within the framework of QCD collinear factorization (w.r.t. 2 → 2 processes mentioned before).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why study this process?

 The hard part is a 2 → 3 reaction – new type of processes studied within the framework of QCD collinear factorization (w.r.t. 2 → 2 processes mentioned before).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $p\gamma \rightarrow p\gamma\gamma$ – the "theoretical laboratory" to study factorization in 2 \rightarrow 3 reactions.

Why study this process?

- The hard part is a 2 → 3 reaction new type of processes studied within the framework of QCD collinear factorization (w.r.t. 2 → 2 processes mentioned before).
- $p\gamma \rightarrow p\gamma\gamma$ the "theoretical laboratory" to study factorization in 2 \rightarrow 3 reactions.
- Also phenomenologically interesting: the amplitude depends only on charge-odd combinations of GPDs (only valence quarks contribute).

$$S_{\gamma N} = (p_1 + q)^2,$$
 $u' = (q_2 - q)^2,$
 $M_{\gamma \gamma}^2 = (q_1 + q_2)^2,$ $t = (p_1 - p_2)^2.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$S_{\gamma N} = (p_1 + q)^2, \qquad u' = (q_2 - q)^2, \ M_{\gamma \gamma}^2 = (q_1 + q_2)^2, \qquad t = (p_1 - p_2)^2.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Pedrak et al. Phys. Rev. D 96 (2017) [arXiv:1708.01043]

LO results: the process can be studied at intense quasi-real photon beam facilities in JLab or EIC.

NLO factorization and the amplitude

Phys. Rev. D 104 (2021) [2110.00048]

Figure: Considered 1-loop diagrams

(日) (雪) (モ) (モ) (モ)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Momentum of the gluon k collinear with the one of the parton $(x\pm\xi)p$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Momentum of the gluon k collinear with the one of the parton $(x \pm \xi)p$ $\implies k^2 = 0$ and $((x \pm \xi)p + k)^2 = 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Momentum of the gluon *k* collinear with the one of the parton $(x \pm \xi)p$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\implies k^2 = 0$$
 and $\left((x \pm \xi)p + k\right)^2 = 0$

 \implies Singularities in loop momenta integrals

General form of a leading-power graph

Higher-order leading power graphs – can attach an arbitrary numbers of collinear, longitudinally polarized gluon to the hard part.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Collinear gluons

At leading-order in Q^2/Λ^2 , the collinear gluons can be taken into accout by inserting the Wilson line operator between the parton field operators in the definition of GPDs \rightarrow preserved form of the factorization formula, but GPDs acquire corrections.

人口 医水黄 医水黄 医水黄素 化甘油

Interactions between spectator partons

Interactions between spectator partons

Factorization at NLO

After including the QCD corrections to GPD, we obtain:

$$GPD^{q}(x,\xi,t) = GPD^{q}_{R}(x,\xi,t;\mu_{F}) + \frac{\alpha_{S}}{2\pi} \left(-\frac{1}{\varepsilon} + \ln \frac{\mu_{F}^{2}}{\mu_{R}^{2}} \right) \int dx' K^{qq}(x,x',\xi) GPD^{q}_{R}(x',\xi,t;\mu_{F}).$$
(2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $d=4-2\varepsilon,~\mu_{R}$ - renormalization scale, μ_{F} - factorization scale.

Factorization at NLO

After including the QCD corrections to GPD, we obtain:

$$GPD^{q}(x,\xi,t) = GPD^{q}_{R}(x,\xi,t;\mu_{F}) + \frac{\alpha_{S}}{2\pi} \left(-\frac{1}{\varepsilon} + \ln \frac{\mu_{F}^{2}}{\mu_{R}^{2}} \right) \int dx' K^{qq}(x,x',\xi) GPD^{q}_{R}(x',\xi,t;\mu_{F}).$$
(2)

 $d=4-2\varepsilon,\,\mu_{R}$ - renormalization scale, μ_{F} - factorization scale.

Hard-scattering amplitude:

$$\mathcal{A}^{q}(x) = \mathcal{A}^{q}_{0}(x) + \frac{\alpha_{S}}{2\pi} \left(\frac{M^{2}_{\gamma\gamma}}{\mu^{2}_{R}}\right)^{-\varepsilon} \left(\frac{1}{\varepsilon} \mathcal{A}^{q}_{coll.}(x) + \mathcal{A}^{q}_{1}(x)\right).$$
(3)

 ${\sf IR}$ divergences present in GPDs and hard-scattering amplitudes cancel, if

$$\mathcal{A}_{coll.}^{q}(x) = \int_{-1}^{1} dx' \, \mathcal{K}^{qq}(x', x) \, \mathcal{A}_{0}^{q}(x') \,. \tag{4}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 ${\sf IR}$ divergences present in GPDs and hard-scattering amplitudes cancel, if

$$\mathcal{A}_{coll.}^{q}(x) = \int_{-1}^{1} dx' \, \mathcal{K}^{qq}(x', x) \, \mathcal{A}_{0}^{q}(x') \,. \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If that is true, then the full amplitude is:

$$\mathcal{A} = \sum_{q} \int_{-1}^{1} dx \operatorname{GPD}_{R}^{q}(x,\xi,t;\mu_{F}) \\ \times \left(\mathcal{A}_{0}^{q} + \frac{\alpha_{S}}{2\pi} \Big[\mathcal{A}_{1}^{q} + \ln\left(\frac{\mu_{F}^{2}}{M_{\gamma\gamma}^{2}}\right) \mathcal{A}_{coll.}^{q} \Big] \right).$$
(5)

 \bullet 2- and 3-point loops \rightarrow relatively simple results.

- \bullet 2- and 3-point loops \rightarrow relatively simple results.
- 5-point loop integral can be reduced to a sum 4-point ones.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- 2- and 3-point loops \rightarrow relatively simple results.
- 5-point loop integral can be reduced to a sum 4-point ones.
- Finite part of a 4-point diagrams: expressible in terms of

$$\mathcal{F}_{nab} := \int_0^1 dy \, \int_0^1 dz \, y^a z^b \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big)^{-n},$$
$$\mathcal{G} := \int_0^1 dy \, \int_0^1 dz \, z^2 \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big)^{-2} \\ \times \log \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2- and 3-point loops \rightarrow relatively simple results.
- 5-point loop integral can be reduced to a sum 4-point ones.
- Finite part of a 4-point diagrams: expressible in terms of

$$\mathcal{F}_{nab} := \int_0^1 dy \, \int_0^1 dz \, y^a z^b \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big)^{-n},$$

$$\mathcal{G} := \int_0^1 dy \, \int_0^1 dz \, z^2 \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big)^{-2} \\ \times \log \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big).$$

Large computational power is needed to get stable results.

PARtonic Tomography Of Nucleon Software B. Berthou et al., Eur. Phys. J. C 78, 478 (2018), hep-ph/1512.06174

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

http://partons.cea.fr

Considered GPD models

Figure: Comparison between GK [hep-ph/0708.3569] (solid magenta) and MMS [hep-ph/1304.7645] (dotted green) GPD models for $t = -0.1 \text{ GeV}^2$ and the scale $\mu_F^2 = 4 \text{ GeV}^2$.

Differential cross section: u'-dependence

Figure: Differential cross-section as a function of u' for $S_{\gamma N} = 20 \text{ GeV}^2$, $M_{\gamma \gamma}^2 = 4 \text{ GeV}^2$ ($\xi \approx 0.12$) and $t = t_0 \approx -0.05 \text{ GeV}^2$ for proton target. LO: solid (dashed) red line, NLO: dotted (dash-dotted) blue line for GK (MMS) GPD model.

Differential cross section: $S_{\gamma N}$ -dependence

Figure: Differential cross-section as a function of $S_{\gamma N}$ (bottom axis) and the corresponding ξ (top axis) for $M_{\gamma \gamma}^2 = 4 \text{ GeV}^2$, $t = t_0$ and $u' = -1 \text{ GeV}^2$.

Differential cross section: $S_{\gamma N}$ -dependence

Figure: The same, but for neutron target.

<ロト <回ト < 回ト < 回ト

æ

Differential cross section: $M_{\gamma\gamma}^2$ -dependence

Figure: Differential cross-section as a function of $M^2_{\gamma\gamma}$ (bottom axis) and the corresponding ξ (top axis) for $S_{\gamma N} = 20 \text{ GeV}^2$, $t = t_0$ and $u' = -1 \text{ GeV}^2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Differential cross section: ϕ -dependence

Figure: Differential cross-section as a function of ϕ – the angle between the initial photon polarization and one of the final photon momentum in the transverse plane for $S_{\gamma N} = 20 \text{ GeV}^2$, $M_{\gamma \gamma}^2 = 4 \text{ GeV}^2$ (which corresponds to $\xi \approx 0.12$), $u' = -1 \text{ GeV}^2$ and $t = t_0 \approx -0.05 \text{ GeV}^2$.

<□>
<□>
□>
□>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□</

pγ → pγγ − the simplest process, for which the hard partonic sub-process is a 2 → 3 scattering.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- $p\gamma \rightarrow p\gamma\gamma$ the simplest process, for which the hard partonic sub-process is a 2 \rightarrow 3 scattering.
- NLO factorization has been verified. It opens a new class of processes in which the collinear factorization can be studied.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- pγ → pγγ the simplest process, for which the hard partonic sub-process is a 2 → 3 scattering.
- NLO factorization has been verified. It opens a new class of processes in which the collinear factorization can be studied.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\gamma N \rightarrow \gamma \gamma N$ can provide valuable information about charge-odd combinations of GPDs.

- pγ → pγγ the simplest process, for which the hard partonic sub-process is a 2 → 3 scattering.
- NLO factorization has been verified. It opens a new class of processes in which the collinear factorization can be studied.
- $\gamma N \rightarrow \gamma \gamma N$ can provide valuable information about charge-odd combinations of GPDs.
- We obtained a next-to-leading order scattering amplitude and perfomed phenomenological analysis of the diphoton photoproduction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00