Baryogenesis and inflaton hunting at the LHC

Mariano Quirós

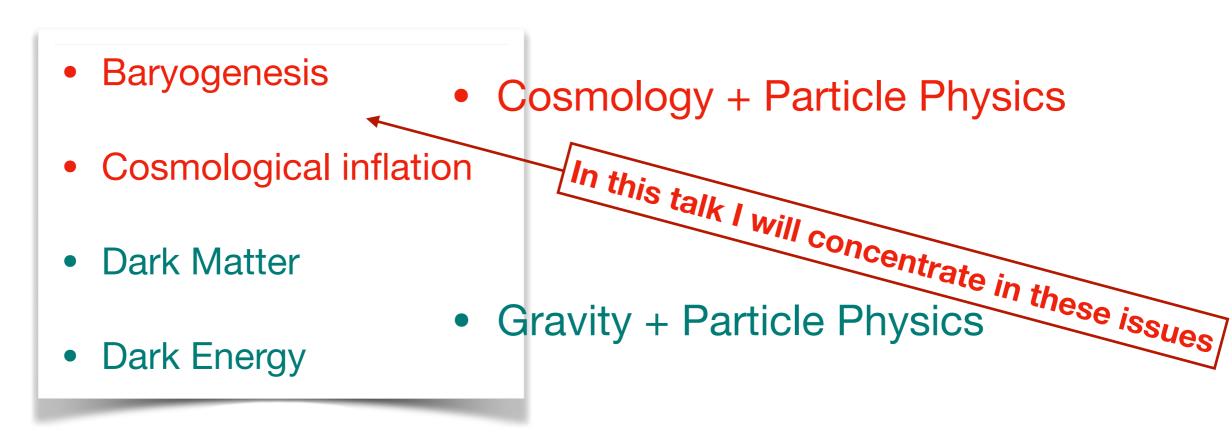
Institute of High Energy Physics (IFAE)

Faculty of Physics, University of Warsaw October 20, 2022

Based on works 2102.13650, 2201.06422, 2208.10977 done in collaboration with:

Y. Cado, B. von Harling, E. Masso (2020-2022)

- The Standard Model of Particle Physics is a well defined (effective) theory valid up to the Planck scale and consistent with all present experimental data (LEP, Tevatron, LHC,...).
- However, there are some phenomena the SM cannot cope with, and which require the presence of New (BSM) Physics.
- These phenomena have to do more with Cosmology and Gravity than with Particle Physics.



Contents

- Inflation and Higgs potential
- Baryogenesis by helical magnetic fields at inflation
- The model
- Inflation
- Gauge field production
- Baryogenesis
- Collider Phenomenology
- Conclusions

Inflation and Higgs potential

- The SM Higgs potential has an instability at $h=h_{\rm I}\simeq 10^{10}-10^{11}\,{\rm GeV}$
- During inflation at N=# e-folds the probability of Higgs oscillation at the value h is

$$P(h,N) \simeq e^{-\frac{1}{2}\frac{h^2}{\langle h^2 \rangle}}, \quad \langle h^2 \rangle = \frac{H^2N}{4\pi^2}$$
 Espinosa et al. 1505.04825

- Condition to not find the Higgs away from its EW vacuum $P(h_I,N) < e^{-3N} \quad \Rightarrow \quad H < \sqrt{2/3} \frac{\pi}{N} h_I \simeq 0.04 h_I \text{ greatly}$ constraining the inflationary model to low scale inflation
- High scale inflation requires Higgs potential stabilization

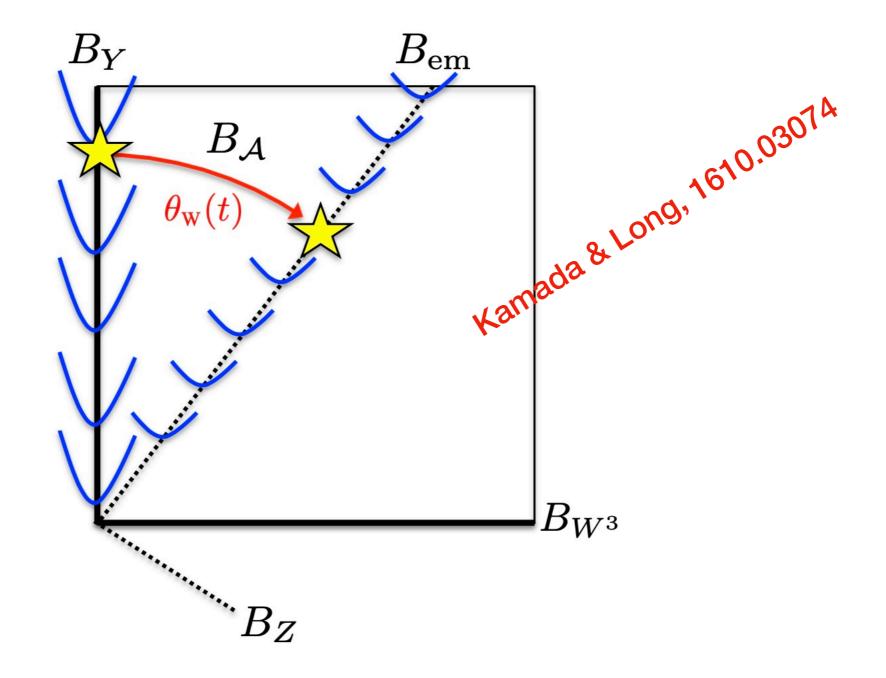
- Cosmological inflation is usually realized by an extra singlet scalar field ϕ : the inflaton
- We will associate the inflaton with the Higgs stabilizing field through the coupling $\mu \phi h^2$ which will constrain the value of μ and the inflaton mass $m_{\phi} < \mathcal{Q}_I$
- The inflaton, if coupled to the Chern-Simons density $\phi Y^{\mu\nu}\tilde{Y}_{\mu\nu} \mbox{ can trigger an explosive production of helical hypermagnetic fields}$
- Helical fields, if they survive till the EW phase transition, can generate the baryon asymmetry of the universe

Baryogenesis by helical magnetic fields at inflation

- If the inflaton is coupled to the hypercharge Chern-Simons density it can generate helical magnetic fields B_{Y} with helicity \mathcal{H}_{Y}
- Due to the chiral anomaly the generation of helicity is accompanied by the generation of chiral fermion $f_{L,R}$ with particle-antiparticle asymmetry

$$\Delta Q_B = \Delta Q_L = N_g \left(\Delta N_{CS} - \frac{g_Y^2}{16\pi^2} \Delta \mathcal{H}_Y \right)$$

During the EWPT from unbroken to broken electroweak symmetry: $\mathcal{H}_Y \to \mathcal{H}_{EM}$



Now $W_{\!\mu}^{\!a}$ get thermal mass and the weak angle $\theta_{W}=\theta_{W}(T)$

- \mathcal{H}_Y contributes to $\Delta(B+L)$, but \mathcal{H}_{EM} does not
- The B_Y is not fully converted to B_{EM} at the EWPT, $T_{EWPT} \simeq 160$ GeV, and still remains when EW sphalerons freeze out at $T=T_{fo}\simeq 130$ GeV
- Therefore the source term from \mathcal{H}_Y remains active while the washout of EW sphalerons goes out of equilibrium

$$\eta_B \simeq \frac{17}{1184 \,\pi^2} (g_Y^2 + g_W^2) \frac{\mathcal{H}_Y T_{\text{rh}}}{M_{\text{Pl}}^2 H_{\text{inf}}^2} \left[\frac{f_{\theta_W}}{\gamma_{W \text{sph}}} \frac{H}{T} \right] @ T = 135 \text{ GeV}$$

$$\gamma_{W ext{sph}} \simeq \exp\left(-147.7 + 107.9 \frac{T}{130 \, \text{GeV}}\right)$$

Crossover lattice calculation

$$5.6 \times 10^{-4} < f_{\theta_w} \equiv -\sin(2\theta_W) \, d\theta_W / d \log T < 0.32$$

The model

The model is defined by the Lagrangian

$$\mathcal{L}_{J} = -\frac{M_{p}^{2}}{2}R - \frac{g}{2}\phi^{2}R + \frac{1}{2}(\partial_{\mu}h)^{2} + \frac{1}{2}(\partial_{\mu}\phi)^{2} - U(\phi,h) - \frac{\phi}{4f_{\phi}}Y^{\mu\nu}\tilde{Y}_{\mu\nu} \quad \text{Jordan frame}$$

$$U(\phi,h) = U_{\rm SM}(h) + \frac{1}{2} m^2 \phi^2 + \frac{1}{2} \lambda_{\phi h} \phi^2 h^2 + \frac{1}{4} \lambda_{\phi} \phi^4 - \sqrt{\frac{\delta_{\lambda}}{2}} m \phi h^2$$

$$U_{\rm SM}(h) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_0 h^4, \quad \lambda \equiv \lambda_0 - \delta_\lambda$$

$$\beta_{\lambda_{\phi h}} \propto \lambda_{\phi h}$$

 $m < Q_I$ To stabilize SM potential

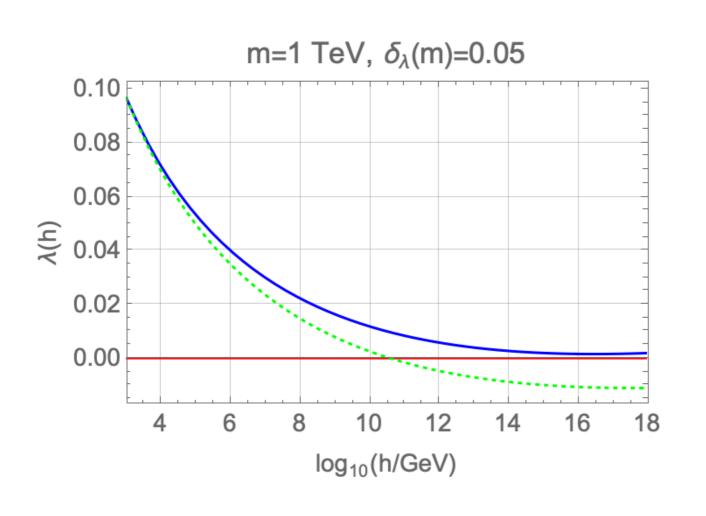
$$\beta_{\lambda_{\phi}} \propto 8\lambda_{\phi h}^2 + 18\lambda_{\phi}^2$$

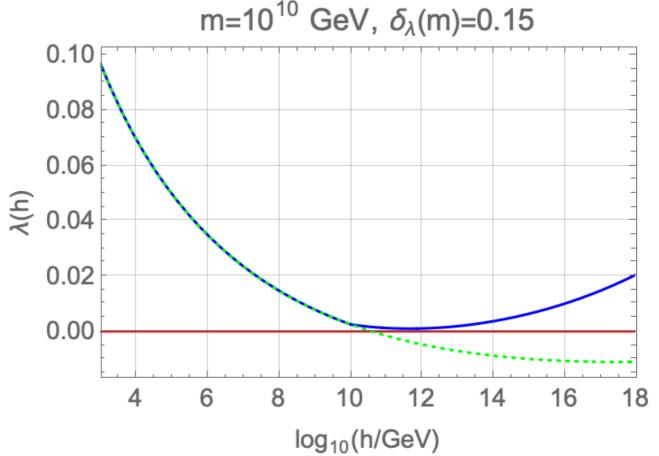
 $\lambda_{\phi} \ll 1$, $\lambda_{\phi h} = 0$ Stable under radiative corrections

To cope with $A_{\scriptscriptstyle S}$ CMB normalization

Then δ_{λ} triggers a modification of the SM RGE and can then stabilize the SM potential

 $\Delta \beta_{\lambda} = \frac{1}{2\pi^2} \delta_{\lambda} (3\lambda + \delta_{\lambda})$ J. Barbon et al., 1501.02231

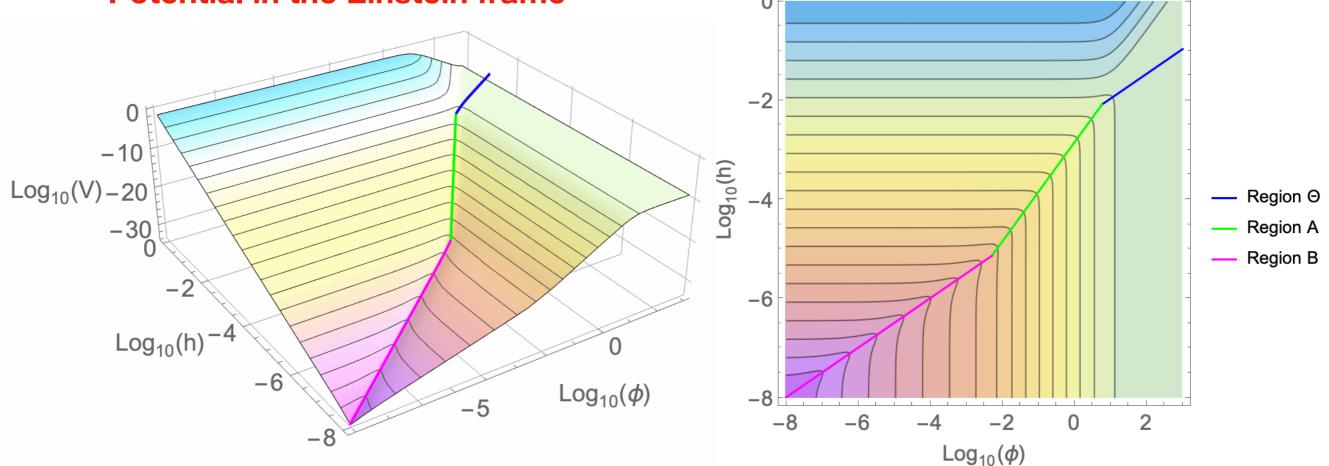




The Einstein frame is obtained by the Weyl transformation on the metric $g_{\mu\nu} o \Theta \ g_{\mu\nu}$

$$\Theta(\phi) = \left(1 + \frac{g\phi^2}{M_p^2}\right)^{-1}$$

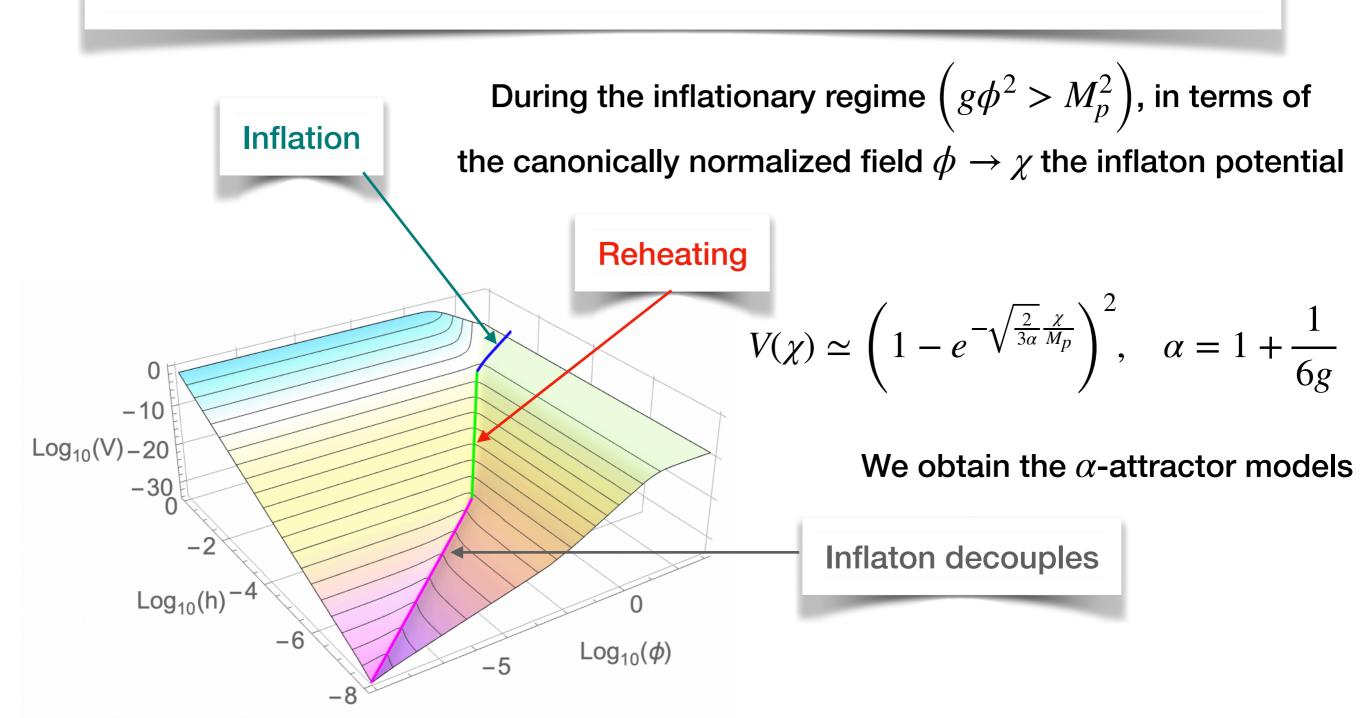
Potential in the Einstein frame



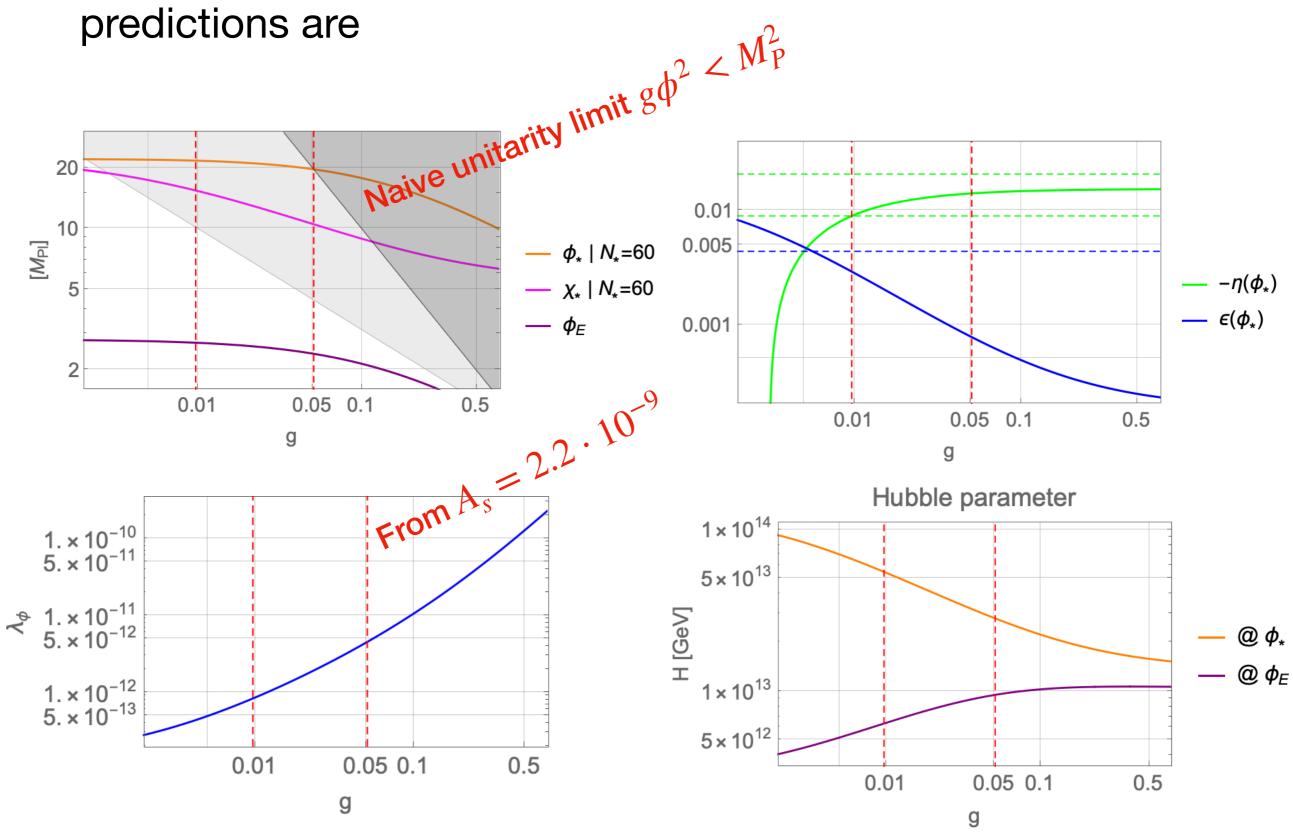
$$m = 10^{10} \text{ GeV}, \quad \delta_{\lambda} = 0.15, \quad \lambda_{\phi} = 10^{-12}, \quad g = 0.01$$

Along the contour lines $h \ll \phi$

Inflation



Inflation is mainly driven by the field ϕ , but the Higgs h also participates in the inflation at a small rate. The predictions are



The model predictions are then

$$\mathsf{Limit}\,g\to\infty$$

$$0.96448 \lesssim n_s \lesssim 0.96695$$
 (0.96783)
 $-0.00063 \lesssim n'_s \lesssim -0.00019$ (-0.00005)
 $0.0467 \gtrsim r \gtrsim 0.0124$ (0.00296)

In agreement with observations from Planck/Keck/BICEP

$$n_s = 0.9649 \pm 0.0042,$$

$$n_s' = -0.0045 \pm 0.0067,$$

$$r = 0.014^{+0.010}_{-0.011}$$

Scalar spectral index

Spectral index running

Tensor to scalar ratio

UV completion for CP-violation

CP violation in the model is triggered by the Lagrangian

$$S_{\mathcal{G}} = -\int d^4x \; \frac{\phi}{4f_{\phi}} Y_{\mu\nu} \tilde{Y}^{\mu\nu}$$

• A simple UV completion generating such effective operator can be a massive (mass M) hypercharged vector-like fermion ψ with a CP-violating coupling to ϕ induced by the angle θ_{λ}

$$\mathcal{L} = -\bar{\psi}_L(M + |\lambda_{\psi}| e^{i\theta_{\lambda}} \phi) \psi_R + h \cdot c \cdot = -|\lambda_{\psi}| \phi \left| \cos \theta_{\lambda} \bar{\psi} \psi + \sin \theta_{\lambda} \bar{\psi} i \gamma_5 \psi \right|$$

- The CP-even $\phi Y_{\mu\nu}Y^{\mu\nu}$, and CP odd $\phi Y_{\mu\nu}\tilde{Y}^{\mu\nu}$ couplings are generated by triangular loop diagrams where the fermion propagates in the loop and emit two gauge bosons Y^{μ} via the $\cos\theta_{\lambda}$ and $\sin\theta_{\lambda}$ couplings respectively
- The corresponding loop diagrams are finite
- For maximal CP-violation, $\theta_{\lambda}=\pm \pi/2$ only the $\phi Y_{\mu\nu}\tilde{Y}^{\mu\nu}$ is generated such that

$$M \simeq \frac{|\lambda_{\psi}| g_Y^2}{4\pi^2} f_{\phi} \simeq 8 \cdot 10^{15} \ GeV |\lambda_{\psi}| (f_{\phi}/M_P)$$

Gauge field production

Equation of motion for gauge fields **A** in gauge $A_0 = 0$, $\nabla \times \mathbf{A} = 0$

$$\left(\frac{\partial^2}{\partial \tau^2} - \nabla^2 - \frac{a \dot{\phi}}{f_{\phi}} \nabla \times \right) \mathbf{A} = \mathbf{J}, \quad \mathbf{J} = \sigma \mathbf{E} = -\sigma \frac{\partial \mathbf{A}}{\partial \tau}$$
Gauge field quantization

Fermion current

Ohm's law

Gauge field quantization

conductivity

$$\mathbf{A}(\tau, \mathbf{x}) = \sum_{\lambda = \pm} \int \frac{d^3k}{(2\pi)^3} \left[\epsilon_{\lambda}(\mathbf{k}) a_{\lambda}(\mathbf{k}) A_{\lambda}(\tau, \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{h.c.} \right]$$

Equation of motion for A_{λ} , $\lambda = \pm$

$$A_{\lambda}'' + \sigma A_{\lambda}' + k \left(k + \lambda \frac{2\xi}{\tau} \right) A_{\lambda} = 0$$

$$\xi = -\frac{\varphi}{2Hf_{\phi}}$$

Observable quantities are:
$$\rho_E = \frac{1}{2} \mathbf{E}^2$$
, $\rho_B = \frac{1}{2} \mathbf{B}^2$, \mathscr{H} (helicity)

$$\rho_E \equiv \frac{1}{a^4} \int^{k_c} dk \, \frac{k^2}{4\pi^2} \left(|A'_+|^2 + |A'_-|^2 \right), \quad \rho_B \equiv \frac{1}{a^4} \int^{k_c} dk \, \frac{k^4}{4\pi^2} \left(|A_+|^2 + |A_-|^2 \right)$$

$$\mathcal{H} \equiv \lim_{V \to \infty} \frac{1}{V} \int_{V} d^3x \, \frac{\langle \mathbf{A} \cdot \mathbf{B} \rangle}{a^3} = \frac{1}{a^3} \int_{V}^{k_c} dk \, \frac{k^3}{2\pi^2} \left(|A_+|^2 - |A_-|^2 \right)$$

For collinear E and B fields, one Dirac fermion with mass m charge Q the conductivity

$$\sigma = \frac{|eQ|^3}{6\pi^2} \frac{a}{H} \sqrt{2\rho_B} \coth\left(\pi \sqrt{\frac{\rho_B}{\rho_E}}\right) \exp\left\{-\frac{\pi m^2}{\sqrt{2\rho_E} |eQ|}\right\}$$

Collinearity can be checked by the angle θ

$$\frac{Q|^{3}}{a\pi^{2}} \frac{a}{H} \sqrt{2\rho_{B}} \coth\left(\pi \sqrt{\frac{\rho_{B}}{\rho_{E}}}\right) \exp\left\{-\frac{\pi m^{2}}{\sqrt{2\rho_{E}} |eQ|}\right\}$$
earity can be checked by the angle θ

$$\cos\theta = -\frac{\langle \mathbf{E} \cdot \mathbf{B} \rangle}{2a^{2} \sqrt{\rho_{E} \rho_{B}}}$$
V. Domcke and K. Mukaida, 1806.08769

Condition

No Schwinger effect: $\sigma = 0$

- At early time, when $|k\tau|\gg 2\xi$, the modes are in their BD vacuum
- When $|k\tau| \simeq 2\xi$, one of the modes develop both parametric and tachyonic instabilities leading to exponential growth while the other stay in the vacuum
- During the last e-folds of inflation, i.e. $|k\tau| \ll 2\xi$, the growing mode has solution:

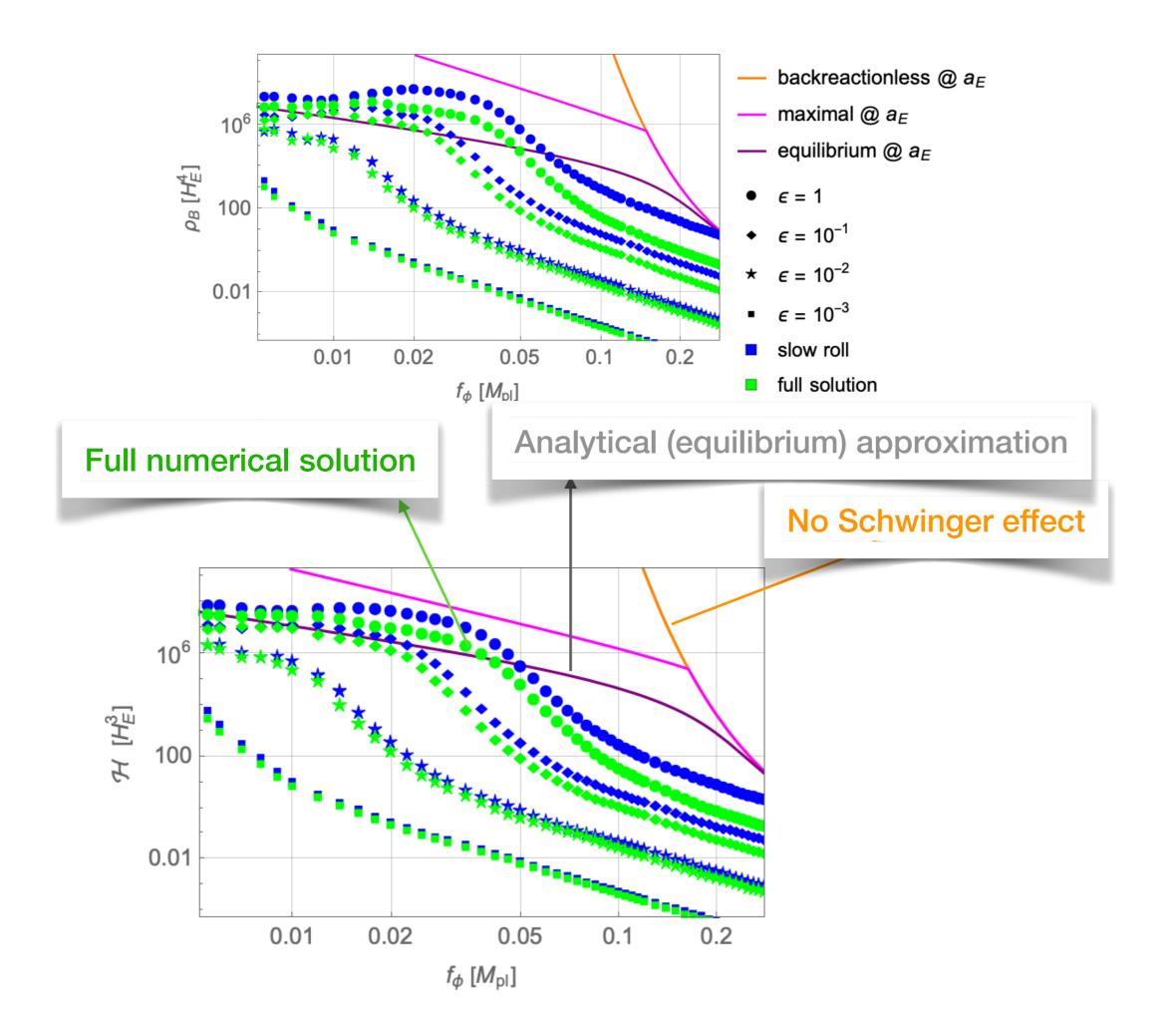
$$A_{\lambda} \simeq \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi a_E H_E} \right)^{\frac{1}{4}} \exp \left\{ \pi \xi - 2\sqrt{\frac{2\xi k}{a_E H_E}} \right\}$$

All observables can be computed analytically

$$\rho_B \simeq \frac{315}{2^{18}} \frac{a_E^4 H_E^4}{\pi^2 \xi^5} e^{2\pi \xi}, \quad \rho_E \simeq \frac{63}{2^{16}} \frac{a_E^4 H_E^4}{\pi^2 \xi^3} e^{2\pi \xi}, \quad \mathscr{H} \simeq \frac{45}{2^{15}} \frac{a_E^3 H_E^3}{\pi^2 \xi^4} e^{2\pi \xi}$$

Schwinger effect

- Fermion production takes energy from the gauge system and back reacts on gauge field production
- The production of gauge fields is damped in the presence of the Schwinger effect
- Calculation are fully numerical. Only some analytical approximations are provided
- Light fermions contribute to conductivity according to the Higgs background value during inflation as $m_f^2 = \frac{Y_f^2}{2}h^2$
- It is difficult to avoid light fermions from first and second generations, with small Yukawa couplings e, μ, u, d, \ldots , to contribute
- The gauge preheating is jeopardized by the production of fermions



Baryogenesis

- To achieve baryogenesis, helicity has to survive until the EWPT
- After reheating, gauge fields interact with the thermal plasma: described by magnetohydrodynamics (MHD) equations
- Magnetic *diffusion* leads to helicity decay, and magnetic induction to helicity conservation: they are controlled by the magnetic Reynolds number \mathscr{R}_m
- If $\mathcal{R}_m > 1$ induction leads and helicity is conserved

$$\mathcal{R}_{m}^{\text{rh}} \approx 5.9 \cdot 10^{-6} \frac{\rho_{B_{Y}} \ell_{B_{Y}}^{2}}{H_{E}^{2}} \left(\frac{H_{E}}{10^{13} \,\text{GeV}} \right) \left(\frac{T_{\text{rh}}}{T_{\text{rh}}^{\text{ins}}} \right)^{\frac{2}{3}} \qquad \qquad \ell_{B} = \frac{2\pi}{\rho_{B}} \int_{0}^{k_{c}} dk \, \frac{k^{3}}{4\pi^{2}} \left(|A_{+}|^{2} + |A_{-}|^{2} \right)$$

$$\mathcal{E}_B = \frac{2\pi}{\rho_B} \int_0^{k_c} dk \, \frac{k^3}{4\pi^2} \left(|A_+|^2 + |A_-|^2 \right)$$

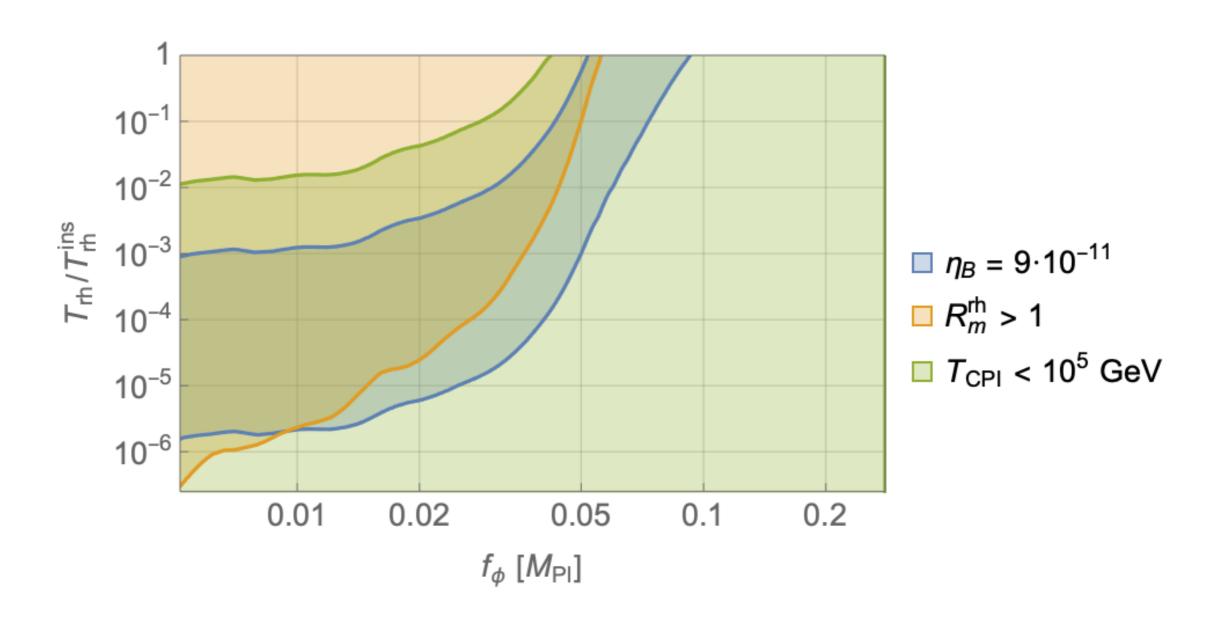
Magnetic correlation length

- When the symmetric phase is restored during reheating, Chiral Plasma Instability (CPI) is a phenomenon by which an asymmetry via chiral anomaly is generated and decays into a helicity with opposite sign: cancellation of the total helicity and no baryogenesis at the EWPT
- *CPI* can be avoided if the temperature at which it happens T_{CPI} is smaller than the temperature at which *the last* species (e_R) reaches equilibrium through its Yukawa coupling $(T_{CPI} \lesssim 10^5 \ {\rm GeV})$ as sphalerons erase the fermion asymmetry

$$T_{\text{CPI}}/\text{GeV} \simeq 4 \cdot 10^{-7} \ \frac{\mathcal{H}_Y^2}{H_E^6} \left(\frac{H_E}{10^{13} \,\text{GeV}}\right)^3 \left(\frac{T_{\text{rh}}}{T_{\text{rh}}^{\text{ins}}}\right)^2 \lesssim 10^5$$

Baryogenesis region

$$T_{\rm rh}^{\rm ins} \simeq 2 \cdot 10^{15} \; {\rm GeV}$$



$$f_{\phi} \lesssim 0.05 M_P$$

Phenomenology

The naturalness problem

- The theory has two separated scales: the inflaton mass m and the Higgs mass m_h
- In the limit $\mu \equiv \sqrt{2\delta_{\lambda}} \, m \to 0$ there is an enhanced \mathbb{Z}_2 symmetry $\phi
 ightarrow - \phi$ indicating that any value of μ , as small as it can be , is natural in the sense of 't Hooft, as the symmetry is recovered
- One loop correction to the Higgs mass parameter μ_h^2

$$\Delta \mu_h^2 \simeq -\frac{\delta_{\lambda}}{8\pi^2} m^2 \log \frac{m^2}{m_h^2} \qquad \left| \Delta \mu_h^2 \right| \lesssim \mu_h^2 = m_h^2/2 \implies m \lesssim 1.2 \text{ TeV}$$

$$\Delta \mu_h^2 \lesssim \mu_h^2 = m_h^2/2 \implies m \lesssim 1.2 \text{ TeV}$$

Higgs-inflaton mixing

The minimum equations

$$\mu_h^2 = \lambda v^2, \quad v_\phi = \sqrt{\frac{\delta_\lambda}{2} \frac{v^2}{m}}$$

and the squared mass matrix at the minimum

$$\mathcal{M}^2 = \begin{pmatrix} 2(\lambda + \delta_{\lambda})v^2 & -\sqrt{2\delta_{\lambda}} \, mv \\ -\sqrt{2\delta_{\lambda}} \, mv & m^2 \end{pmatrix}$$

lead to mass eigenstates $\tilde{h}=c_{\alpha}\,h+s_{\alpha}\,\phi,\quad \tilde{\phi}=c_{\alpha}\,\phi-s_{\alpha}\,h$,

with masses
$$\frac{m_{\tilde{h},\tilde{\phi}}^2}{m^2} = \frac{1}{2} + \left(\lambda + \delta_{\lambda}\right) \frac{v^2}{m^2} \mp \sqrt{\frac{1}{4} - \left(\lambda - \delta_{\lambda}\right) \frac{v^2}{m^2} + \left(\lambda + \delta_{\lambda}\right)^2 \frac{v^4}{m^4}}$$

and mixing angle $s_{\alpha} \simeq \sqrt{2\delta_{\lambda}} \frac{v}{m}, \quad m \gg v$

$$\mathcal{B}(\tilde{\phi} \to X\bar{X}) = \mathcal{B}(\tilde{h} \to X\bar{X}) \cdot s_{\alpha}^2 \, \Gamma_{\tilde{h}} / \Gamma_{\tilde{\phi}}$$

$$\Gamma_{\tilde{\phi}} \simeq 2\delta_{\lambda}c_{\alpha}^2 \frac{m}{32\pi^2}, \quad \Gamma_{\tilde{h}} \simeq 4c_{\alpha}^2 \text{ MeV}$$

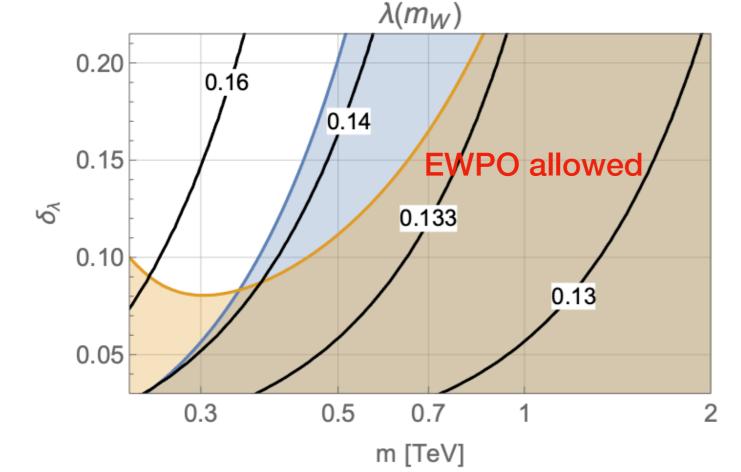
 $-h/1^{'}\tilde{\phi}$ The inflaton decays into all SM particles

EW precision constraints

The doublet-singlet mixing can affect the EWPO through changes in the gauge boson propagators

$$\Delta T \simeq \frac{3}{16\pi} \frac{s_{\alpha}^{2}}{s_{W}^{2}} \left[\left(\frac{1}{c_{W}^{2}} \frac{m_{\tilde{h}}^{2}}{m_{\tilde{h}}^{2} - m_{Z}^{2}} \log \frac{m_{\tilde{h}}^{2}}{m_{Z}^{2}} - \frac{m_{\tilde{h}}^{2}}{m_{\tilde{h}}^{2} - m_{W}^{2}} \log \frac{m_{\tilde{h}}^{2}}{m_{W}^{2}} \right) - \left(m_{\tilde{h}} \to m_{\tilde{\phi}} \right) \right]$$

$$\Delta S = \frac{s_{\alpha}^{2}}{12\pi} \left[\frac{\hat{m}_{\tilde{h}}^{6} - 9\hat{m}_{\tilde{h}}^{4} + 3\hat{m}_{\tilde{h}}^{2} + 5 + 12\hat{m}_{\tilde{h}}^{2} \log(\hat{m}_{\tilde{h}}^{2})}{(\hat{m}_{\tilde{h}}^{2} - 1)^{3}} - (\hat{m}_{\tilde{h}} \to \hat{m}_{\tilde{\phi}}) \right]$$



$$\hat{m}_i = m_i / m_Z$$

LHC CONSTRAINTS

i) The Higgs signal strength

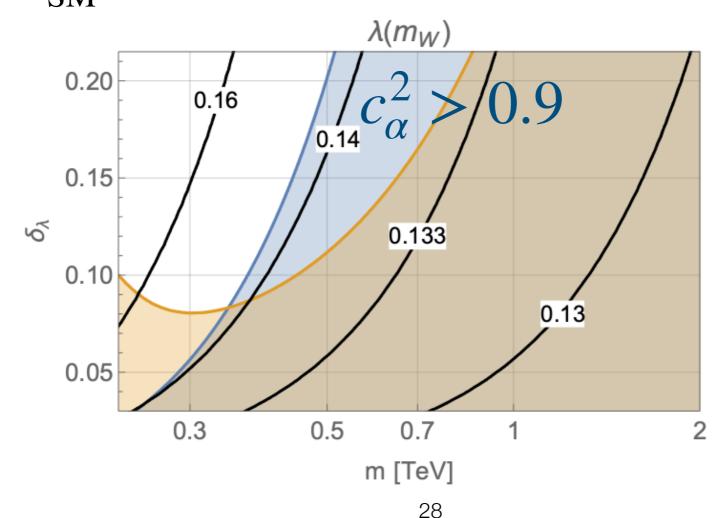
The coupling of the mass eigenstate \tilde{h} to SM particles is suppressed with respect to the coupling of the weak state h by c_α

The signal strength modifier r_i^f for the process $i \to \tilde{h} \to f$ is

$$r_i^f = \frac{\sigma_i \mathcal{B}^f}{(\sigma_i)_{\text{SM}} \mathcal{B}^f_{\text{SM}}} \simeq c_\alpha^2$$

Experimental data are

$$r = 1.11^{+0.09}_{-0.08}$$
 (ATLAS), $r = 1.17 \pm 0.1$ (CMS)



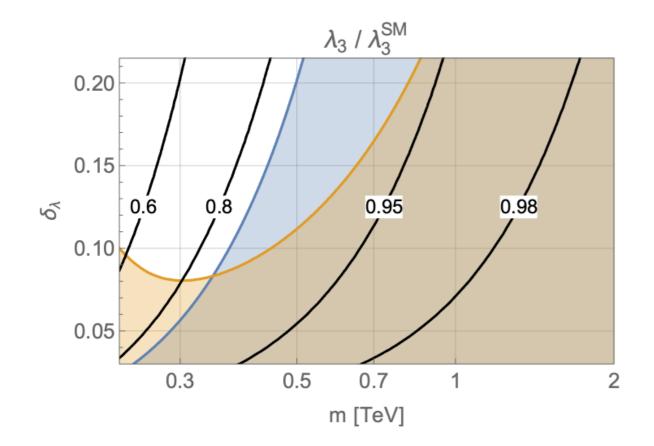
ii) Trilinear and quartic Higgs couplings

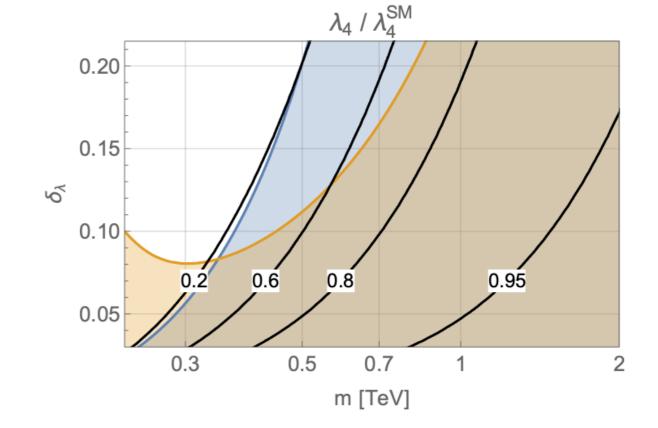
As the light state \tilde{h} is identified with the SM Higgs, the trilinear λ_3 and quartic λ_4 couplings are modified with respect to the SM values

$$\lambda_3 = c_\alpha^3 v \left[\lambda + \delta_\lambda - t_\alpha \sqrt{\frac{\delta_\lambda}{2}} \, \frac{m}{v} \right]$$

$$\lambda_{4} = c_{\alpha}^{4}\lambda + c_{\alpha}^{2}(-c_{\alpha}^{4} - 4s_{\alpha}^{4} + 4c_{\alpha}^{2}s_{\alpha}^{2} + c_{\alpha}^{2})\delta_{\lambda}$$

$$-6\sqrt{2\delta_{\lambda}}c_{\alpha}^{3}s_{\alpha}(c_{\alpha}^{2} - 2s_{\alpha}^{2})(\lambda + \delta_{\lambda})\frac{v}{m} - 18s_{\alpha}^{2}c_{\alpha}^{4}(\lambda + \delta_{\lambda})^{2}\frac{v^{2}}{m^{2}}$$

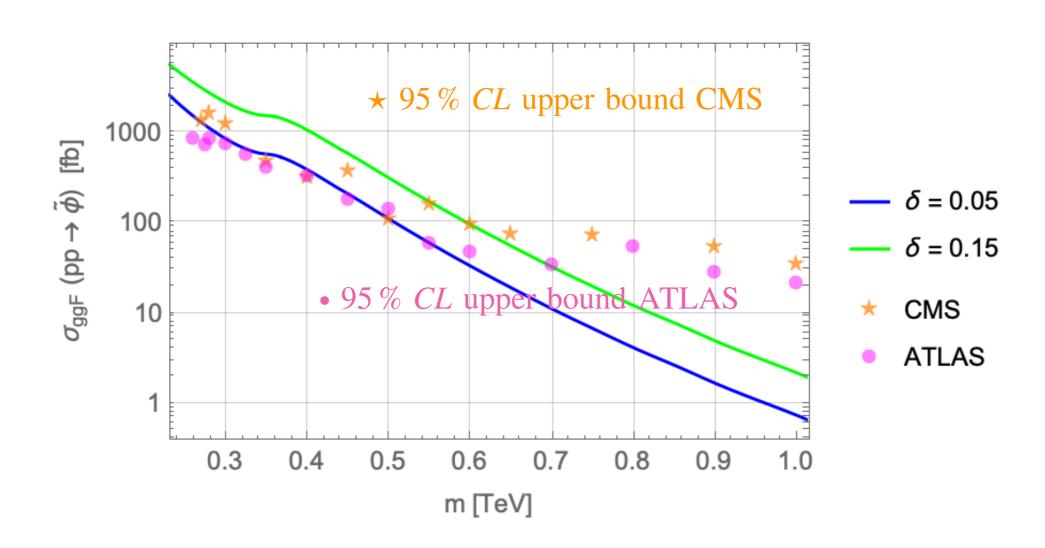




$$\lambda_3/\lambda_3^{\text{SM}} = 4.0_{-4.1}^{+4.3} \text{ (ATLAS)}, \quad \lambda_3/\lambda_3^{\text{SM}} = 0.6_{-1.8}^{+6.3} \text{ (CMS)}$$

iii) Inflaton production

The state $\tilde{\phi}$ can be produced at the LHC by the same mechanism of Higgs production with a x-section $\sigma(pp \to \tilde{\phi} + X) = s_{\alpha}^2 \, \sigma(pp \to H + X)$ where H is a mass m SM Higgs



 $m \gtrsim 0.55 (0.7) \text{ TeV @ 95 % CL}, \text{ for } \delta_{\lambda} = 0.05 (0.15)$

Conclusions

- We have considered an inflaton model with chaotic (quartic) potential, non-minimally coupled to gravity
- In the Einstein frame the potential is identified with α -attractor models
- If the inflaton mass $m \lesssim \mathcal{Q}_I \simeq 10^{11} {\rm GeV}$, it can stabilize the SM vacuum at low scales
- The Higgs will participate to some extent in the process of inflation, making the link with Higgs Inflation models

- If the inflaton is coupled to the Chern-Simons density of the hypercharge, it can produce helical magnetic fields
- Fermion pair (Schwinger effect) production damps the gauge field production and prevents gauge preheating
- Even in the presence of fermion pair production there is room for baryogenesis
- Naturalness criteria imply that the inflaton mass should be in the TeV region
- In that case it will modify the trilinear and quartic SM couplings, and can be produced at the LHC and future colliders (a fascinating possibility!)