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Introduction

The philosophy department of the Harvard University is located in a

beautiful “red-brick” Emerson Hall. Emerson Hall was named in honor

of Ralph Waldo Emerson, an American philosopher and theologian.

The front of Emerson Hall has on its facade the inscription (installed

when the R. W. Emerson was a dekan of the philosophy department):

What is man that you are mindful of him?

The sentence was taken from the Psalm 8 of David:

When I consider your heavens

the work of your fingers

the moon and the stars,

which you have set in place

what is man that you are mindful of him

the son of man that you care for him

Psalm 8:3

To measure the strength of religious belief in an Emerson time, the

eminent researcher J. Leuba conducted a landmark survey in 1916.

He found that 60 per cent of 1000 randomly selected scientists did

not believe in a God and predicted that such disbelief would increase
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as education spread [2]. To test that prediction E. J. Larson and

L. Witham replicated Leuba’s survey in 1996 [1]. The result: about

40 per cent of scientists still believe in a personal God and an afterlife.

Ninety years ago Leuba asserted: “The essential problem facing

organized Christianity is constituted by the widespread rejection of

its two fundamental dogmas”. Though a noted psychologist, Leuba

misjudged either the human mind or the ability of science to satisfy

all human needs.

In a book Scientists as Theologians [3] John Polkinghorne sur-

veyed the thinking of three scientist-theologians, Ian Barbour, Artur

Peacocke and John Polikinghorne. For each of them intellectual for-

mation had lain in science and it was only later in life that they turned

to theology.

Where theological understanding does come in to augment and

complement scientific understanding is in relation to certain limit

questions that arise out of scientific experience but which transcend

science’s own self limited range of enquiry. They revolve around two

fundamental metaquestions.

(1) Why is the universe so deeply intelligible? Putting it more

bluntly, why science is possible? Our ability to understand the physical

world seems vastly to exceed anything that could plausibly be held

to correspond to evolutionary necessity or to be a happy accidental

spin-off from survival requirements. Science exploits the wonderful,

rational transparency of the physical world but does not explain it. If

the universe is the creation of the rational God, then it is possible to
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understand its intelligibility as due to its being shot through with signs

of the mind of its Creator signs that are accessible to the thoughts of

creatures made in the image of the Creator.

(2) Why is the Universe so special? This question arises from the

recognition enshrined in the Anthropic Principle that the laws of na-

ture are fine-tuned to the high degree of specifity found to be necessary

to make the evolution of carbon-based life a possibility. Positive re-

sponse to the both metaquestions is my credo as the 65-year-old physi-

cist and teacher of the science teachers. During my ten-year academic

work at Science Teachers College of Warsaw University I lifted the

taboo regarding theology and anthropic arguments in physics teacher

education. My position is defended by several arguments: (a) Re-

gardless of scholars position is this issue, students will continue to

encounter endless teleological (anthropomorphic formulations in pop-

ular science movies and books. (b) A review of scientists attitude

to religion shows that there is definitely no consensus on a universal

rejection of theological formulation and explanations.

Theology is a complement to science and not an alternative. Cos-

mology and physics have now moved onto new stage. Attention fo-

cusses on the Anthropic Principle’s recognition of the astonishing

specifity that is required of the fundamental physical laws of a universe

if it is to be capable of evolving carbon-based life and in the result the

human beings.

The book is an elementary invitation to physics and reflects the

taste of its author. I am of the opinion that fides quaerers intellectum
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(faith seeking understanding). The Physica Viva is a first step on this

road.



Chapter 1

Motion in space

1.1 One-dimensional motion

In each moment of our life we are prodding numbers. More precisely,

each of our gestures puts us into contact with three numbers: the real

numbers that at least in this small region of the universe describe the

location of every point in space. There is no escaping those numbers.

Wherever you go, you live and breathe and move amid a swarm of

constantly changing coordinates. They are your destiny.

It is not clear who first conceived of a world saturated with nu-

merical addresses. The idea of identifying points by longitude, lati-

tude goes back at least to Archimedes, but it was not formalized until

2000 years later when the seventeenth century French mathematicians

Pierre de Fermat and René Descartes forged the link between geom-

etry and algebra. Then at some points in the nineteenth century,

9



10 Chapter 1. Motion in space

mathematicians took an important leap of logic. If an ordered list of

numbers describes a space perfectly, they reasoned, why not say that

those lists of numbers are the space. As in that case why stop at three.

They then boldly proceeded to define n-dimensional Euclidean space

(n-space for short) for any positive integer n as the set of all n–tuples

of real numbers (x1, . . . , xn). The symbol for such a space is R (for

the real numbers) garnished with superscript n: Rn. Nowadays the

concept of n–dimensional Euclidean space permeates all branches of

mathematics, physics and biology.

We might expect that as the number of dimensions gets larger

and larger, space gets stranger and more interesting. And so it does,

in the trivial sense that any space has all lower –dimensional spaces

packed inside it. If planes (2–space) contain lines (1–space) and three

dimensional space contains planes, then in a way, anything that can

take place on a line also takes place in 3–space as well as in any higher

dimensional space.1

1.1.1 Kinematics in one-dimension

To start with we shall describe the motion of the body in R1. In this

case the displacement from some reference point r is equal xi. The

magnitude of the displacement x is the function of time, x − x(t).

The nature of time is complicated∗ and still debated by physicists and

philosophers. Crudely speaking we can speak on two categories of

1From a deeper points of view, however every Euclidean space has its own

character and as far as the number of dimensions is concerned, more is often less.
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time:

Chronos – objective time which is measured by watches.

Tempus – psychological time.

Let us start with the displacement of a body:

x(t) = d + bt + ht2 + pt3, (1.1)

where t is the chronos.

For a longer time, t+∆t, where ∆ means “change” in the displace-

ment equal:

x[t + ∆t] = d + b(t + ∆t) + h(t + ∆t)2 + p(t + ∆t)3,

and

∆x

∆t
=

x[t + ∆t]− x[t]

∆t

=
d− d + b(t + ∆t− t)

∆t
+

h(t2 + 2∆tt + (∆t)2 − t2)

∆t

+
p(t3 + 3t2∆t + 3t(∆t)2 + (∆t)3 − t3

∆t
.

(1.2)

We the velocity of the body

v =
∆x

∆t
, when ∆t → 0. (1.3)

From formulae (1.2) and (1.3) we obtain

v = b + 2th + 3t2p, (1.4)

and v

v = (b + 2th + 3t2p)i.
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In the same manner we define the acceleration of the body

a =
∆v

∆t
, when ∆t → 0. (1.5)

From formulae (1.4) and (1.5) one obtains

a = (2h + 6pt)i. (1.6)

Let us assume that body starts to move at the moment t = t0 = 0

with velocity v0. In that case we obtain from formula (1.4) and (1.6):

v = (v0 + 2th + 3t2p)i,

a = (2h + 6pt)i. (1.7)

On the Earth (and of course on the planets) body falls with constant

~a. On the Earth

a = gi, g ∼= 9.81 m/s2. (1.8)

(On the Mars g = 3.7 m/s2).

Considering formula (1.8) we obtain p = 0

a = 2hi = gi, (1.9)

h = g/2

v = (v0 + gt)i,

and

x(t) = d + v0t +
gt2

2
. (1.10)

For t = t0 = 0, x(t0) = x0, in that case, d = x0

x(t) = x0 + v0t +
gt2

2
, (1.11)
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and

x(t) =

(
x0 + v0t +

gt2

2

)
i. (1.12)

The limiting processes described by formulae (1.3) and (1.5) are the

basis for differential calculus. The derivative of any function f(t) is

defined by:
df(x)

dx
≡ lim

∆t→0

f(t + ∆t)− f(t)

∆t
. (1.13)

Comparing formulae (1.3), (1.5) and (1.13) we define

Velocity v = vi is the first derivative of the displace-

ment.

Acceleration a = ai is the first derivative of the velocity.

1.1.2 Dynamics in one-dimension, Newton Laws

In 1687 Newton published his Principia in which he put forth his

three Laws of Motion. The First Law of Motion describes a body in

the absence of the net force (The net force is the vector sum of all

force acting on a body). Newton First Law of Motion states:

Newton’s First Law

In the absence of a net force a body at rest remains

at rest and body in motion continues motion along the

same straight line and at constant speed.

We often call this the Law of Inertia and describe this characteristic

of matter to remain in its particular state of motion as inertia.
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Newton’s Second Law explains what happens when external forces

are present.

Newton’s Second Law

The net force on a body causes that body to acceler-

ate. The acceleration is in the direction of the force,

proportional to the force and inversely proportional to

the mass of the body.

F = F i, a = ai,

F = ma. (1.14)

Equation (1.14) means that if we know the cause of the motion – that

is the force F – then we know the change in the motion – that is, the

acceleration.

We can also use Newton’s Second Law as a definition of the mass

of a body. Mass is a measure of the resistance to change in motion. If

identical forces are applied to two bodies of masses m1 and m2, and

two different accelerations are measured a1 and a2, then Eq. (1.14)

can be used to relate the two masses by

F = m1a1 = m2a2,

m1 = m2
a2

a1

.
(1.15)

Newton’s Third Law describes the forces involved when two bodies

interact with each other:

Newton’s Third Law
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Let F12 be the force exerted by body 1 on body 2. There

is also a force exerted by body 2 on body 1, F21. These

forces lie along the same straight line and in opposite

directions and are of identical magnitude. That is F12 =

−F21.

This has often been referred to as the principle of action and reaction.

1.1.3 Force as the function of position

Force F can be the function of time position and velocity, i.e.:

F = F(x, v, t). (1.16)

Let us consider the very important example, the force as the function

of the position

F = F(x), F = F (x) = ma. (1.17)

We rewrite a as (Appendix A)

a =
dv

dt
=

dv

dx
v. (1.18)

Therefore,

F (x) = mv
dv

dx
. (1.19)

this can still be rewritten as

F (x) =
1

2
m

d

dx
(v2), (1.20)



16 Chapter 1. Motion in space

or

F (x) =
d

dx

(
1

2
mv2

)
,

assuming the mass doesn’t change. We define 1
2
mv2 as the kinetic

energy T ; that is

T ≡ 1

2
mv2. (1.21)

Therefore,

F (x) =
dT

dx
. (1.22)

We can now multiply by dx and integrate to get (Appendix A)∫ x

x0

F (x)dx =

∫ T

T0

dT = T − T0. (1.23)

The left-hand side represents the work done on the body by the force

as it moves from x0 to x. This work is equal to the change in the

kinetic energy.

1.1.4 Total energy and conservation of energy

We can get more meaning out of the equation (1.23) if we define a

potential V = V (x) such, that

F (x) = −dV

dx
. (1.24)

Equation (1.24) can, of course, be turned around and written as

V (x) = −
∫ x

xs

F (x)dx. (1.25)
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We can use the potential energy to the left-hand side of Eq. (1.23).

Then

−V (x) + V (x0) = T − T0,

or

T0 + V (x0) = T + V (x). (1.26)

This means that

T (x) + V (x) = E = constant.

The sum of the kinetic energy and the potential energy remains con-

stant throughout the motion; this is called the total energy. We de-

scribe this by saying that the total energy is conserved. This is true

only for forces definable by Eq. (1.24) or (1.25), which we call conser-

vative forces.

1.1.5 The one dimensional harmonic oscillator

Harmonic oscillators are important for several reasons. First of all,

they occur throughout nature. Indeed, any motion about a stable

equilibrium is harmonic as long as it is small. To the first approxima-

tion the electrons in atoms, the nucleons in nuclei and even quarks (if

they exist!) in nucleons move as the simple oscillators.

The simplest model of the harmonic motion is the mass attached

to a spring in a frictionless environment. We shall assume that the

spring obeys the very simple law (Hooke’s Law)

F = −kx, F = −kx. (1.27)
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Thus,

F = ma = −kx,

m
d2x

dt2
= −kx. (1.28)

The complete solution of the equation (1.28) is

x(t) = A sin ωt + B cos ωt, (1.29)

where

ω =

√
k

m
.

From Eq. (1.29) we know that a simple harmonic oscillator like the

mass and spring will move back and forth-oscillate sinusoidally – with

an angular frequency ω =
√

k/m. The frequency ω is the natural

frequency for the simple oscillator and we will indicate this a subscript,

ω0 =
√

k/m.

Consider now as a move realistic system an oscillator immersed in

fluid. To the first approximation the force exerted on mass can be

written as

F = m
d2x

dt
= −kx− c

dx

dt
, (1.30)

where −c(dx)/(dt) is the friction force proportional to the velocity

of the motion. We try the function x(t) = Aeqt as the solution of

equation (1.30) and obtain simple quadratic equation for q’s:

mq2 + cq + k = 0, (1.31)

with the elementary solution

q1,2 =
−c±

√
c2 − 4mk

2m
. (1.32)
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We are happy if c2 − 4mk > 0, then

q1 =
−c +

√
c2 − 4mk

2m
,

q2 =
−c−

√
c2 − 4mk

2m
. (1.33)

Both q’s are negative, so we can define

γ1 = −q1, γ2 = −q2, γ1, γ2 > 0, (1.34)

and write solution of Eq. (1.30) as

x(t) = A1e
−γ1t + A2e

−γ2t. (1.35)

Both of the terms in Eq. (1.35) decay exponentially with time so the

motion will be as shown in Fig.(). This case of the oscillator is called

overdamped case.

For c2 = km the solution of the Eq. (1.30) has the form

x(t) = Ae−γt + Bte−γt, γ =
c

2m
. (1.36)

This can be verified by simple substitution of Eq. (1.36) to Eq. (1.30).This

case is called critical damping.

The most interesting case is when c2 < 4km. But how to calculate

square root of number smaller than zero? This problem has been

solved by Leonard Euler in a letter to John Bernoulli. (October 18,

1740 Basel). To appreciate the reasoning of L. Euler let us come back

to the free oscillator equation (1.28)

d2x(t)

dt2
+ ω2x(t) = 0, (1.37)
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and assume that v(0) = 0, x(0) = 2. In that case the solution of

Eq. (1.37) has the form

x(t) = 2 cos ωt. (1.38)

But we know (Appendix) there exists the exponential function

x(t) = eαt. Let us try the x(t) as the solution of Eq. (1.37)

α2 + ω2 = 0, (1.39)

then α = ±iω. The strange i =
√
−1 was introduced for the first time

by ()∗ From Eq. (1.39) we deduce that

x(t) = eiωt + e−iωt. (1.40)

By comparing Eq. (1.38) and (1.40) we obtain the relaxation

cos ωt =
eiωt + e−iωt

2
, (1.41)

and we are on the safe side because

sin ωt =
eiωt − e−iωt

2i
, (1.42)

e±iωt = cos ωt± i sin ωt.

(Formula Eulera-Nahin)∗

Let us now impress an external force upon oscillator. We can do

this, for example, by putting an electron in a varying electromagnetic

field. In fact we can simply write Eq. (1.30) as

m
d2x

dt2
= −kx− c

dx

dt
+ Fex, (1.43)
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where external force is equal

Fex = F0 sin ωt, F0 cos ωt,

or generally

Fex = F0e
i(ωt+Θ). (1.44)

We can try as the solution of Eq. (1.43)

x = Aei(ωt+δ). (1.45)

After substitution Eq. (1.45) to Eq. (1.43) we obtain the quadratic

equation for ω and A

(k −mω2) + icω =
F0

A
cos(Θ− δ) + i

F0

A
sin(Θ− δ). (1.46)

A single complex equation, just like a vector equation is actually two

equations

k −mω2 =
F0

a
cos (Θ− δ),

and

cω =
F0

A
sin (Θ− δ). (1.47)

We define ϕ = Θ− δ and obtain from Eq. (1.47)

tan ϕ =
2γω

ω2
0 − ω2

,

and

A =
F0

m

[
(ω2

0 − ω2)2 + 4γ2ω2
]−1/2

(1.48)
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where γ = c/(2m) and ω2
0 = k/m. In Fig.A as the function ω is

shown. Maximum amplitude occurs, then, when the external force

has a frequency

ω = ωr =
√

ω2
0 − 2γ2. (1.49)

This is known as the resonance frequency.

Amplitude A(ω) can be written as

A =
F0

m
[((ω0 − ω) + 2ijω)(ω0 − ω)− 2ijω)]−1/2 . (1.50)

From the Eq.(1.50) we conclude that the existence of complex numbers

guarantees the stability of the bodies. For ω → ωr, A(ω) is finite when

Im(2ijω) 6= 0.

1.2 Three-dimensional motion

1.2.1 Vectors, vector algebra, vector analysis

In science and engineering we frequently encounter quantities which

have magnitude and magnitude only: mass, time and temperature.

These we label scalar quantities. In contrast, many interesting phys-

ical quantities have magnitude and, in addition, an associated direc-

tion. This second group includes displacement, velocity, acceleration,

force, momentum, and angular momentum. Quantities with magni-

tude and direction are labelled vector quantities. Usually in elemen-

tary treatment, a vector is defined as a quantity having magnitude

and direction. To distinguish vectors from scalars we identify vector

quantities with boldface type, that is V.
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Vector may be conveniently represented by an arrow with length

proportional to magnitude. The direction of the arrow gives the di-

rection of the vector. In this representation vector addition

C = A + B (1.51)

consists in placing the rear end of the vector B at the point of vector

A. Vector C is then represented by an arrow drawn from the rear

of A to the point of B. This procedure, the triangle law of addition,

assigns meaning of Eq (1.51) and is illustrated in Fig.By completing

the parallelogram we see that

C = A + B = B + A, (1.52)

as shown in Fig.

Note that the vectors are treated as geometrical objects which are

independent of any coordinate system. Indeed we have not yet intro-

duced a coordinate system. This concept of independence is developed

in detail in the next section.

The representation of vector A by an arrow suggests a second

possibility. Arrow A, Fig. starting from the origin terminates at

point (x1, y1, z1).

One particularly important vector quantity is the displacement

from origin to the point (x1, y1, z1) and is denoted by the special sym-

bol r. We then have a choice of referring to the displacement either

as the vector r or the collection of the three numbers (x1, y1, z1).

Using r for the magnitude of vector r, Fig.shows that the end-point
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coordinates and the magnitude are related by

x1 = r cos α,

y1 = r cos β,

z1 = r cos γ. (1.53)

The cos α, cosβ and cos γ are called the direction cosines, α being the

angle between the given vector and the positive x-axis and so on. One

further bit of vocabulary: the quantities x1, y1, z1 are the (cartesian)

components of r or the projections of r.

Any vector A may be resolved into its components to yield

Ax = A cos α,

Ay = A cos β, (1.54)

Az = A cos γ.

At this stage it is convenient to introduce unit vectors along each of

the coordinate axes. Let i be a vector of unit magnitude pointing in

the positive x-direction, j a vector of unit magnitude in positive y-

direction and k a vector of unit magnitude in the positive z-direction.

Let iAx be the vector with magnitude equal to Ax and in positive

x-direction.

By vector addition

A = Axi + Ayj + Azk, (1.55)

which states that a vector equals to the vector sum of its components.

Note that if A vanishes all its components must vanish individually:
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that is, if

A = 0, then Ax = Ay = Az = 0. (1.56)

Finally, by the Pythagorean theorem the magnitude of vector A is

A = (A2
x + A2

y + A2
z)

1/2. (1.57)

Our naive approach is awkward to generalize for we encounter quan-

tities such as elastic constants and index of refraction in anisotropic

crystals which have magnitude and direction but which are not vectors.

In the subsequent we shall assume that space is isotropic: that is,

there is no preferred direction or all direction are equivalent. Then

the physical system being analyzed cannot and must not depend on

our choice or orientation of our coordinate system.

We consider vector r as a geometric object independent of the

coordinate system. Let us look at r in two different systems, one

rotated in relation to the other.

For simplicity we consider the two dimensional case. The three

dimensional coordinate systems are described in Appendix B. If the

coordinates (x, y) are rotated counterclockwise through an angle ϕ,

keeping r fixed, we get the following relations between the components

resolved in the original system (unprimed) and those resolved in the

new rotated system (primed) (Fig)

x′ = x cos ϕ + y sin ϕ,

y′ = −x sin ϕ + y cos ϕ. (1.58)

We know from paragraph ()that a vector could be represented by

coordinates of a point; that is, the coordinates were proportional to
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the vector components. Hence the components of the vector must

transform under rotation as coordinates of point (such as r).

Therefore, whenever any pair of quantities (Ax, Ay) in (x, y) co-

ordinate system is transformed into (A
′
x, A

′
y) by this rotation of the

coordinate system with

A
′

x = Ax cos ϕ + Ay sin ϕ,

A
′

y = −Ax sin ϕ + Ay cos ϕ. (1.59)

We define Ax and Ay as the components of the vector A. If Ax and

Ay do not show this behavior when the coordinates are rotated they

do not form a vector

Scalar and vector products

We define

A ·B = AxBx + AyBy + AzBz, (1.60)

as the scalar (or dot) product of A and B. We note that from definition

A ·B = B ·A.

If we reorient our axes and let A define a new x-axis, then

Ax = A, Ay = 0, Az = 0,

Bx = B cos Θ, By, Bz. (1.61)

Then by Eq. (1.60)

AB = A ·B cos Θ, (1.62)

which may be taken as a second definition of scalar product.
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A second form of vector multiplication employs the sine of the

included angle instead of cosine. We define the vector product, or

cross product as

C = A×B (1.63)

with

C = AB sin Θ.

C is now a vector, and we assign in a direction perpendicular to the

plane of A and B such that A,B,C form a right-handed system. With

this choice of direction we have

A×B = −B×A. (1.64)

An alternate definition of the vector product C = A ×B consists in

specifying the components of C

Cx = AyBz − AzBy,

Cy = AzBy − AxBz, (1.65)

Cz = AxBy − AyBx,

or

Ci = AjBk − AkBj, i, j, k different,

and with cyclic permutation of the indices i, j, k.

Let vector A be the function of position

A = A(x),
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Table 1.1: Physical examples of scalar and vector products

Scalar product Vector product

Work=

force · displacement · cos Θ

Angular momentum=

radius arm linear momentum =

distance linear momentum sin Θ

Lorentz force=

charge velocity magnetic field

sin Θ

then the first derivative of a vector A is defined as

dA

dx
= lim

∆x−→0

A(x + ∆x)−A(x)

∆x
. (1.66)

Since we can write vectors in component form, we can also write

derivatives of vectors in component form. Thus if we continue to

focus our attention on the position vector r,

r = xi + yj + zk. (1.67)

Then

v =
dx

dt
i +

dy

dt
j +

dz

dt
k. (1.68)

We can likewise define a vector acceleration by

a =
d2x

dt2
i +

d2y

dt2
j +

d2z

dz2
k. (1.69)

Differentiation of vectors follows rules similar to those we have already
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seen for differentiation of scalars. In particular we have:

d

dt
[A + B] =

dA

dt
+

dB

dt
,

d

dt
[A ·B] =

dA

dt
·B + A · dB

dt
, (1.70)

d

dt
[A×B] =

dA

dt
×B + A× dB

dt
.

1.2.2 Reference frames

We have previously described a vector in terms of its components along

the axes of a rectangular coordinate system. For many situations –

for example, the motion of a Moon encircling Earth - there are easier

ways of describing motion than using rectangular coordinates, e.g.

plane polar coordinates.

Consider the point P in Fig.We know it is located by position

vector r, given by

r = xi + yj. (1.71)

We can also locate it by giving its distance from the origin r and the

polar angle Θ. The polar angle Θ is measured counterclockwise from

the x-axis. We can then define two new perpendicular unit vectors, r̂

which points in the direction P , and Θ̂ which points in the direction

that P would move as the polar angle Θ increases. In terms of these

unit vectors, we can write

r = rr̂, (1.72)

where

r̂ = r̂(Θ).
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The vectors r and Θ form a new coordinate system, the plane polar

coordinate system, and are usually referred to simply as polar coordi-

nates. If we need to switch back and forth from i and j to r̂ and Θ̂ we

use formula (1.58)

r̂ = i cos Θ + j sin Θ, (1.73)

Θ̂ = −i sin Θ + j cos Θ.

To find the velocity expressed in polar coordinates, we obtain the time

derivative of r from (1.72). Be careful, though, unlike i, j,k the radial

unit vector is time dependent. We obtain

v =
dr

dt
=

dr

dt
r̂ + r

dΘ

dt

dΘ̂

dt
. (1.74)

Analogously we obtain for acceleration in polar coordinates

a =
dv

dt
=

(
d2r

dt2
− r

(
dΘ

dt

)2
)

r +

(
r
d2Θ

dt2
+ 2

dr

dt

dΘ

dt
Θ

)
. (1.75)

1.2.3 Separable forces

Earlier we solved the equation F = m(d2x)/(dt2) for motion along

a straight line. We now want to consider the general case of F =

m(d2r)/(dt2) where the force F and the motion it causes can have

components in all three dimensions. The most general form of the

force will depend on time, position and velocity F(r,v, t). Of course
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r and v are vectors so we have three coupled equations

m
d2x

dt2
= Fx

(
t, x, y, z,

dx

dt
,
dy

dt
,
dz

dt

)
,

m
d2y

dt2
= Fy

(
t, x, y, z,

dx

dt
,
dy

dt
,
dz

dt

)
, (1.76)

m
d2z

dt2
= Fz

(
t, x, y, z,

dx

dt
,
dy

dt
,
dz

dt

)
.

Now we discuss elementary solvable Eq.(1.51). The earliest type of

three-dimensional force to handle is a separable force where

m
d2x

dt2
= Fx

(
t, x,

dx

dt

)
,

m
d2y

dt2
= Fy

(
t, y,

dy

dt

)
, (1.77)

m
d2z

dt2
= Fz

(
t, z,

dz

dt

)
.

That is, the force in a particular direction, depends on the compo-

nent of position in that direction, the component of velocity in that

direction and perhaps on time.

1.2.4 Three dimensional harmonic oscillator

A useful approximation of the motion of an atom in a crystal with

cubic structure is a mass m held in place by three mutually perpen-

dicular sets of springs (Fig).

If there is no damping, the oscillations are given by:

m
d2x

dt2
= −kxx,

m
d2y

dt2
= −kyy, (1.78)

m
d2z

dt2
= −kzz.
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Each of these equations describes a simple harmonic oscillator so we

can immediately write:

x = A cos(ωxt + α),

y = B cos(ωyt + β), (1.79)

z = C cos(ωzt + γ).

where ωx =
√

kx/m, ωy =
√

ky/m, ωz =
√

kz/m. If ω’s are related

by integers through
ωx

nx

=
ωy

ny

=
ωz

nz

, (1.80)

they are said to be commensurable and the motion of the mass (elec-

tron, atom) either repeats itself or follows a closed path. If one of the

amplitudes of Eq.(1.79) is also zero then the path taken is a closed

path in a plane. The path taken is then called a Lissajou figures. A

few such paths are sketched in Figfor the case of z = 0.

1.2.5 Motion in electromagnetic fields

Electric charges at rest produce forces on the body of charge q that

can be described in terms of an electric field E(r) by

Fel(r) = qE(r). (1.81)

Moving charges or currents produce additional forces that can de-

scribe in terms of another field, magnetic induction B(r). These forces

depend on the motion of the body of charge q – they are velocity-

dependent forces given by

Fm(r) = qv ×B. (1.82)
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We can write the total force (the Lorentz force) on a charged, in the

presence of both E and B, field as

F(r) = qE(r) + qv ×B. (1.83)

When the electric field is unform and B(r) = 0, then

E = E0k, B = 0 (1.84)

(we choose the z–axis to lie parallel to the direction of E). Thus

F = qE0k, (1.85)

and with a constant force we can immediately write down the equation

of motion. With the initial velocity

vx(0) = vx0 ,

vy(0) = vy0 ,

vz(0) = vz0 ,

the equation of motion is

x = x0 + vx0t,

y = y0 + vy0t, (1.86)

z = z0 + vz0t +
1

2

qE0

m
t2.

These have the same forum as the equation of motion discussed in

paragraph As it must because the acceleration is constant, a = (qE0)/(m).

When E(r) = 0 and B = Bk, to solve the motion produced by Lorentz
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force:

m
d2x

dt2
= vyBq

m
d2y

dt2
= −vxBq, (1.87)

m
d2z

dt2
= 0.

The solution of Eq.(1.53) for z–axis we find at once:

z = z0 + v0zt.

For x, y–axes we calculate the third derivative

d3x

dt3
=

Bq

m

d2y

dt2
,

d3y

dt3
= −Bq

m

d2x

dt2
. (1.88)

Substituting the second equation to the first we obtain

d3x

dt3
+

(
Bq

m

)2
dx

dt
= 0. (1.89)

Putting in equation (1.89) η = (dx)/(dt) we obtain for the motion in

the x–axis
d2η

dt2
+ ω2η = 0, (1.90)

where ω = (Bq)/(m). According to y–axis (ζ = (dy)/(dt)) we obtain

d2ζ

dt2
+ ω2ζ = 0. (1.91)

Both Eqs.(1.90) and (1.91) are the equations which describe the free

harmonic oscillator. The solution of Eqs. (1.90,1.91) are

ζ = v0 sin ωt = vy, ζ(0) = 0,

η = v0 cos ωt = vx, η(0) = v0, (1.92)
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and consequently

y =

∫
ζdt = −v0 cos ωt

ω
+ y0,

x =

∫
ηdt =

v0 sin ωt

ω
+ x0. (1.93)

From formulae (1.93) we obtain

(x− x0)
2 + (y − y0)

2 =
v2

0

ω
. (1.94)

Eq. (1.94) describes the circular motion in the (x, y) plane, central

about x = x0, y0 = 0 with radius r = (v0)/(ω). Coupling the motion

with constant velocity in the z direction, we see that the most general

motion for a particle is travelling along a right circular helix. The po-

sition, pitch and diameter of the helix depend on the initial conditions

This result has immense application for many particle accelerators,

the cyclotron in particular – indeed, it is only because of this that

they can operate at all.

1.2.6 Weighing of the electron

As early as about 1880 electrical discharges in gases were intrigu-

ing a number of experimental physicists in Europe. In 1881, at the

Cavendish Laboratory at the University of Cambridge. J. J. Thomson

began experimenting with gaseous discharges, and continued to do so

for the next 50 years.

In the paper published in Philosophical Magazine in 1897 Thomson

reported that “cathode rays” were charged particles, which he called

“corpuscules”. Thomson’s electron was the first elementary particle
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discovered and indeed the first evidence of the existence of an elemen-

tary particle

Before the discovery of the electron, streams of the electrons were

referred to as “cathode rays”. The properties of these so-called cath-

ode rays had been studied in later half of the nineteenth century, es-

pecially in the elegant demonstrations of Crookes and Lenard. Many

minerals and glass fluoresce with a characteristic colour when placed

in a beam of cathode rays. That these rays travel in straight lines nor-

mal to the cathode is shown by placing an object, often in the shape

of a Maltese cross, in the path of the cathode rays. The shadow of the

cross can be seen on the end of the tube. They also carry energy which

can be converted into heat by directing them on to a thin platinum

foil which quickly becomes red or even white hot. Cathode rays are

also deflected by electric and magnetic fields in a way which clearly in-

dicates that they carry a negative charge. All these can be concluded

when the experimentalist understands and geniously applicates the

Lorentz force described in paragraph.

In 1897 J. J. Thomson devised an experiment by which the ratio of

charge to mass of electrons could be determined. Fig.shows a vacuum

tube in which cathode rays streaming from the cathode C fall upon the

anode A. In A there is a small hole, so that a “pencil” of cathode rays

passes on to D containing a similar small hole. The narrow beam of

cathode rays can be deflected in the vertical plane by an electric field

E, between the parallel plates, as shown. It can also be deflected in

the same plane by a magnetic field B perpendicular to the paper. The
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point at which the cathode rays impinge upon the screen S is shown

by a fluorescent spot of light, since the screen is coated internally with

a fluorescent material such as zinc sulphide.

In our analysis of the J. J. Thomson’s experiment we will assume

that the electric and magnetic fields are confined to the space between

the parallel plates. Suppose the magnitude of the electric field E and

magnetic field are adjusted so that the beam of cathode rays is not

deflected but falls on S. The Lorentz force, formula (??)must be equal

zero, i.e.

Ee− qBv = 0, (1.95)

where e is charged on the particle and v is its velocity. The velocity

is then given by

v =
E

B
. (1.96)

The velocity was found to be very high, up to 107 ms−1. In the electric

field alone (Fig.)the particle suffers deflection due to the acceleration

it receives perpendicular to its direction of motion.

Using formula for displacement along y–axis one obtains

y =
1

2

d2y

dt2
t2, (1.97)

for (dy)/(dt) = vy(0) = 0, where t is the time electron takes to traverse

the electric field. Using Newton’s Second Law,

m
d2y

dt2
= eE. (1.98)

and substituting formula (1.98) to formula (1.97), we obtain

e

m
=

2y

Et2
=

2yv2

El2
, (1.99)
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where l = vt. From similar triangles we find that

y
1
2
l

=
y′

L
, (1.100)

hence

e

m
=

Ey′

B2Ll
. (1.101)

Considering the results of the J. J. Thomson and Dunmington (1933)

the value of e/m is equal

e

m
= 1.7588 1011 C

kg
. (1.102)

If we know the charge on the electron we can calculate, from for-

mula (1.102) the mass m of the electron. The method for measure-

ment of e was refined and developed by R. Millikan in 1911. Millikan

early result was e = 1.64 10−19C. Refinements gave further results,

viz.

e = 1.602 10−19C. (1.103)

Millikan’s apparatus consisted of two circular brass plates 220 mm in

diameter and 16 mm apart forming an air condenser. The upper plate

had a minute hole at the center through which oil may drop, formed

by a spray in an upper chamber. The oil drops were illuminated from

the side by a carefully collimated beam of light. This light showed up

the oil drops as bright specks against a dark background.The drops

were charged by friction or X–ray ionization of the air as they were

formed in the spray. They normally fall under the action of gravity,

but could be made to rise again by applying an electric field in a
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suitable direction. The electric field is calculated from the potential

difference (V = 5 kV) and the separation of the plates (d = 16 mm).

From observations of the rate of rise and fall of the drop with and

without the electric field, the electric charge on an oil drop was found.

When a drop of radius a falls under the action of gravity alone its

weight P , is

P =
4

3
πa3ρg, (1.104)

where ρ is the density of the oil and g is the acceleration due to gravity.

The upthrust due to the displaced air is, by Archimedes’ principle

FA =
4

3
πa3ρ0g, (1.105)

where ρ0 is the air density. The retarding force due to viscous drag as

the drop moves through the air is given by Stokes law

Fdrag = 6πηav0, (1.106)

where η is the viscosity of air and v9 is the velocity of the drop. When

the velocity becomes uniform, the resultant force on the drop is zero

(First Newton Law, paragraph so that for zero electric field we may

write

P − FA − Fdrag = 0, (1.107)

4

3
πa3(ρ− ρ0)g = 6πηav0. (1.108)

Suppose now that under the action of an electric field E the drop

moves upward with a constant velocity vE. Again the resultant force
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is zero, as the velocity is uniform, so that

P − FA + Fdrag − Eq = 0, (1.109)

4π

3
πa3(ρ− ρ0)g + 6πηavE = Eq, (1.110)

where q is the charge on the drop. From equations (1.108) and (1.110)

we calculate q

q =
6πηa

E
(v0 + vE). (1.111)

Millikan found that values of q for different drops were always multi-

ples of a common value e that is q = ne, where n is an integer.For e

Millikan found

e = 1.591 10−19 C. (1.112)

Later experiments with the Millikan’s method gave e = 1.602 10−19 C.

Using the values of constants to four decimal places, the mass of

the electron is given by

m =
em

e
= 9.1096 10−31kg. (1.113)

This number only became significant when compared with mass M of

a single hydrogen atom, which was obtained by dividing the relative

atomic mass of hydrogen by NA (Avogadro’s number)

M =
1.0078 10−3

6.022 1023
= 1.6735 10−27kg. (1.114)

Comparing the masses M and m we get

M

m
= 1837. (1.115)
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Thus we see that the electron is a particle having a mass of just a little

more than one of two-thousandth of that of proton (for a hydrogen

atom is composed of one proton and one electron).

The Millikan fundamental result

q = ne, n = integer (1.116)

is still under debate. Still the searching of the particles with frac-

tional charge (n = not integer) is the part of the elementary particle

physics. Such a particle might have a charge of 0.1q, (2/3)q or even

πq where q = e. M. Perl and his colleagues have been carrying out

the general search for particles with fractional electric charge using

a highly automated version of the Millikan oil drop experiment 2 In

Perl ’s experiment (1997!) a small liquid drop, 7 µm in diameter, falls

through air. The air resistance and the small drop size cause the

drops to rapidly attain a terminal velocity proportional to the force

on the drop. A vertical electric field that periodically changes direc-

tion makes it possible to measure two terminal velocities, one for each

electric direction. The difference between two terminal velocities is

proportional to the charge on the drop. The sum of the two terminal

velocities is proportional to the drop mass.

In esu units the 1920’s the charge e of the electron was 4.774 ±

0.009)10−10 esu. Its mass was 1/(1845) that of hydrogen atom. If we

look at the most recent edition of the Review of Particle Physics we

2M. L. Perl and E. R. Lee, The search for elementary particles with fractional

electric charge and the philosophy of speculative experiments, Am. J. Phys, 65

(1997) 698.
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find that the charge of the electron is3

e = (4.8032068± 0.0000015)10−10esu

and its mass is

m = 9.1093897± 0.0000054)10−31kg, (1.117)

approximately 1/(1837) the mass of the hydrogen atom.

Allowing for improvements in both the precision and accuracy of

these measurements, it seems fairly to say that the properties of the

electron have remained constant. It is still a negatively charged par-

ticle with a definite charge and mass. The electron, as an entity has

remained constant even though the theories physicist use to describe

it have evolved dramatically. Thomson’s early work used Newton’s

and Maxwell ’s theories. That was followed by Bohr ’s quantum the-

ory the nonrelativistic (v << c, c is the light velocity) Schrödinger

quantum mechanics and relativistic (v → c) Dirac theory.

As early as in 1909 Bucherer repeated the modified version of the

Thomson experiments for the electrons with large velocity v → 0.7c.

Electrons from the β decay of radioactive nucleus enter a velocity

selector, which determines the speed of those that emerge and then

enter a uniform magnetic field, where the radius of their circular path

R can be measured. In the region 2 magnetic field B is perpendicular

to the velocity B ⊥ v so the Lorentz force FL = evB. The Lorentz

force FL equals the centripetal force

Fc =
mv2

R
, (1.118)

34.8032068(15)× 10−10esu = 1.602177733(49)× 10−19 C
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where the R is the radius of electron trajectory (circle), viz.:

mv2

R
= evB (1.119)

and

R =
mv

eB
=

m

e

E

B2
(1.120)

Bucherer ’s results are shown in Table 1.2

Table 1.2: Bucherer ’s results

Measured [v/c] Measured e/m [1011 C/kg]

0.32 1.66

0.38 1.63

0.43 1.59

0.52 1.51

0.69 1.28

The first column gives the measured speeds in terms of the fraction

of the speed of light. The second column gives the ratio e/m computed

from the measured quantities Eq.(1.120). It is clear that the value of

e/m varies with the speed of the electrons. When we ask why the

e/m is smaller for high electron velocity we have two answers. We

might have concluded, for example, that the charge on electron is the

function of the velocity

e = e0

√
1−

(v

c

)2

, (1.121)

where e0 is the charge on electron for v = 0. Actually we have im-

plicitly assumed above that the charge on the electron is independent
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of its speed. This assumption is a direct consequence of the Maxwell

electrodynamics. The experimental verification of the assumption that

e = e0 can be found in the paper: R. Kollath and D. Menzel, Mea-

surement of the Charge on Moving Electron, Z. Phys. 134 (1953) 530.

Another possibility is

m =
m0√

1−
(v
c
)2 , (1.122)

i.e. mass of the electron is velocity dependent, and m0 is the mass of

the electron for v = 0, m0 = (9.1093897 ± 0.0000054) × 10−31 kg –

formula (1.117). The formula (1.122) was also verified by Bertozzi (W.

Bertozzi, Speed and kinetic energy of relativistic electrons, Am. J. Phys.,

32 (1964), 551). As in paper by Bertozzi we will call the particles (elec-

trons) with v → c as the relativistic particles (electrons). As can be

seen from formula (1.122) for v → c, m → ∞. Because for the cre-

ation of the infinity mass we need the infinity energy we can suspect

that c is the limiting velocity for all massive particles (m0 6= 0).

1.3 Newtonian World System

1.3.1 History of the Newtonian World System

In Aristotle’s day space was associated with the distribution of things

directly observed. How to define motion by combining intervals of

space and time was not at all clear, and motion was poorly distin-

guished from other forms of change. Aristotle’s law of motion may be
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expressed by the relation:

applied force = resistance× speed (1.123)

But really he had no general formula, and no precise way of mea-

suring force, resistance and speed. He argued qualitatively, reasoning

from the everyday experience that effort is needed to maintain that

motion. It means that in the absence of all resistance, a body would

move from place to place in no time at all, that is at infinite speed.

Aristotle’s common-sense law of motion endured until finally eclipsed

by the Newton’s law:

applied force = mass× acceleration (1.124)

In the fourteenth century scholars of Merton College, Oxford, such as

William Heytestbury, showed that if v represents speed at any moment

and a represents a constant positive acceleration, then in time interval

t the speed attained is

v = at (1.125)

and the distance S traveled is

S =
at2

2
. (1.126)

Their calculations by graphical methods anticipated the discovery of

calculus by I. Newton and G. Leibnitz three hundred years later.

William Ockham also of Merton College, argued that forces can act

at a distance without any need for direct contact between bodies.

In the sixteenth century Polish astronomer Miko laj Kopernik (Nico-

laus Copernicus (1473–1543)) demonstrated the feasibility of a helio-

centric universe. Copernicus ’s great work, Revolutions of the Celestial
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Spheres appeared in print in 1543 shortly before his death. Johannes

Kepler (1571–1630) accepted the finite Copernican system with the

Sun at its center and the sphere of fixed stars. Kepler inherited Tycho

Brahe’s (1546–1601) careful and detailed observations of the planets

and for years struggled to explain their motions, particularly that

of Mars. At last he triumphed and succeeded in freeing astronomy

from the paradigm of epicyclic motion (Ptolemy system). His impor-

tant three laws of elliptical planetary motion served as the foundation

stones in the Newtonian world system. Galileo Galilei (1564–1642)

believed in the Copernican system. In the Two Great Systems of the

World he contrasted geocentric and heliocentric systems and poured

scorn on the physics of Aristotle and the astronomy of Ptolemy.

Robert Hooke (1635–1703), Christopher Wren and Edmund Halley

outlined qualitatively what I. Newton later explained quantitatively.

At about the time when Newton was silently pondering the Solar

System, Hooke realized that the force controlling the Solar System,

drawing the planets to the Sun and the Moon to the Earth as that

which causes apples to fall from tree.

Isaac Newton (1642–1726) wrote in an unpublished manuscript

referred to by its opening words (De Gravitatione) that ‘an infinite

and external divine power occupies all space and extends infinitely in

all directions’. In his “Mathematical Principles of Natural Philosophy”

known as Principia, Newton said of space: ‘Absolute space in its own

nature, without relation to anything external remains always similar

and immovable’. On time he said: ‘Absolute, true, and mathematical
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time, of itself and from its own nature, flows equably without relation

to anything external’. Newton’s celebrated three laws of motion are

the corner stones of the Science.

The universal law of gravitation has been heralded as one of the

great discoveries of the early scientific age; it is thought in freshman

physics, and it is referred to in many popular expositions of science.

Indeed, it must have taken enormous courage to link the laws of free

fall with the laws that govern the dynamics of the Solar System.

But when the great law of universal gravitation is expounded, there

is usually nothing said about the issue of action-at-a-distance versus

contact interaction. That discussion is conveniently postponed to a

much later and more sophisticated study of the laws of nature.

However, Newton himself was well aware of this problem (Letter

from Newton to Bentley, pp. 302–303 in I. B. Cohen, Isaac Newton’s

Paper and Letters on Natural Philosophy, Harvard University Press,

Cambridge, Massachusetts, 1978):

The Gravity should be innate inherent and essential to

Matter, so that one Body may act upon another at a Dis-

tance thro’ a Vacuum, without the Meditation of any thing

else, by and through which their Action and Force may be

conveyed from one to another, is to one so great an Absur-

dity that I believe no than who has in philosophical Matters

a competent Faculty of thinking, can ever fall into it.

The fact that Newton nevertheless went ahead with his theory as we

know it indicates that he made a clear distinction between the descrip-
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tion of the gravitational phenomena and their causal explanation; the

latter, he felt, requires some intermediary that conveys that action

(such as an ether). But he must have judged the former to be sufficient

interest to warrant publication even without the causal explanation.

But while Newton was unable to find a solution to this problem,

he did not reject his law of universal gravitation on account of that.

Surely, the lack of explanation represented, at least in Newton’s mind,

a serious objection to his gravitation theory. Yet, he decided to ignore

it, and to present his theory anyway.

And so, to the great benefit of science, Newton published the Prin-

cipia despite his knowledge that his gravitation theory is badly flawed

in that does not provide an explanation of the force of gravitation but

only a description. The solution to Newton’s problem did not come

until about two and a half centuries later with the development of

Einstein’s general relativity. In that theory, gravitation is propagated

with the speed of light, and action-at-a distance is avoided completely.

1.3.2 Angular momentum and central forces

A central force is one whose direction is always along a radius, that is,

either toward or away from a point we shall use as an origin (or force

center) and whose magnitude depends solely upon the distance from

origin, r. We can write this

F(r) = F (r)r̂, (1.127)
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where r̂ is a unit vector in the radial direction. Since r̂ = r/r a central

force can also be written as

F =
F (r)

r
r. (1.128)

Central forces are important because we encounter them so often in

physics. The gravitational force is a central force. The electrostatic

force between two charges is a central force.

Much of physics – can be viewed as a careful application of New-

ton’s Second Law. So we may as well begin with that

F = ma. (1.129)

We define the torque τ , we can write it as

τ = r×ma (1.130)

and angular momentum L,

L = r× p (1.131)

as the vector product of radius vector r and momentum p. Now we

calculate the time derivative of L

dL

dt
=

d

dt
(r× p) = r×ma = r× F = τ . (1.132)

Since v × v = 0. It is quite interesting that

dL

dt
= 0, (1.133)

when F(r) ‖ r, i.e. when F(r) is a central force.
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1.3.3 Inverse-square force (3-dimensional space)

If we investigate the force between two charges, such as the force

binding an electron to its nucleus, or we investigate the force between

two masses, such as the force binding the Moon in its orbit around

Earth or Earth in her orbit around the Sun, we find that in both these

cases the force varies inversely as the square of the distance. We can

represent this behavior by writing:

F (r) =
K

r2
, (1.134)

where K < 0 for an attractive force and K > 0 for a repulsive force.

In particular for gravitational forces K equals GMm where G is a

universal constant. In SI units G = 6.67 10−11 (Nm2
/kg2) and M and

m are the two masses involved. For electrical forces K = (1/4πε0
)Qq

where ε0 is called the permittivity of free space. It has the value

in SI units of ε0 = 8.85 · 10−12 (C2
/Nm2) and Q and q are the electric

charges involved. Since Q and q can each be positive or negative,

K can be positive or negative. Hence, the electrical force can be

either attractive or repulsive. The gravitational force for matter –

matter interaction is attractive. The sign for matter – antimatter

and antimatter –antimatter interaction is still an open problem for

theoreticians and experimentalists.

In paragraph Xwe introduced the angular momentum L

L = r× p. (1.135)

It is interesting to calculate the time derivative for L. From for-
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mula (1.135) we obtain

dL

dt
= mr× d2r

dt2
. (1.136)

For central force F(r) = (F (r))/(r)r we obtain from formula (1.136)

dL

dt
= 0; L = constant. (1.137)

Now, what does constant angular momentum tell us about the motion?

The angular momentum

L = r× p (1.138)

is a vector perpendicular to the plane determined by the location vec-

tor r and the momentum p. If L remains constant, this plane remains

constant. The motion under a central force is confined to a plane.

This is quite important. It is also very good news – the motion is

describable in only two dimensions rather than the three that might

well have been anticipated.

In a plane the acceleration can be written as

ar =
d2r

dt2
− r

(
dΘ

dt

)2

,

aΘ = r
d2Θ

dt2
+ 2

dr

dt

dΘ

dt
(1.139)

velocity

vr = r
dr

dt
; vΘ = r

dΘ

dt
(1.140)

From formulae (1.138) and (1.140) we obtain for absolute value of L

L = mr2dΘ

dt
= constant. (1.141)
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Considering formula (1.139) the Newton Second Law can be written

as

F = m
d2r

dt2
= m

[
d2r

dt2
− r

(
dΘ

dt

)2

r̂ +

(
r
d2Θ

dt2
+ 2

dr

dt

dΘ

dt

)
Θ̂

]
(1.142)

As always, the single vector equation implies two ordinary scalar equa-

tions – one for each component

F (r) = m
d2r

dt2
−mr

(
dΘ

dt

)2

0 = mr
dΘ

dt
+ 2m

dr

dt

dΘ

dt
(1.143)

The second equation can be written as

d

dt

(
mr2dΘ

dt

)
= 0 (1.144)

Comparing formulae (1.141) and (1.144) we conclude that formula (1.144)

is the conservation of the angular momentum

dL

dt
= 0. (1.145)

In the first equation (formula (1.143)) we change of variable substi-

tuting r = 1/u. We also need formula (1.141)

dΘ

dt
=

L

mr2
=

L

m
u2. (1.146)

After the calculation of the prescribed derivatives we obtain from equa-

tion (1.143)

d2u

dΘ2
+ u = −m

L2

1

u2
F

(
1

u

)
, (1.147)

u =
1

r
.
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Equation (1.147) is the master equation which describes the movement

of the body with mass m in the field of central forces F (1/u). We can

imagine the following functions F (1/u)

F

(
1

u

)
= K1u

π, K2u
3, K3u

2, K4u
0.64, K5u

−4.62. (1.148)

We can imagine the “other” universes for which the central forces

have the different F (1/u). But can life be originated and developed

in all these universes? This question is answered by the anthropic

principle and will be discussed later on. For the moment we can say

the following:

Macroscopic structure of the Universe we live in can be understood

with just two forces: Newton and Coulomb. For both forces

F

(
1

u

)
= Ku2. (1.149)

Why?

With the forces described by formula (1.149) we obtain for equa-

tion (1.147)
d2u

dΘ2
+ u = −Km

L2
(1.150)

This beautiful equation describes the classical motion of the planets,

and electrons round the source of the force F = Ku2. Moreover,

the equation (1.149) in fact is the harmonic oscillator equation. The

solution to the Eq. (1.150) can be written as

u = A cos(Θ−Θ0)−
mK

L2
, (1.151)

or

r =
1

A cos(Θ−Θ0)− mK
L2

. (1.152)
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Equation (1.152) describes the conic curves: ellipse, parabola and

hyperbola depending on constants A, Θ0, m, K and L. We can

choose our coordinate axes so that θ0 = 0 to simplify things just a

little:

r =
1

A cos Θ−
(

mK
L2

) (1.153)

This is a conic sections. From plane geometry, any conic section can

be written as

r = r0
1 + e

1 + e cos Θ
(1.154)

where e is called the eccentricity of the orbit. For e < 1 the orbit is an

ellipse. For the special case e = 0, this ellipse becomes a circle. For

e = 1 the orbit is a parabola; for e > 1 a hyperbola. The geometry of

these different conic sections is shown on Fig.

1.3.4 Kepler’s Laws

Based on astronomical data taken by Tycho Brahe, early in the sev-

enteenth century Johannes Kepler announced three general laws that

described the motion of the planets around the Sun. Newton’s Law

of Universal Gravitation, given shortly after Kepler ’s laws, was read-

ily accepted because it provided a description of the planets’ motions

entirely consistent with Kepler ’s laws.

Kepler ’s law can be started as follows:

1. Planets move in orbits that are ellipses with the Sun at one focus

(elliptical orbits)
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2. Areas swept out by the radius vector from the Sun to a planet

in equal times are equal.

3. The square of a planet’s period is proportional to the cube of

the semimajor axis of its orbit.

We have seen in the previous section that the first of these laws

(that of elliptical orbits) follows directly from Newton’s Law of Uni-

versal Gravitation (i.e., from the inverse-square nature of the force of

gravity).

Equal areas being swept in equal times is a consequence of the

angular momentum’s being constant. This can be seen if we start

with Fig.which shows a body in an elliptical orbit about an origin 0.

For a small change in angle dΘ the area swept out as a body moves

from r to r + dr is

dA =
1

2
rdh (1.155)

where dh is the perpendicular distance between the two radius vectors;

this is just the area of a right triangle. But

dh = rdΘ (1.156)

Thus

dA =
1

2
r(rdΘ) =

1

2
r2dΘ (1.157)

But mr2dΘ/(dt) = L, the angular momentum which we know to be

constant for any central force. Therefore,

dA

dt
=

1

2

L

m
= constant (1.158)
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again agreeing with Kepler ’s second law.

We have discussed two of Kepler ’s laws. Kepler ’s Third Law is a

consequence of inverse-square nature of the gravitational force. We

can readily integrate Eq. (1.158) to find

A =
LT

2m
(1.159)

or

T =
2mA

L
(1.160)

where A is the area of the orbit and T is the period, the time necessary

to complete one entire orbit. The area of an ellipse is

A = πa2
√

1− e2, (1.161)

where a is the semimajor axis that is, half of the maximum diameter.

From the preceeding section we find

a = − L2

mK

1

1− e2
(1.162)

Putting these together we have:

T =
2mπ√
m(−K)

a
3
2 (1.163)

or

T 2

a3
=

(
2mπ√
m(−K)

)2

= constant

which, indeed is just Kepler ’s Third Law.
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1.3.5 Systems of planets

So far we have considered the motion of a single body caused by the

external forces acting upon it – for example the motion of an oscillating

mass, or a planet in orbit around the sun. Now we shall inquire into

the motion of several bodies – for example the several planets in our

solar system. Earlier we introduced and used the idea of conservation

of energy. Now with a system of planets, conservation principles take

on a new and increased importance.

For the general case, consider N bodies (N planets) labelled 1, 2, 3,

N . They are located at positions r1, r2, . . . rN and move with velocities

v1,v2, . . .vN , all measured relative to some origin 0. The particles

have masses m1, m2, . . . mN . This general situation is illustrated in

Fig.Any particular particle, say, the ith particle experiences a net force

that is the result of an external force on it, Fi and all the internal forces

from all the other particles. If we write the internal force on particle

i exerted by particle k as Fik then

Fi(net) = Fi +
N∑

k=1
k 6=i

Fik. (1.164)

Now we apply the Newton’s Second Law, F (net) = m(d2r)/(dt2). In

this situation we arrive at

mi
d2r

dt2
= F(net)i +

N∑
k=1
k 6=i

Fik (1.165)

However, it occurs that the direct solution is out of the question for

all but very special cases.
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To start with we define the center of mass for the system of N

planets. The center of mass R is just the average position of the mass

and is given by:

R =

∑
miri∑
mi

(1.166)

M =
∑

mi is the total mass of the system. Differentiation of the

center of mass position yields the velocity of the center of mass

V =
dR

dt
=

1

M

∑
mi

dri

dt
=

1

M

∑
mivi. (1.167)

Further differentiate yields the acceleration of the center of mass:

A =
1

M

∑
i

mi
d2r

dt2
. (1.168)

We now return to Eq. (1.165) and sum up of the net force acting on

all N planets
N∑

i=1

mi
d2r

dt2
=

N∑
i=1

N∑
k=1
i6=k

Fik. (1.169)

The last term is zero because every force Fji will be cancelled by its

counterpart Fij and

Fij = −F̄ij (1.170)

by Newton’s Third Law. This means that it is impossible to change

the motion of center mass by internal force alone. The remaining

force term is the resultant of all the external forces exerted on all the

individual particles. The left hand side is the total mass multiplied

by the acceleration of the center of mass.

That is,

M
d2R

dt2
= F (1.171)
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where

F =
N∑

i=1

Fi (1.172)

Thus, the motion of the center of mass of any system of particles can be

described by Eq. (1.171), which is identical to an equation describing

the net force on a single object with mass M .

On the right hand side of the Eq. (1.167) we have the sum of

the product mivi. The momentum p of a particle with mass m and

velocity v is defined by

p = mv (1.173)

For a constant mass the Newton’s Second Law can then be written as

Fnet =
dp

dt
(1.174)

If we apply Eq. (1.174) to ith particle we obtain

dpi

dt
= Fi(net) = Fi +

∑
k

Fik (1.175)

Summing this over all N particles we have:

dP

dt
=

d

dt

∑
i

pi =
∑

i

Fi +
∑

i

∑
k

Fik (1.176)

The total momentum of the system is the vector sum of the momenta

of all the bodies in the system

P =
∑

i

pi =
∑

i

mvi = MV (1.177)

That is, this vector sum of the momenta of the individual planets is

the same as the momentum of a single particle whose mass is the total
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mass of the system and whose velocity is that of the center of mass of

the system. Just as before we argue that the last term in Eq. (1.176)

must be zero. Eq. (1.176) can now be written as

dP

dt
= F (1.178)

Again we have reduced the motion of the center of mass of a system

of particles (planets) to that of a single body with mass M . In the

case when F = 0, we obtain from formula (1.178) the conservation of

momentum for the system of N planets

P = constant (1.179)

Which can be stated as follows.

In the absence of the external forces the total momentum of the

system of N planets is constant. For example, when we neglect

the interaction of α-Centauri star (which is in minimal distance from

the Sun system) the total momentum of the Sun planetary system is

constant and does not dependent on time.

1.3.6 Parade of planets – extrasolar planets

We humans are interested in the extrasolar planet systems. We are

interested in more than just life in other planetary systems. We’d

like to know how planetary systems form and evolve. Despite the

astronomers successes, our planet search is still in its infancy. Still,

with 33 planets already in hand (March 2000!), we see a few general

trends. Planet formation appears to be a chaotic process that often
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tosses Earth-size planets out of their system entirely, leaving Jupiter-

mass brutes behind in highly elongated (eccentric) orbits. Failed stars

called brown dwarfs appear to be infrequent companions to solar-type

stars. Astronomers have found the first full-fledged system of planets

around a sunlike star, and other stars also show signs of multiple

Jupiters.

The parade of extrasolar planets around normal stars began in 1995

when M. Mayor and D. Queloz of Geneva Observatory in Switzerland

discovered a planet at a distance of only 0.05 AU from the star 51 Pe-

gasi (one AU is the average Earth-Sun distance).

This was followed shortly thereafter by the discovery by Marcy

and Butler of planets around 47 Ursae Majoris and 70 Virgins. The

orbit of the 51 Pegasi planet and the eccentric orbit of 70 Virgins

planet shook humans heliocentric expectation that planetary systems

would be nearly identical to ours. Instead, planets fill orbital niches of

unimagined diversity. Astronomers find planets by looking at how they

yark their stars as they go around in their orbits. The jerky motion

of a star is revealed in the star’s spectrum. As the star approaches

Earth in response to the planet’s gravity its light is shifted toward

the blue and of the spectrum. As the star recedes, its light is shifted

toward the red. This subtle Dopplersignature woven into the light of

the planet star allows us to reconstruct the orbit and minimum mass

of an otherwise hidden planet.

The nearly circular orbits of the planets in our solar system led

astronomers to expect that planets around other stars would reside in
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nearly circular orbits too. After all, planets probably form in circular

proplanetary disks, such as the disks seen in the Orion Nebula. The

gas and dust in these disks follow circular orbits and friction within

these disks would circularize the orbits of newly forming planets in

much the same way that friction circularizes the flow of water going

down in a bathtub drain.

But most of the extrasolar planets found so far reside in highly

eccentric orbits, not circular. Indeed, the 18 extrasolar planets with

the largest orbits all reside in eccentric orbits. Most of those orbits

are more than twice as elongated as the orbits of Earth, Jupiter and

Saturn.

Why are other planetary systems dominated by elliptical orbits

rather than circular? The best clue comes from comets in our own solar

system. Comets reside in orbits so elongated that they visit the inner

solar system only rarely. But comets did not form in elliptical orbits.

Rather they formed in circular orbits in the protosolar disk. Comets

were gravitationally flung into their present-day elliptical orbits when

they ventured too close to planets, in much the same way spacecraft

receive gravitational assist from planets.

We now suspect that most planets themselves engage in this sling-

shot activity leaving than in disturbed, elliptical orbits. If two or more

massive planets form in orbits a few AU apart, this fate is inevitable.

One planet will be scattered inward, the other outward. If even one

planet suffers this slingshot effect, it will likely travel close enough

to neighboring planets to disturb them as well. This theory explains
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why the large majority of the extrasolar planets found to date reside

in noncircular orbits.

Unfortunately, Jupiter - mass planets toss Earth – mass planets

around. The resulting chaos may result in some planets being grav-

itationally eject from the planetary system altogether, leaving only

the most massive survivors behind. Our Galaxy must be filled with

trillions of Earth - size rogue planets - dark, rocky hulks wandering

aimlessly through interstellar space.

The predominance of elliptical orbits implies that planetary sys-

tems with circular orbits may be the exception rather than the norm.

Apparently, our nine planets were just far enough apart and low

enough in mass to avoid this chaos. The nine planets do perturb

one another, but not enough to cause close passages. Our planetary

system may be one of the rare systems that remains just barely stable.

If our system is unusual in its circular orbits, we humans would

seem to be extraordinarily lucky to be here. After all, the circular orbit

of Earth keeps solar heating nearly constant, minimizing temperature

fluctuations. Perhaps biological evolution would not have proceed to

intelligence if Earth temperature were fluctuating wildly. It may be

that Darwinian evolution toward complex organisms is enhanced by

relatively quiescent climates enabled by circular orbit. If so, we owe

our existence to Earth’s stable orbit.
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1.3.7 Why is space three-dimensional?

Without exception, the laws of physics are of such nature that they

can be generalized to space of either more or fewer than three dimen-

sion. The statement that ordinary space has just three dimensions for

the first time can be found out in Ptolemy : Per diastaseos (On the

dimension). The problem of space dimension was already apparent to

Aristotle, whose argument in support of three dimensions was reca-

pitulated in Galile’os Dialogue. At the beginning of the XX century

P. Ehrenfest (Ann. Physics, 61, (1920), 440) pointed out that in a

space of more than three dimensions the laws of physics do not allow

stable planet orbits. Recently G. J. Whitrow, The structure of the

Universe, Harper and Row, N. Y. 1959) rediscovered some features of

Ehrenfest ’s work and also advanced the interesting argument that the

development of higher forms of life would be impossible in a space of

fewer than three dimensions.

In any higher organism, a large number of cells must be inter-

counted by nerve fibers. If space had only two dimensions, an organ-

ism could be only a two-dimensional configuration and its nerve paths

would cross. At the intersections, the nerves would have to penetrate

each other, for absence of a third dimension would not permit a fiber

to be led above or below another one. As a consequence nerve im-

pulses would mutually interfere. The existence of a highly developed

organism having many non-intersecting nerve paths in thus possible

only in a space having at least three dimensions.

As we know both the Newtonian gravitational force and electro-
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static force can be described in the three dimensional space [for-

mula (1.134)]

F =
K

r2
, n = 3, (1.180)

where n is the number of dimension of space. For n 6= 3 the natural

generalization of formula (1.180) is

F = (n− 2)
K

rn−1
, n 6= 2. (1.181)

The impossibility of stable planet orbit for n > 3 can be seen in an el-

ementary way. Let m be the mass of planet and L angular momentum

(which is constant for the central force (1.181)) formula

L = mr2Θ̇. (1.182)

The gravitation potential for the conservative forcewill be

V = − K

rn−2
. (1.183)

At the extreme distances from the central body for a planet with mass

m, we have
dr

dt
= 0. (1.184)

The kinetic energy T at such points is then (formula (1.140))

T =
p2

2m
=

1

2
mr2Θ̇2, (1.185)

which by equation (1.182) becomes

T =
L2

2mr2
. (1.186)

By conservation of mechanical energy (formula (1.126)) T +V = con-

stant, or
L2

2mr2
1

− K

rn−2
1

=
L2

2mr2
2

− K

rn−2
2

, (1.187)
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where r1 is the minimum distance from the central body and r2 is the

maximum distance, perihelion and aphelion respectively.

The equation (1.187) shows that for n = 4 there can be a finite,

positive solution only if r1 = r2. For n > 4 it can be shown that an

orbit in which r oscillates between two extremes is likewise ruled out.

In general the centripetal force in a circular orbit is

Fc = mr2Θ̇2. (1.188)

Using Eq. (1.182) this becomes

Fc =
L2

mr3
. (1.189)

In the actual eccentric orbit, the attractive force must be less than this

centripetal force at perihelion, for then the planet is about to move

outward. At aphelion, it is just the other way around.

These conditions can be expressed respectively by the following

inequalities

(a)

F < Fc

(n− 2)K

rn−1
1

<
L

mr3
1

or
K

rn−2
1

<
L2

(n− 2)mr2
1

, (1.190)

(b)

F > Fc

(n− 2)K

rn−1
2

>
L2

mr3
2

or
K

rn−2
2

>
L2

(n− 2)mr2
2

. (1.191)
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Substituting formula (1.191) to formula (1.187) yields

L2

2mr2
1

− L2

(n− 2)mr2
1

<
L2

2mr2
2

− L2

(n− 2)mr2
2

. (1.192)

Equation (1.192) can be factored

L2

mr2
1

(
1

2
− (n− 2)−1

)
<

L2

2mr2
2

(
1

2
− (n− 2)−1

)
. (1.193)

This relation obviously cannot be true for n = 4, for then each of

the brackets becomes zero. Remembering that r2 > r1 it also cannot

be true for any n > 4, which makes the values of the brackets less

than 1/2.

Thus, the existence of an elliptic orbit for n ≥ 4 is ruled out. The

results for planetary orbits are collected in Table

Table 1.3: Table
Phenomena Cases thus excluded

Bio-topology (existence of a
highly developed organism)

n < 3

n > 3

Stability of planetary orbits n = 4
Possible only for circu-
lar orbit

n > 4

n < 3
Excluded if the poten-
tial is to vanish at ∞

In conclusion, it may be said that stable elliptical planetary orbits

can exist and support the existence of the highly developed organisms

only in three dimensional space. Fine tuning of our universe for the

existence of the highly developed organism also human being – the

observes of the Universe, is well grounded on the Newton’s description

of the Nature.
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