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Abstract

In this paper the quantum hyperbolic equation formulated in our

earlier paper [Found. Phys. Lett. 10, 599 (1997)] is applied to the

study of the propagation of the initial thermal state of the Universe.

It is shown that the propagation depends on the barrier height. The

Planck wall potential is introduced, VP = h̄/8tP = 1.125 1018 GeV

where tP is a Planck time. For the barrier height V < VP the master

thermal equation is the modified telegrapher’s equation, and for barrier

height V > VP the master equation is the Klein-Gordon equation. The

solutions of both type equations for Cauchy boundary conditions are

discussed.
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1 Introduction

In this paper the thermal behaviour of a Planck gas in the presence of the

potential barrier is investigated. The generalized quantum hyperbolic heat

transport equation formulated in paper [1] is applied to the study of the

propagation of the initial thermal state of the Universe. It will be shown

that the propagation depends on the barrier height. The thermal information

on the Beginning is carried through the distorted thermal waves. But the

undistorted thermal information is completely diminished for the time of the

order of a Planck time.

In paper the possibility of the motion “up the stream of time” (in spirit of

W. Thompson and J. C. Maxwell) is discussed [2]. It will be shown that only

hyperbolic heat transport equation guarantees the possibility of this motion.

This possibility does not exists with Fourier type (parabolic) heat transport

equation.

2 Klein-Gordon equation for a Planck gas

On time scales of Planck time, black holes of the Planck mass spontaneously

come into existence. Via the process of Hawking radiation, the black hole can

then evaporates back into energy. The characteristic time scale for this to

occur happens to be approximately equal to Planck time. Thus the Universe

at 10−43 seconds in age was filled with Planck gas i.e. gas of massive particles

all with masses equal Planck mass Mp. In the following we will describe the

thermal properties of the Planck gas in the field of the potential V .

As was shown in paper [1] the thermal properties of the Planck gas can
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be described by hyperbolic quantum heat transport equation, viz:

tp
∂2T

∂t2
+

Mp

h̄

∂T

∂t
+

2V Mp

h̄2 T = ∇2T. (1)

In equation (1) tp denotes Planck time, Mp is the Planck mass and V denotes

the potential energy.

For the uniform Universe it is possible to study only one-dimensional

heat transport phenomena. In the following we will consider the thermal

properties of a Planck gas in constant potential V = V0. In that case the one

dimensional quantum heat transport equation has the form:

1

c2

∂2T

∂t2
+

Mp

h̄

∂T

∂t
+

2V0Mp

h̄2 T =
∂2T

∂x2
, (2)

where formula for tp = h̄/Mpc
2 was used [1]. In equation (2) c - denotes the

light velocity. As c 6= ∞ we can not omit the second derivative term and

consider only Fokker-Planck equation:

Mp

h̄

∂T

∂t
+

2V0Mp

h̄2 T =
∂2T

∂x2
, (3)

for heat diffusion in the potential energy V0, or free heat diffusion:

∂T

∂t
=

h̄

Mp

∂2T

∂x2
. (4)

It occurs that only if we retain the second derivative term we have the chance

to study the conditions in the Beginning.

Some implications of the forward and backward properties of the parabo-

lic heat diffusion equation were beautifully described by J. C. Maxwell [2]:

“Sir William Thompson has shown in a paper published in the

Cambridge and Dublin Mathematical Journal in 1844 how to de-

duce, in certain cases the thermal state of a body in past time

from its observed conditions at present.
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If the present distribution of temperature is such that it may be

expressed in a finite series of harmonics, the distribution of tem-

perature at any previous time may be calculated but if (as in ge-

nerally case) the series of harmonics is infinite, than the tempe-

rature can be calculated only when this series is convergent. For

present and future time it is always convergent, but for past time

it becomes ultimately divergent when the time is taken at a suffi-

ciently remote epoch. The negative value of t for which the series

becomes ultimately divergent, indicates a certain date in past time

such that the present state of things can not be deduced from any

distribution of temperature occurring previously to the date, and

becoming diffused by ordinary conduction. Some other event be-

sides ordinary conduction must have occurred since that date in

order to produce the present stage of things”.

As can be easily seen the second derivative term in equation (1) carriers the

memory of the initial state which occurred at time t = 0. If we pass with

c→∞ we lost the possibility to study the influence of the initial conditions

at the present epoch as it is explained above by J. C. Maxwell. It means that

by limiting procedure c→∞ we cut off the memory of the Universe.

For hyperbolic quantum heat transport equation (2) we seek a solution

of the form:

T (x, t) = e−t/2tpu(x, t). (5)

After substitution of equation (5) to equation (2) one obtains:

1

c2

∂2u

∂t2
− ∂2u

∂x2
+ qu = 0, (6)
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where

q =
2V0Mp

h̄2 −
(

Mpc

2h̄

)2

. (7)

In the following we shall consider positive values of V0, V0 ≥ 0, i.e. we shall

consider the potential barriers and steps.

The structure of the Eq. (6) depends on the sign of the parameter q. Let

us define the Planck wall potential, i.e. potential for which q = 0. From

equation (7) one obtains:

VP =
h̄

8tP
= 1.125 1018 GeV, (8)

where tP is a Planck time. In Fig. 1 the parameter q is calculated as the

function of V0. For q < 0, i.e. when V0 < VP Eq. (6) is the modified telegrapher

equation (MTE) [3]. For the Cauchy initial condition:

u(x, 0) = f(x),
∂u(x, 0)

∂t
= g(x), (9)

and the solution of Eq. (5) has the form [3]:

u(x, t) =
f(x− ct) + f(x + vt)

2

+
1

2c

∫ x+ct

x−ct
g(ζ)I0

[√
−q(c2t2 − (x− ζ)2)

]
dζ (10)

+
(c
√
−q)t

2

∫ x+ct

x−ct
f(ζ)

I1

[√
−q(c2t2 − (x− ζ)2)

]
√

c2t2 − (x− ζ)2
dζ.

In equation (10) I0, I1 denotes the Bessel modified function of the zero and

first order respectively.

When q > 0, i.e for V0 > VP equation (6) reduces to the Klein-Gordon

Equation (K-GE) well known from its application in elementary particle and

nuclear physics.
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For the Cauchy initial condition (9) the solution of K-GE can be written

as [3]:

u(x, t) =
f(x− ct) + f(x + ct)

2

+
1

2c

∫ x+ct

x−ct
g(ζ)J0

[√
q(c2t2 − (x− ζ)2)

]
dζ (11)

−
(c
√

q)t

2

∫ x+ct

x−ct

J1

[√
q(c2t2 − (x− ζ)2)

]
√

c2t2 − (x− ζ)2
dζ.

The case for q = 0 was discussed in paper [1] and it describes the distor-

tionless quantum thermal waves. Both solutions (10) and (11) exhibit the

domains of dependence and influence for the modified telegrapher’s equation

and Klein-Gordon equation. These domains, which characterize the maxi-

mum speed, c, at which the thermal disturbance travels are determined by

the principal terms of the given equation (i.e. the second derivative terms)

and do not depend on the lower order terms. It can be concluded that these

equations and the wave equation have identical domains of dependence and

influence. Both solutions (10) and (11) represents the distorted thermal wa-

ves in the field of potential barrier or steps V .

3 Conclusions

In the paper the thermal behaviour of a Planck gas in the presence of a po-

tential barrier is investigated. It was argued that the hyperbolic quantum

heat transport equation offers the possibility for the study of the thermal hi-

story of the Universe up to the Beginning, but the information is transmitted

through the distorted thermal waves. It was shown that for a barrier height

V < VP the quantum heat transport equation is the modified telegrapher’s
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equation. For a barrier height V > VP the quantum heat transport equation

is the Klein-Gordon equation. It is quite interesting to observe that only for

tP 6= 0 the Planck wall has the finite height.
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