
Zero Point Field (ZPF) effects in the interaction

of the ultra-short laser pulses with matter

MirosÃlaw KozÃlowskia, Janina Marciak-KozÃlowskab,c

a Institute of Experimental Physics and Science Teacher’s College, Warsaw
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Abstract

In this paper the effects of zero-point energy (ZPE) on the heat

transport induced by ultra-short laser pulses is investigated. It will

be shown that the existence of the zero-point energy in the physical

vacuum influence the heat transport on the atomic level. The in-

teraction of the building blocks of matter-atoms with the zero-point

fields (ZPF), which generate the ZPE guarantees the stability of mat-

ter. The interaction of the ultra-short laser pulses (∆t ∼ 1 as) with

matter can be used as the source of the information on the ZPF.
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1 Introduction

During the 20th century, our knowledge regarding space and the properties

of the vacuum has taken a considerable progress. In the popular meaning

the vacuum is considered to be a void or “nothingness”. This is the defi-

nition of a bare vacuum. However, with the progress of science, a new and

contrasting description has arisen, which physicist call the physical vacuum.

The physical vacuum contains measurable energy. This energy is called the

zero-point energy (ZPE) because it exists even at absolute zero. The very

fruitful theoretical framework in which we can describe the zero-point energy

is the stochastic electrodynamics (SED) [1, 2, 3, 4]. In the SED approach

the physical vacuum at the atomic or subatomic level may be considered to

be inherently comprised of a turbulent sea of randomly fluctuating electro-

magnetic field.

These fields exist at all wavelengths longer than the Planck length. At the

macroscopic level these zero-point fields (ZPF) are homogenous and isotropic.

The atomic building blocks of matter are dependent upon the ZPF for

their very existence. This was demonstrated by H. Puthoff [3, 4]. Puthoff

started by pointing out the anomaly. According to classical concepts an

electron in orbit around the proton should be radiating energy. As a conse-

quence, as it losses energy, it should spiral into the atomic nucleus. But that

does not happen. In quantum mechanics it is explained by the Bohr’s quan-

tum conditions. Instead of the Bohr model of the atom, Puthoff approached

this problem with the assumption that the classical laws of electrodynamics

were valid and that the electron is therefore losing energy and the loss was

exactly balanced by energy gain from the ZPF.
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In this paper we adapted the Puthoff’s results to the study the heat

transport on the atomic level. To that aim we consider the quantum heat

transport (QHT) equation [5]. It will be shown that at the atomic level

the structure of the QHT is dependent upon the ZPF. The condition for

the quantum heat transport limit [5] guarantees the balance of the loss-

gain energy on the atomic level. This open new field of investigation for

laser scientists and engineers. The interaction of the ultra-short laser pulses

(∆ t ∼ attosecond) with matter can be used as the source of the information

on the ZPF. Maybe that the future engineers will be specialized in “vacuum

engineering”.

2 The physical vacuum

In the stochastic electrodynamics (SED) [1, 2, 3, 4] the physical vacuum is

assumed to be filled with random classical zero-point electrodynamic radia-

tion which is homogenous, isotropic and Lorentz invariant. Writing as a sum

over plane waves, the random radiation can be expressed as [3]

Ezp(~r, t) = Re
2∑

δ=1

∫
d3kε̂

(
h̄ω

8π3ε0

)1/2

× ei~k~r−iωt+iΘ(k,δ), (1)

Hzp(~r, t) = Re
2∑

δ=1

∫
d3k(k̂ × ε̂)

(
h̄ω

8π3µ0

)1/2

× ei~k~r−iωt+iΘ(k,δ),

where δ = 1, 2 denote orthogonal polarizations, ε̂ and k̂ are orthogonal unit

vectors in the direction of the electric field polarization and wave propagation.

Vectors, respectivately, Θ(~k, δ) are random phases distributed uniformly on

the interval 0 to 2π (independently distributed for each ~k, δ) and ω = kc. It

must be stressed that in the SED the zero-point field is treated in every way
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as a real, physical field.

In the subsequent we will approximate the matter as the ensemble of

the one dimensional charged harmonic oscillators of natural frequency ω0

immersed in the zero-point field. For orientation along the x axis the (nonre-

lativistic) equation of motion for a particle of mass m and charge e, including

damping is given by [3]

m
d2x

dt2
+ mω2

0x =

(
e2

6πε0c3

)
d3x

dt3
+ eEzt

x (0, t), (2)

where e is the charge on electron, c is the light velocity and ε0 is the electrical

permittivity of the vacuum.

Substitution of formula (1) to formula (2) gives the following expression

for displacement and velocity:

x =
e

m
Re

2∑

δ=1

∫
d3k(ε̂ · x̂)

(
h̄ω

8π3ε0

)1/2
1

D
× ei~k~r−iωt+iΘ(k,δ), (3)

v =
dx

dt
=

e

m
Re

2∑

δ=1

∫
d3k(ε̂ · x̂)

(
h̄ω

8π3ε0

)1/2

×
(
−iω

D

)
ei~k~r−iωt+iΘ(k,δ),

where

D = −ω2 + ω2
0 − iΓω3, (4)

Γ =
e2

6πε0mc3
.

From (1) and (3) the average power absorbed by oscillator from ZPF can be

calculated [3], viz.:

〈P abs〉 = 〈eEzp · ~v〉 =
e2h̄ω3

0

12πε0mc3
. (5)

We now recognize that for “planetary” motion of electrons in the atom the

ground state circular orbit of radius r0 constitutes a pair of one dimensional
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harmonic oscillator in a plane

x = r0 cos ω0t, (6)

y = r0 sin ω0t.

Therefore the power absorbed from the background by the electron in circular

orbit is double of (5) or

〈P abs〉circ =
e2h̄ω3

0

6πε0mc3
. (7)

The power radiated by charged particle in circular orbit with acceleration A

is given by the expression [6]

〈P rad〉circ =
e2A2

6πε0c3
=

e2r2
0ω

4
0

6πε0c3
. (8)

3 Quantum heat transport equation in the

presence of ZPF

In monograph [5] the quantum heat transport equation for electrons in matter

was formulated:
λB

vh

∂2T e

∂t2
+

λB

λm

∂T

∂t
=

h̄

me

∇2T. (9)

In Eq. (9) T is the temperature, λB and λm are the reduced de Broglie

wavelength and mean free path (for electron) respectively

λB =
h̄

p
, λm = vτ, (10)

where v is the electron velocity and τ is the relaxation time for electrons.

In the following we will study the quantum limit of the heat transport

in the fermionic system [5]. We define the quantum heat transport limit as
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follows

λB = λm. (11)

In that case Eq. (9) have the form

τ
∂2T

∂t2
+

∂T

∂t
=

h̄

m
∇2T, (12)

where

τ =
h̄

mev2
. (13)

Having the relaxation time τ one can define the pulsation ω [5]

ω = τ−1 =
mv2

h̄
. (14)

For an electron in atom, ω = ω0 (formula (6)) i.e.

ω0 =
mv2

h̄
. (15)

Considering that for circular orbit v = ω0r0, formula (15) gives

r2
0 =

h̄

mω0

. (16)

Substituting formula (16) to formula (8) one obtains

〈P rad〉circ =
e2h̄ω3

0

6πε0mc3
= 〈P abs〉circ. (17)

We conclude that in the SED framework the QHT equation (12) describes

the heat transport on the atomic level where the τ is the relaxation time

for the electron-zero point field interaction. It is quite interesting to observe

that formula (15) is the Bohr formula for the ground state of hydrogen atom.

It means that the ground state of the hydrogen atom is the result of the

balance between radiation emitted due to acceleration of the electron and

radiation absorbed from the zero-point background. For the first time the

balance between two forms of radiation in hydrogen atom was hypothesed

by Boyer [7].
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4 Conclusion

In this paper, the quantum heat transport (QHT), formulated in our mono-

graph, was considered in the framework of stochastic electrodynamics (SED).

It was shown that the structure of QHT on the atomic level reflects the fact

that the energy radiated by the accelerated charged particle in circular mo-

tion equals the energy absorbed from the zero-point field. It means that

hypothetical ZPF is as real as the real are atoms, i.e. matter.
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