α substructures in light and heavy nuclei

Mirosław Kozłowski Institute of Electron Technology

The inclusive $(p, \alpha x)$ reaction has attracted considerable interest in connection with pre-equilibrium theories of nuclear reactions. In paper [1] for the first time the excitation of internal degrees of bounded α -particles was observed. It was shown that the enchancements of $(p, \alpha x)$. Cross section in the range of 20 MeV of excitation energy are due to two step reactions

$$p+T \rightarrow \alpha + (\alpha^* + ^8Be)$$
$$\rightarrow \alpha + X + \cdots$$

(T denotes target nuclei: ^{12}C , ^{16}O , ^{24}Mg). In paper [2] the α substructures in heavy nuclei (rare-Earth nuclei) were investigated with the help of $(e^-\alpha\nu)$ reactions.

It was shown that the comparison of the values of the cross sections

$$\left(\frac{d^2\sigma}{d\Omega dF_{\alpha}}\right)_{e^-\alpha}$$
 for $(e^-,\alpha\nu)$ reactions
$$\left(\frac{d^2\sigma}{d\Omega dF_{\alpha}}\right)_{n,\alpha}$$
 for (n,α) reactions

and

$$\left(\frac{d^2\sigma}{d\Omega dF_{\alpha}}\right)_{n,\alpha}$$
 for (n,α) reactions

allows the calculations of the mass of the intermediate boson W. From experimental data the value $m_w \sim 80 m_p$ is obtained.

References

- [1] M. Kozłowski, Lett. Nuovo Cimento, 31, (1981), p. 565.
- [2] M. Kozłowski, Lett. Nuovo Cimento, 27, (1980), p. 17.