SUPERSYMMETRY
 Problems: set 2

December 20, 2008

1. Define differential operators $P_{\mu}, \tilde{P}_{\mu}, Q_{\alpha}, \bar{Q}_{\dot{\alpha}}, D_{\alpha}, \bar{D}_{\dot{\alpha}}$ in superspace coordinates $\{x, \theta, \bar{\theta}\}$ as follows:

$$
\begin{gathered}
P_{\mu}=i \partial_{\mu}, \tilde{P}_{\mu}=-i \partial_{\mu}, \\
Q_{\alpha}=-i \frac{\partial}{\partial \theta^{\alpha}}+\sigma_{\alpha \dot{\alpha}}^{\mu} \bar{\theta}^{\dot{\alpha}} \partial_{\mu}, \\
\bar{Q}^{\dot{\alpha}}=-i \frac{\partial}{\partial \theta_{\dot{\alpha}}}+\left(\theta \sigma^{\mu} \epsilon\right)^{\dot{\alpha}} \partial_{\mu}, \\
D_{\alpha}=-i \frac{\partial}{\partial \theta^{\alpha}}-\sigma_{\alpha \dot{\theta}}^{\mu} \bar{\theta}^{\dot{\alpha}} \partial_{\mu}, \\
\bar{D}^{\dot{\alpha}}=-i \frac{\partial}{\partial \theta_{\dot{\alpha}}}-\left(\theta \sigma^{\mu} \epsilon\right)^{\dot{\alpha}} \partial_{\mu} .
\end{gathered}
$$

Show that

$$
\begin{gathered}
\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu},\left\{D_{\alpha}, \bar{D}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} \tilde{P}_{\mu}, \\
\left\{Q_{\alpha}, \bar{D}_{\dot{\alpha}}\right\}=0=\left\{Q_{\alpha}, D_{\alpha}\right\} .
\end{gathered}
$$

2. Given a general scalar superfield $S(x, \theta, \bar{\theta})=\phi(x)+\theta \psi(x)+\bar{\theta} \bar{\chi}(x)+$ $\theta^{2} M(x)+\bar{\theta}^{2} N(x)+\theta \sigma^{\mu} \bar{\theta} A_{\mu}(x)+\theta^{2} \bar{\theta} \bar{\lambda}(x)+\bar{\theta}^{2} \theta \rho(x)+\theta^{2} \bar{\theta}^{2} D(x)$ find the supersymmetry transformations of the component fields. Remember that $\delta_{\xi} S=(i \xi Q+i \bar{\xi} \bar{Q}) S$.
3. Given a chiral superfield Φ find the component expansion of $\log (\Phi)$ and Φ^{n}, where n is a natural number.
4. For a general real superfield $V=V^{\dagger}$ find the D-component of V^{n}, where n is a natural number.
5. Define a "spurion" superfield $Z=a+b \theta^{2}+b^{*} \bar{\theta}^{2}+c \theta^{2} \bar{\theta}^{2}$, where a, b, c are complex numbers. Does Z behave like a proper superfield under supersymmetry transformations? Find the component expansion for the Lagrangian density

$$
\int d^{4} \theta Z \Phi^{\dagger} \Phi
$$

where Φ is a chiral superfield. Is the theory described by this Lagrangian density supersymmetric?
6. Find the component expansion of the Lagrangian density

$$
\begin{gathered}
\int d^{4} \theta\left(\Phi_{1}^{\dagger} e^{-V} \Phi_{1}+\Phi_{2}^{\dagger} e^{+V} \Phi_{2}+2 \xi V\right) \\
\int d^{2} \theta\left(m \Phi_{1} \Phi_{2}+\frac{1}{M}\left(\Phi_{1} \Phi_{2}\right)^{2}-\frac{1}{4} W^{\alpha} W_{\alpha}\right)+h . c .
\end{gathered}
$$

Use the Wess-Zumino gauge for the vector superfield, $V=\theta \sigma^{\mu} \bar{\theta} A_{\mu}(x)+$ $i \theta^{2} \bar{\theta} \bar{\lambda}(x)-i \bar{\theta}^{2} \theta \lambda(x)+\frac{1}{2} D(x)$. The $\Phi_{1,2}$ are chiral superfields with charges $-1,+1$ respectively.
7. Show that one can define components of a chiral superfield Φ as follows:

$$
\begin{gathered}
\mathcal{A}=\left.\Phi\right|_{0}, \quad \chi_{\alpha}=\left.\frac{i}{\sqrt{2}} D_{\alpha} \Phi\right|_{0}, \\
\mathcal{F}=\left.\frac{1}{4} D^{2} \Phi\right|_{0},
\end{gathered}
$$

where $\left.\right|_{0}$ means $\theta_{\alpha}=\bar{\theta}_{\dot{\beta}}=0$.
8. Consider an $S U(2), N=1$ supersymmetric theory with three chiral superfields on the adjoint representation of $S U(2): \Phi_{1,2,3}$. The superpotential is given by

$$
W=\epsilon_{i j k} \operatorname{Tr} \Phi_{i}\left[\Phi_{j}, \Phi_{k}\right]
$$

where $\epsilon_{123}=1$. The Kähler potential is the minimal renormalizable one. Is supersymmetry broken in this model? Next, add to the superpotential

$$
\delta W=\sum_{i} m_{i} \operatorname{Tr} \Phi_{i}^{2} .
$$

What about supersymmetry breaking in the presence of these terms? Show that the equations of motion become $\left[\Phi_{i}, \Phi_{j}\right]=\epsilon_{i j k} m_{k} \Phi_{k}$. Which matrices satisfy these equations?

