SUPERSYMMETRY Problems: set 2

December 20, 2008

1. Define differential operators P_{μ} , \tilde{P}_{μ} , Q_{α} , $\bar{Q}_{\dot{\alpha}}$, D_{α} , $\bar{D}_{\dot{\alpha}}$ in superspace coordinates $\{x, \theta, \bar{\theta}\}$ as follows:

$$\begin{split} P_{\mu} &= i\partial_{\mu}, \ \tilde{P}_{\mu} = -i\partial_{\mu}, \\ Q_{\alpha} &= -i\frac{\partial}{\partial\theta^{\alpha}} + \sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\partial_{\mu}, \\ \bar{Q}^{\dot{\alpha}} &= -i\frac{\partial}{\partial\theta_{\dot{\alpha}}} + (\theta\sigma^{\mu}\epsilon)^{\dot{\alpha}}\partial_{\mu}, \\ D_{\alpha} &= -i\frac{\partial}{\partial\theta^{\alpha}} - \sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\partial_{\mu}, \\ \bar{D}^{\dot{\alpha}} &= -i\frac{\partial}{\partial\theta_{\dot{\alpha}}} - (\theta\sigma^{\mu}\epsilon)^{\dot{\alpha}}\partial_{\mu}. \end{split}$$

Show that

$$\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}, \ \{D_{\alpha}, \bar{D}_{\dot{\alpha}}\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}\tilde{P}_{\mu}, \{Q_{\alpha}, \bar{D}_{\dot{\alpha}}\} = 0 = \{Q_{\alpha}, D_{\alpha}\}.$$

- 2. Given a general scalar superfield $S(x, \theta, \bar{\theta}) = \phi(x) + \theta \psi(x) + \bar{\theta} \bar{\chi}(x) + \theta^2 M(x) + \bar{\theta}^2 N(x) + \theta \sigma^{\mu} \bar{\theta} A_{\mu}(x) + \theta^2 \bar{\theta} \bar{\lambda}(x) + \bar{\theta}^2 \theta \rho(x) + \theta^2 \bar{\theta}^2 D(x)$ find the supersymmetry transformations of the component fields. Remember that $\delta_{\xi} S = (i\xi Q + i\bar{\xi}\bar{Q})S$.
- 3. Given a chiral superfield Φ find the component expansion of $\log(\Phi)$ and Φ^n , where n is a natural number.
- 4. For a general real superfield $V = V^{\dagger}$ find the D-component of V^n , where n is a natural number.

5. Define a "spurion" superfield $Z = a + b\theta^2 + b^*\bar{\theta}^2 + c\theta^2\bar{\theta}^2$, where a, b, c are complex numbers. Does Z behave like a proper superfield under supersymmetry transformations? Find the component expansion for the Lagrangian density

$$\int d^4\theta \, Z \Phi^\dagger \Phi,$$

where Φ is a chiral superfield. Is the theory described by this Lagrangian density supersymmetric?

6. Find the component expansion of the Lagrangian density

$$\int d^{4}\theta \left(\Phi_{1}^{\dagger} e^{-V} \Phi_{1} + \Phi_{2}^{\dagger} e^{+V} \Phi_{2} + 2\xi V \right)$$
$$\int d^{2}\theta \left(m \Phi_{1} \Phi_{2} + \frac{1}{M} (\Phi_{1} \Phi_{2})^{2} - \frac{1}{4} W^{\alpha} W_{\alpha} \right) + h.c.$$

Use the Wess-Zumino gauge for the vector superfield, $V = \theta \sigma^{\mu} \bar{\theta} A_{\mu}(x) + i \theta^2 \bar{\theta} \bar{\lambda}(x) - i \bar{\theta}^2 \theta \lambda(x) + \frac{1}{2} D(x)$. The $\Phi_{1,2}$ are chiral superfields with charges -1, +1 respectively.

7. Show that one can define components of a chiral superfield Φ as follows:

$$\mathcal{A} = \Phi|_0, \ \chi_\alpha = \frac{i}{\sqrt{2}} D_\alpha \Phi|_0,$$
$$\mathcal{F} = \frac{1}{4} D^2 \Phi|_0,$$

where $|_0$ means $\theta_{\alpha} = \bar{\theta}_{\dot{\beta}} = 0$.

8. Consider an SU(2), N = 1 supersymmetric theory with three chiral superfields on the adjoint representation of SU(2): $\Phi_{1,2,3}$. The superpotential is given by

$$W = \epsilon_{ijk} Tr \, \Phi_i [\Phi_j, \Phi_k],$$

where $\epsilon_{123} = 1$. The Kähler potential is the minimal renormalizable one. Is supersymmetry broken in this model? Next, add to the superpotential

$$\delta W = \sum_{i} m_i Tr \, \Phi_i^2.$$

What about supersymmetry breaking in the presence of these terms? Show that the equations of motion become $[\Phi_i, \Phi_j] = \epsilon_{ijk} m_k \Phi_k$. Which matrices satisfy these equations?