Krzysztof Wohlfeld Institute of Theoretical Physics Faculty of Physics, University of Warsaw Pasteura 5, PL-02093 Warsaw +48 22 55 32 902 k.wohlfeld@uw.edu.pl https://www.fuw.edu.pl/~kwohlfeld/ ORCID: 0000-0002-6524-8264

 \mathbf{CV}

Education

Degree	Organisation	Duration
Habilitation	University of Warsaw, PL	02.2018 -
	Faculty of Physics	12.2018
PhD: theoretical physics	Jagiellonian University, PL	10.2005-
advisor: A. M. Oles	Faculty of Physics, Astronomy & Computer Science	06.2009
Master: theoretical physics	Jagiellonian University, PL	10.2000-
advisor: A. M. Oles	Faculty of Physics, Astronomy & Computer Science	06.2005

Employment

Role	Organisation	Duration
Associate professor	University of Warsaw, PL	02.2022 -
(permanent position)	Faculty of Physics	Present
Assistant professor	University of Warsaw, PL	02.2015-
(tenure track)	Faculty of Physics	01.2022
Postdoc	Stanford University, US	10.2012-
advisor: T. P. Devereaux	Stanford Institute for Materials and Energy Sciences	02.2015
Postdoc	IFW Dresden, DE	10.2009-
advisor: J. van den Brink	[2010-12 as Humboldt fellow]	10.2012
Visiting PhD student	MPI for Solid State Research, DE	09.2008-
	Department W. Metzner	01.2009
Visiting PhD student	MPI for Solid State Research, DE	03.2008-
	Department W. Metzner	07.2008
Traineeship	Paul Scherrer Institute, CH	07.2003-
	Ultracold Neutron Group	09.2003

Major achievements

Achievement 1: Formulation of the spin-orbital separation concept

- (A) Together with my theoretical and experimental co-workers about 13 years ago we came up with an idea that in a 1D interacting electronic system electron's orbital quantum number can split from the spin and move separately as a so-called orbiton. In general, this concept is somewhat similar to the established spin-charge separation (splitting of electron's spin and charge quantum number)—though a number of subtle differences between these two ideas exist. We published few of works on this problem, starting with the theoretical foundations [1] and then describing several experimental realizations [2, 5-6] and further theoretical descriptions [3,4].
- (B) My role: coming up with the concept, performing the analytical calculations, interpreting the experiments.

References:

- [1] K. Wohlfeld, M. Daghofer, S. Nishimoto, G. Khaliullin, J. van den Brink, "Intrinsic Coupling of Orbital Excitations to Spin Fluctuations in Mott Insulators"; Physical Review Letters **107**, 147201 (2011).
- [2] J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S. Nishimoto, Singh, A. Revcolevschi, J.-S. Caux, L. Patthey, H. M. Ronnow, J. van den Brink, and T. Schmitt, "Spin-Orbital Separation in the quasi 1D Mott-insulator Sr₂CuO₃"; Nature 485, 82 (2012).
- [3] K. Wohlfeld, S. Nishimoto, M. W. Haverkort, J. van den Brink, "Microscopic origin of spin-orbital separation in Sr₂CuO₃"; Phys. Rev. B **88**, 195138 (2013).
- [4] C. C. Chen, M. van Veenendaal, T. P. Devereaux, K. Wohlfeld, "Fractionalization, entanglement, and separation: understanding the collective excitations in a spin-orbital chain"; Phys. Rev. B **91**, 165102 (2015).
- [5] V. Bisogni, K. Wohlfeld, S. Nishimoto, C. Monney, J. Trinckauf, K.J. Zhou, R. Kraus, K. Koepernik, C. Sekar, V. Strocov, B. Buchner, T. Schmitt, J. van den Brink, J. Geck, "Spin-orbital separation in the anisotropic ladder system CaCu₂O₃"; Phys. Rev. Lett. 114, 096402 (2015).
- [6] R. Fumagalli, J. Heverhagen, D. Betto, R. Arpaia, M. Rossi, D. Di Castro, N. B. Brookes, M. M. Sala, M. Daghofer, L. Braicovich, K. Wohlfeld, G. Ghiringhelli, "Mobile orbitons in Ca₂CuO₃: crucial role of the Hund's exchange"; Physical Review B 101, 205117 (2020).

Achievement 2: Complete understanding of ARPES on undoped cuprates

(A) Over the last years, together with my colleagues, I have been following a program whose main aim is to fully understand the ARPES spectra of the undoped cuprates. On the theoretical level this translates into a thorough comprehension of the properties of one hole that is being added to the undoped t-J and Hubbard models. All of our main achievements are centered around the concept that to understand this problem one needs to go beyond the idea of a "hole coupled to linear spin waves":

- we attributed the onset of the dominant (the "waterfall") feature of the 2D Hubbard spectrum to the so-called three-site terms [1],
- we understood the origin of the differences between a hole in the 1D and 2D antiferromagnets (i.e. the collapse of the string potential and onset of spin-charge separation) as following from the special role played by the magnon-magnon interactions and the hard-core nature of the bosonic magnons in 1D [2-3],
- finally, we showed that the hole in the 2D Neel antiferromagnet is never in a strictly linear potential, which contradicts the generally accepted paradigm [L.N. Bulaevskii *et al.*, JETP **27**, 836 (1968)], *cf.* [4].
- (B) My role here was centered around postulating the above questions, giving first intuitive answers to them and developing some of the analytical calculations.

References:

- Y. Wang, K. Wohlfeld, B. Moritz, C. J. Jia, M. van Veenendaal, K. Wu, C.-C. Chen, T. P. Devereaux, "Origin of Strong Dispersion in Hubbard Insulators"; Phys. Rev. B 92, 075119 (2015).
- [2] K. Bieniasz, P. Wrzosek, A. M. Oles, K. Wohlfeld, "Superexponential Wave Function Decay: A Fingerprint of Strings in Doped Antiferromagnets"; SciPost Physics 7, 066 (2019).
- [3] P. Wrzosek, A. Klosinski, Y. Wang, M. Berciu, C. E. Agrapidis, K. Wohlfeld, "The fate of the spin polaron in the 1D antiferromagnets"; SciPost Physics 17, 018 (2024).
- [4] P. Wrzosek and K. Wohlfeld, "Hole in the 2D Ising Antiferromagnet: Origin of the Incoherent Spectrum", Phys. Rev. B **103**, 035113 (2021).

Achievement 3: Predicting peculiar topological properties of a p orbital system

- (A) We recently posted a prediction of a novel type of topologically nontrivial SSH-like physics that should be realized in the helical chains of elemental chalcogens [1]. Crucially, this was just experimentally confirmed using ARPES and DFT calculations by Nakayama *et al.* (Nature 2024, DOI: 10.1038/s41586-024-07484-z).
- (B) My role here was to understand the system following my "orbital physics" experience and then building a connection to the well-known SSH system.

References:

[1] A. Klosinski, W. Brzezicki, A. Lau, C. E. Agrapidis, A. M. Oles, J. van Wezel, K. Wohlfeld, "Topology of chalcogen chains"; Phys. Rev. B **107**, 125123 (2023).

Students, grants, longer visits after postdocs

(A) Supervision of three PhD students (graduated in 2021 and in 2023; one *cum laude*).

- (B) "Sonata-bis" grant of the Polish grant agency NCN (2017-2023); several smaller grants.
- (C) Referee for the grant agencies: ERC (EU), SNF (Switzerland), DFG (Germany).
- (D) Visits: University of British Columbia (research; host: prof. Mona Berciu; 08.2018); Tokyo University of Science (professorship; host: prof. Takami Tohyama; 01.2023); University of Geneva (professorship; host: prof. Louk Rademaker; 02-04.2024).