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An artist’s impression of GWs emitted by a Binary Neutron Star (BNS) system
[R. Hurt/Caltech-JPL].

Gravitational Waves (GW)
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● Predicted by Einstein in General 
Relativity (GR).

● Accelerating masses emit GW.

● Time variation of the mass 
quadrupole moment.

● Transverse waves of spatial 
strain: plus and cross 
polarization.



● Predicted by Einstein in General 
Relativity (GR).

● Accelerating masses emit GW.

● Time variation of the mass 
quadrupole moment.

● Transverse waves of spatial 
strain: plus and cross 
polarization.

● Terrestrial sources produce 
GW with strain amplitude too 
weak to detect.
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Gravitational Waves (GW)

An artist’s impression of GWs emitted by a Binary Neutron Star (BNS) system
[R. Hurt/Caltech-JPL].
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Long 
Duration

Short 
Duration

Continuous
Rotating Neutron Star (NS) 
with surface 
imperfections.

Stochastic
Cosmic GW 
background from the 
early universe.

Compact Binary Coalescence (CBC)

Burst
Core-Collapse 
Supernova (CCSN).

Modeled Unmodeled 

[C. Reed, Penn State] [NASA/WMAP Science Team]

[SXS Project] [NASA, ESA, J. Hester, ASU]

Sources of GW

- Binary Black Hole (BBH)
- Binary Neutron Star (BNS)
- Neutron Star - Black Hole
  (NSBH)
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background from the 
early universe.

Burst
Core-Collapse 
Supernova (CCSN).

Modeled Unmodeled 

Sources of GW

Compact Binary Coalescence (CBC)

- Binary Black Hole (BBH)
- Binary Neutron Star (BNS)
- Neutron Star - Black Hole
  (NSBH)

90 CBC signals detected by ground-based detectors! 

[C. Reed, Penn State] [NASA/WMAP Science Team]

[SXS Project] [NASA, ESA, J. Hester, ASU]



[SXS Project] [Phys. Rev. Lett. 119, 161101]

[T. Pyle, Caltech/MIT/LIGO Lab]
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Detecting GW Signals from CBC
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Detecting GW Signals from CBC

[Nature Reviews Physics 3, 344–366 (2021)][SXS Project] [Phys. Rev. Lett. 119, 161101]

[T. Pyle, Caltech/MIT/LIGO Lab]



● Each detector has two 4km long 
arms, setup like a Michelson 
interferometer.

● Extreme sensitivity attained of the 
order of h=ΔL/L~O(10-23) which is 
the expected gravitational wave 
strain from an astrophysical 
source.

● LIGO sensitive frequency band 
10Hz - 1000Hz.

● LIGO- Virgo-KAGRA (LVK) 
collaboration has detected 90 
CBC signals so far [GWTC-3].

Inspiral

Merger
Ringdown

GW150914

GW170729

GW190521

more sensitive

less sensitive

Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors at Hanford (H1) and Livingston (L1).

[GW190521 webinar]

60M
☉

80M
☉156M

☉

LIGO Detectors
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https://arxiv.org/abs/2111.03606
https://dcc.ligo.org/LIGO-G2001426/public


Underground 
detector.

(2032/2036)
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Gravitational-wave Network



(2032/2036)
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Gravitational-wave Network



11

GW Sensitivity Across Observing Runs

    Plans underway
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GW Sensitivity Across Observing Runs

    Plans underway
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What have we seen so far?
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GW Detections from the First Three Observing Runs



● Black holes (BH) with masses in the range 100 M
⊙
- 105 M

⊙
.

● Missing link between stellar mass (< 100 M
⊙
) and 

supermassive (> 105 M
⊙
) BH.

● Various IMBH candidates proposed from EM observations, 
empirical mass-scaling relations, hyper-luminous X-ray 
sources, but aren’t conclusive.

● Most massive BH observed via GW in the third observing 
run (O3) of LIGO - GW190521 event. 
○ First conclusive evidence of IMBH < 103 M

⊙
, with its 

total mass 142 M
⊙
 (component masses 85 M

⊙
 and 66 

M
⊙
).

● Primary component of GW190521 - interesting candidate 
with far-reaching astrophysical implications.
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[Event Horizon Telescope]

Supermassive BH > 105 M
⊙

[Ute Kraus/Wikipedia, CC BY-SA]

Stellar mass BH < 100 M
⊙

100 M
⊙
 < IMBH < 105 M

⊙

Intermediate Mass Black Holes (IMBHs)
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Sufficiently heavy He core mass can provide suitable 
conditions for abundant pair production 
(electron-positron) which causes the star to violently 
implode.

● Stars with He core mass in (32 M
⊙
, 64 M

⊙
) - 

pulsational pair instability supernova (PPSN) - 
remnant BH mass < 64 M

⊙
.

● Stars with He core mass in (64 M
⊙
, 135 M

⊙
) - 

pair instability supernova (PISN) - 
no compact remnant (PISN mass gap).

● Stars with He core mass > 135 M
⊙
 

directly collapse to form an IMBH.

Masses of the GW detections from first and second 
observing runs (O1 and O2) of LIGO + GW190521 event. 

[LIGO/Caltech/MIT/R. Hurt (IPAC)].

Pair Instability Mass Gap
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Sufficiently heavy He core mass can provide suitable 
conditions for abundant pair production 
(electron-positron) which causes the star to violently 
implode.

● Stars with He core mass in (32 M
⊙
, 64 M

⊙
) - 

pulsational pair instability supernova (PPSN) - 
remnant BH mass < 64 M

⊙
.

● Stars with He core mass in (64 M
⊙
, 135 M

⊙
) - 

pair instability supernova (PISN) - 
no compact remnant (PISN mass gap).

● Stars with He core mass > 135 M
⊙
 

directly collapse to form an IMBH.

Primary component BH of GW190521 lies in the PISN 
mass gap and can't be a SN remnant - raises 
questions on the possible formation channels.

Pair Instability Mass Gap

Masses of the GW detections from first and second 
observing runs (O1 and O2) of LIGO + GW190521 event. 

[LIGO/Caltech/MIT/R. Hurt (IPAC)].



● Hierarchical mergers: 
○ Mergers involving one or two second generation (2g) BHs.
○ First generation (1g) merger of BHs can produce a 

2g BH in the PISN mass gap.
○ Triple systems or dynamic capture in a dense cluster. 

● Active Galactic Nucleus (AGN) disk: 
○ Dense and hot environment hosting O(10,000) BHs. 
○ BBH mergers are expected to stay in the AGN disk and 

acquire another companion BH.

● Stellar merger scenario:
○ Star with over-sized Hydrogen envelope.
○ Direct collapse into BH in the PISN mass gap without 

encountering PISN/PPSN.
○ Merger with companion main sequence star required to 

get over-sized H envelope.
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Different merger scenarios. 
[GW190521 webinar].

Giant star 
with He 
core

MS
star

1g

1g

2g

Stellar 
merger 
product

Black hole 
in PI gap

[Credit: Imre Bartos]

[Credit: Ugo N. Di Carlo]

Possible Formation Channels

https://dcc.ligo.org/LIGO-G2001426/public
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How do we distinguish between 
formation channels?
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The Role of Eccentricity

Orbital eccentricity is a key signature that points to 
dynamical formation!

● Isolated field binaries: long-lived binaries circularize -> 
Negligible eccentricity [Peters, 1964].

● Dynamical formation: Dynamically formed binaries 
merge rapidly ->  retain eccentricity [Zwart and McMillan, 
ApJL 2000].

● Kozai-Lidov Mechanism: Binary system perturbed by a 
third body [Fragione and Kocsis, MNRAS 2022]. 

○ Oscillations in eccentricity and inclination of the 
inner orbit.

○ High eccentricity ->  GW bursts -> binary system 
merges quickly -> retains eccentricity.

● Mergers in AGN: Binary-single interactions within the 
disk are frequent, lead to eccentric mergers [Samsing, 
Bartos et al., Nature 2022].

AGN disk with a central supermassive black hole and smaller black 
holes orbiting it [Samsing et al. Nature, 2022].
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Gravitational Waves from Eccentric Binary Mergers

● Dependence of signal 
morphology on orbital 
eccentricity.

● GW amplitude does not rise 
monotonically with time for 
eccentric mergers.

● As eccentricity is increased, the 
signal duration becomes shorter.
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Searches for Gravitational Waves



● Modeled Search:
○ Looks for sources that are well 

modeled.
○ Accurate waveforms are used 

to construct template banks 
e.g. CBC.

○ Uses Matched Filtering, 
example - PyCBC, GstLAL.
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● Unmodeled Search:
○ Looks for sources with minimal dependence on accurate 

waveform models.
○ Can detect unmodeled sources e.g. CCSN and poorly modeled 

CBC sources.
○ Searches for excess power in the time-frequency domain, 

example - Coherent WaveBurst (cWB).
[S V Dhurandhar, Pramana – J. Phys., 2004].

Search Types
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● Template bank searches cannot be employed to search for GW signals from eccentric binary 
black hole (eBBH) mergers.

○ Lack of accurate eccentric waveform templates. 
○ Circular template bank -> loss in signal-to-noise ratio significant for e>0.1 [Brown and 

Zimmerman Phys. Rev. D, 2010].
● Eccentricity: time dependent quantity. 

○ Must be defined at a reference frequency.
● Eccentricity definition not standardized yet, varies between different waveform models as well as 

astrophysical models.

Challenges with Eccentric Binary Merger Detection
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Signatures of Eccentricity in GWTC-3
[Romero-Shaw et al. ApJ, 2022]

● At least 4 events that show significant support for e > 0.1 at 10 Hz using an aligned-spin eccentric model 
SEOBNRE.  

● Reweighting technique for parameter estimation, higher-order modes excluded from waveform model.
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Signatures of Eccentricity in GWTC-3

● Parameter estimation was performed with the NR waveforms - authors concluded that this was 
indeed consistent with an eBBH merger with e~0.7 [Gayathri, V. et al. Nat Astron, 2022].

● Bayesian parameter estimation with semi-analytical waveforms gave similar results [Gamba, R. et al. 
Nat Astron, 2022; Romero-Shaw et al. ApjL, 2020].
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Model-Independent Search



● Coherent WaveBurst (cWB) is a 
model-agnostic search algorithm 
[S. Klimenko+ 2008, S. Klimenko+ 2016].

● cWB maps generic properties of GW events 
into summary statistics. 

● Gravitational Wave (GW) signals can be 
mimicked by short duration detector glitches.

● The standard veto method uses a priori 
defined thresholds on the cWB summary 
statistics to distinguish between a GW signal 
and noise.

28

Excess power in time-frequency domain 
[GW190521 webinar]

Coherent WaveBurst

https://iopscience.iop.org/article/10.1088/0264-9381/25/11/114029
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.042004
https://dcc.ligo.org/LIGO-G2001426/public
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● High mass BBH signals are of shorter duration and exhibit mostly the merger-ringdown parts in 
the LIGO sensitive frequency band.

● Lack of inspiral makes the signal prone to be mimicked by instrumental and other non-Gaussian 
glitches.

● In cWB we employ the veto method to separate noise and GW signals.

High mass BBH and anthropogenic noise glitch comparison [Brendan O’Brien, PhD Thesis].

● The detection confidence can be compromised by the presence of non-Gaussian noise transients 
and instrumental noise known as glitches.

Detection Confidence



● All events below the a priori defined thresholds are discarded as noise. Example of a standard 
veto: norm > 4.0 where norm is the ratio of reconstructed energy to total energy, a summary 
statistic estimated by cWB.

● Designing the vetoes in the multidimensional summary statistics space is time consuming and 
complex.

● The vetoes need redefinition for each observing run and detector network.

Standard veto method illustration [Shubhagata Bhaumik, UF LIGO].
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Separation of Signal from Glitches
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Search for eBBH in LIGO and Virgo’s O3 Run

Goals of the O3 eBBH Search:

● Optimize search algorithms for GW signals from eBBH systems.
● Carry out search in O3 data.
● Perform follow-up analysis for interesting events.
● Astrophysical interpretation of search results.
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Search Results

One new event (S190706an) not detected by other pipelines 
with Inverse False Alarm Rate (IFAR) = 1.32 yr.
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Search Sensitivity

● Total source-frame mass: [70 
M⊙, 200 M⊙].

● Eccentricity e in [0.0, 0.3].
● Mass ratio q (m2/m1) = 

{0.33, 0.5, 1.0}.
● Non-spinning systems.

Sensitive volume-time was used to 
place constraints on merger rates 
for different formation scenarios.

NR Waveforms from the SXS 
Catalog
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How did we take this to the next level?
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cWB upgrade for O4 - WaveScan

● New time-frequency (TF) transform based on wavescan [S Klimenko 2022].
○ High-resolution TF maps with suppression of temporal and spectral leakage. 

● Both cross-power and excess-power statistics used for efficient selection of transient events.

https://arxiv.org/abs/2201.01096
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cWB upgrade for O4 - Machine Learning

Reduced detection statistic:

WXGB is the penalty factor provided by the ML 
algorithm [T. Mishra+ 2021, T. Mishra+ 2022].                              

      is the cWB detection statistic based on the 
coherent energy.

XGBoost flow chart for building an ensemble of 
trees. [Rui Guo+ 2020]

Dark Gray       -> Background
Light Red        -> IMBH Simulations
Dark Magenta -> BBH Simulations

XGB

● Subset of summary statistics used as input features for the ML algorithm 
XGBoost - a boosted decision-tree based ensemble learning classifier 
algorithm. 

● Single XGB model is trained to identify both stellar mass and intermediate 
mass binary black hole (BBH) mergers: Combined BBH-IMBH search.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.023014
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.083018
https://www.researchgate.net/publication/345327934_Degradation_state_recognition_of_piston_pump_based_on_ICEEMDAN_and_XGBoost
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● Improved detection efficiency by approximately ~40% at IFAR>1yr for all BBH simulations as 
compared to the standard (2G) cWB search.

● GW events detected with equivalent or higher significance including GW190521.
● 3 new cWB-only events detected with IFAR > 1yr. 

Search Results on O3
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GW190521 IMBH event

● First conclusive evidence of IMBH. 
○ Detected by cWB with highest significance as compared to template-based searches.

SNR = 14.7L1

H1



39

Fourth Observing Run (O4)

● The updated cWB was used in the low latency searches during the first half of the 
fourth observing run (O4a) [May 2023 - Jan 2024].

○ Out of the 81 significant detection candidates in O4a [Public Alerts GraceDB], 
the Online cWB search detected 57 (70% of all significant detections).

● Offline analysis for O4a in progress. 

● O4b has started [May 2024 -  ~ 2025/26]. 

https://gracedb.ligo.org/superevents/public/O4/
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Summary

● Model-independent searches like Coherent WaveBurst (cWB) are crucial in detecting GW 
signals from uncommon sources like IMBH mergers.

● Optimized search using cWB was performed for eBBH signals in O3.

● cWB was recently upgraded with WaveScan, and now employs an ML method, resulting in 
a ~40% improvement for BBH signals.

○ Updated cWB search sees new BBH events not detected by other LVK searches.

● O4 run underway: Detected 70% of 81 significant detection candidates in O4a.

● Possibility of detecting GWs from unexpected and exotic sources like eccentric binary 
mergers, hyperbolic encounters, unequal mass ratio mergers, Core-collapse SN (CCSN), 
and so on!



41

Thank You.

For more exciting GW research contact Prof. Marek Szczepanczyk!

Website - https://www.fuw.edu.pl/~mszczepanczyk/ , 
E-mail - marek.szczepanczyk@fuw.edu.pl 

Office - Pasteura 5, room 5.45, 02-093 Warsaw, Poland

https://www.fuw.edu.pl/~mszczepanczyk/

