
Rovibrational energy levels of the hydrogen molecule through nonadiabatic perturbation theory

Jacek Komasa and Mariusz Puchalski
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
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We present an accurate theoretical determination of rovibrational energy levels of the hydrogen molecule and
its isotopologues in its electronic ground state. We consider all significant corrections to the Born-Oppenheimer
approximation, obtained within nonadiabatic perturbation theory, including the mixed nonadiabatic-relativistic
effects. Quantum electrodynamic corrections in the leading α5m and the next-to-leading α6m orders, as well
as finite nuclear size effect, are also taken into account but within the Born-Oppenheimer approximation only.
Final results for the transition wavelength between rovibrational levels achieve accuracy of the order of 10−3–
10−7 cm−1, and are provided by simple to use computer code.

I. INTRODUCTION

The hydrogen molecule is one of the simplest chemical sys-
tems. Nevertheless, it has a rich spectrum of rovibrational
levels with lifetimes of the order of 105–106 s. Thanks to
these long lifetimes, the contemporary measurements of tran-
sition frequencies between rovibrational levels in H2 and its
isotopologues has reached an accuracy level of 10−8 and in
unique cases even 10−9 [1–14]. In parallel, recent advances
in a theoretical method—the nonadiabatic perturbation the-
ory (NAPT)—have enabled accurate prediction for an arbi-
trary vibration and rotation quantum number of an arbitrary
hydrogen isotopologue. Thus, theoretical progress and exper-
imental availability make it an attractive candidate for precise
tests of quantum electrodynamic (QED) theory and the search
for a new physics.

This paper presents the framework of theoretical methods
for calculation of nonrelativistic energies and of relativistic
and QED corrections up to α7m order, together with the im-
proved calculations of the so called heteronuclear potential.
All the recent advances, including the complete α6m and the
α4m2/M corrections, as well as direct four-body calculations
of nonrelativistic energies, have been included. Results of
these calculations, in the form of pertinent internuclear poten-
tials have been implemented in a publicly available computer
code [15]; therefore, this work provides the highest accuracy
of all the energy levels and transition frequencies for the hy-
drogen molecule in the ground electronic state. Depending
on the isotopic contents and on the molecular level, the abso-
lute accuracy ranges from 10−3 to 10−4 cm−1, mostly limited
by the yet unknown α5m2/M correction or the higher-order
nonadiabatic nonrelativistic effects.

This work finds application in many areas of physics rang-
ing from astrophysical observations [16], through verification
of experimental spectra [17, 18], to measurements of the neu-
trino mass [19].

II. NRQED FRAMEWORK

The most convenient theoretical framework for the accu-
rate description of light molecular systems is nonrelativistic
quantum electrodynamics (NRQED). It is an effective theory
derived from relativistic QED by matching the scattering am-
plitude up to certain powers in external momenta [20]. The
main advantage of NRQED approach is that all the correc-
tions are implemented on the top of a nonrelativistic Hamil-
tonian, and one can use the standard perturbation theory with
the nonrelativistic wave function.

The principal assumption in NRQED, is that the total en-
ergy can be expanded in powers of the fine-structure constant
α (with m being the mass of the electron)

E(α) = α2mE(2) + α4m
(
E(4) + E

(4)
FS

)
+ α5mE(5)

+ α6mE(6) + ..., (1)

where E(4)
FS is the finite nuclear size correction. E(n) may

include also powers of lnα, which is not shown explicitly.
The expansion terms are interpreted subsequently as the non-
relativistic energy E(2), the relativistic correction E(4), the
leading QED correction E(5), and the higher-order QED cor-
rections E(i), i ≥ 6. All these contributions can be ex-
pressed as expectation values of certain operators derived
within NRQED theory, with a Schrödinger wave function.

III. NONRELATIVISTIC ENERGY E(2)

The leading term of Eq. (1) is an eigenvalue of the
Coulomb-Schrödinger Hamiltonian (in atomic units)

H(2) = −
∑
a

~∇2
a

2ma
+
∑
a>b

Za Zb
rab

, (2)

where ma is the mass of the ath particle, Za its charge, and
a, b go over all of the particles in the system (two electrons
and two nuclei). This eigenvalue is determined using two dis-
tinct methods. The first one, called here “direct,” relies on
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a variational solution of the four-body Schrödinger equation
with fully nonadiabatic wave function expanded in the basis
of the nonadiabatic James-Coolidge (naJC) functions [21]. By
this approach, the energy of a given rovibrational level can
be evaluated to a very high accuracy but requires a separate
computationally intensive variational calculation. Hence, cur-
rently, a limited fraction of the energy levels evaluated with
this method are available. The second method relies on the
expansion of the energy in a small parameter, being a ratio
of the electron-to-nuclei mass. Within this perturbative ap-
proach, called the nonadiabatic perturbation theory (NAPT),
a set of nuclear interaction potentials is constructed, which,
in turn, enable all the energy levels collectively to be deter-
mined in a single calculation at insignificant computational
cost. Both methods are briefly described in the following sub-
sections.

A. Direct evaluation of E(2)

This method is conceptually very simple. It relies on a vari-
ational solution of the Schrödinger equation

H(2)Ψ = E(2)Ψ (3)

by expanding the wave function Ψ in a four-particle basis

Ψ =
∑
k

ck ψ{k}(~rA, ~rB , ~r1, ~r2) . (4)

The obtained matrix form of the Schrödinger equation

(H− E(2) S)C = 0 (5)

is then solved using an inverse iteration method with effi-
ciently parallelized linear algebra algorithms. The basis func-
tions employed in this expansion are the exponential functions
of the form [21]

ψ{k} = e−αR−β(ζ1+ζ2)Rk0 rk112 η
k2
1 ηk32 ζk41 ζk52 , (6)

called nonadiabatic James-Coolidge (naJC) functions for their
resemblance to the classic functions introduced by James and
Coolidge in 1933 [22]. The R ≡ rAB variable represents the
internuclear distance, r12 —the interelectron distance and the
meaning of the remaining variables present in this function is
the following ζa = raA+raB and ηa = raA−raB . The α and
β in Eq. (6) denote nonlinear variational parameters, common
for the whole set of basis functions called “sector,” and kj are
non-negative integers collectively denoted as {k}. If needed,
two or more sectors (with different pairs of α(i) and β(i)) can
be used. Technical details concerning the evaluation of the
matrix elements of H and S can be found in Refs. [21, 23, 24].

From the study of the energy convergence with the increas-
ing size of the basis set, we observe that the nonrelativistic
results obtained with this method reach a relative numerical
accuracy of 10−13 − 10−14 [21, 23–25]. In principle, this ac-
curacy can be further increased, but in view of the fact that
the uncertainties from physical constants appear at the level
of 10−12, there is currently no need for such efforts. All these
available energies corresponding to particular molecules and
rovibrational levels are supplied to the computer code [15] as
external data to be read whenever needed.

B. NAPT—the nonadiabatic perturbation theory

NAPT was introduced in Refs. [26, 27] and expanded later
in Refs. [28, 29]. It relies on a perturbative separation of elec-
tronic and nuclear movements. In the zeroth order, molecular
energy is obtained from the Born-Oppenheimer (BO) inter-
nuclear potential [30]. The next order, which goes with the
ratio of the electron mass me to the nuclear reduced mass
µn, is represented as an adiabatic correction to the BO po-
tential [31]. Higher-order corrections, which are quadratic
in the mass ratio, give additional R-dependent potentials and
R-dependent nuclear masses in the effective nuclear equation
[29]. These higher-order nonadiabatic potentials lead to rad-
ically increased accuracy of nonrelativistic levels. This sub-
section provides a concise description of the NAPT method.

Let the total wave function Ψ be a solution of the station-
ary Schrödinger equation (3) with the Hamiltonian partitioned
into the electronic and nuclear parts

H(2) = Hel +Hn . (7)

The clamped nuclei electronic Hamiltonian

Hel = −
∑
a

∇2
a

2me
+ V (8)

consists of the electronic kinetic energy term and the potential
V , which includes all the Coulomb interactions,

V = − 1

r1A
− 1

r1B
− 1

r2A
− 1

r2B
+

1

r12
+

1

R
, (9)

with the fixed positions of the nuclei. After separation of the
center of mass motion, the nuclear Hamiltonian in the refer-
ence frame fixed at the geometrical center of the nuclei, is

Hn = − ∇
2
R

2µn
− ∇

2
el

2µn
−
(

1

MB
− 1

MA

)
~∇R · ~∇el

= H ′n +H ′′n , (10)

where ~∇el = 1
2

∑
a
~∇a and µn = (1/MA + 1/MB)

−1 is the
nuclear reduced mass. The H ′n part is even with respect to the
inversion whereas the H ′′n is odd and vanishes for a homonu-
clear molecule.

The unperturbed (zeroth-order) wave function is assumed
in the form of the product

Ψa(~r, ~R) = φel(~r; ~R) χ(~R) (11)

of the nuclear wave function χ and the electronic wave func-
tion φel which implicitly depends on the nuclear coordinates
~R. The function φel fulfills the electronic Schrödinger equa-
tion

Hel φel = Eel(R)φel , (12)

while χ satisfies the nuclear equation with Eel(R) as an inter-
action potential.

Having this in mind, the total wave function can be ex-
pressed as a sum of terms parallel to and orthogonal to φel

Ψ = φel χ+ δφna , (13)
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where the latter means that the electronic matrix element

〈δφna|φel〉el = 0 (14)

vanishes. The symbol 〈. . . 〉el used henceforth represents an
integration over electronic coordinates only. With such a rep-
resentation of wave function, the Schrödinger equation (3) can
also be decomposed into parallel and orthogonal parts[

(Hel − Eel) + (Eel +Hn − E(2))
]
|φel χ+ δφna〉 = 0

(15)
and rearranged further to

(Eel−Hel)|δφna〉 = (Eel +Hn−E(2))|φel χ+ δφna〉. (16)

Since δφna is orthogonal to φel, the formal solution into the
above equation can be expressed in the following recursive
form employing the reduced resolvent 1

(Eel−Hel)′
:

|δφna〉 =
1

(Eel −Hel)′
[
Hn|φel χ〉+(Eel+Hn−E(2))|δφna〉

]
.

(17)
The left multiplication of Eq. (15) by 〈φel| gives

(Eel + Ea +Hn − E(2))|χ〉 = −〈φel|Hn|δφna〉el, (18)

with Ea(R) ≡ 〈φel|Hn|φel〉el being the adiabatic correc-
tion potential. Finally, insertion of (17) to the above equa-
tion forms a perturbative expansion for the effective nuclear
Hamiltonian

(Eel+Ea+Hn−E(2))|χ〉 = −(H(2)
n +H(3)

n +H(4)
n +. . .)|χ〉.

(19)
The leading terms of this series have the following explicit
form:

H(2)
n =

〈
φel

∣∣∣∣Hn
1

(Eel −Hel)′
Hn

∣∣∣∣φel〉el , (20)

H(3)
n =

〈
φel

∣∣∣∣Hn
1

(Eel −Hel)′
(Hn + Eel − E(2))

× 1

(Eel −Hel)′
Hn

∣∣∣∣φel〉el , (21)

and

H(4)
n =

〈
φel

∣∣∣∣Hn
1

(Eel −Hel)′
(Hn + Eel − E(2))

1

(Eel −Hel)′

× (Hn + Eel − E(2))
1

(Eel −Hel)′
Hn

∣∣∣∣φel〉el .

(22)

Let us concentrate for a while on homonuclear molecules
(H ′′n = 0). Taking into account the form (10) of the nuclear
Hamiltonian, we can transform the above formulas further,
e.g.,

H(2)
n =

〈
Hnφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣Hnφel

〉
el (23)

+
1

µn

~∇R
〈
~∇Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣Hnφel

〉
el

− 1

µn

〈
Hnφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣~∇Rφel〉el ~∇R
− 1

µ2
n

~∇R
〈
~∇Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣~∇Rφel〉el ~∇R .
The nuclear function χ(~R) can be factorized into the prod-

uct of radial and angular parts,

χJM (~R) =
χJ(R)

R
YJM (~n) , (24)

with spherical harmonic YJM and ~n = ~R/R. Such a fac-
torization followed by integration over the angular variables
leads to the radial form of the nuclear Hamiltonian

H(2)
n = U(R) +

(
2

R
+

∂

∂R

)
V(R) (25)

− 1

R2

∂

∂R
R2W‖(R)

∂

∂R
+
J (J + 1)

R2
W⊥(R),

in which

U(R) =
〈
Hnφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣Hnφel

〉
, (26)

V(R) =
1

µn

〈
∂Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣Hnφel

〉
, (27)

W‖(R) =
1

µ2
n

〈
∂Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣∂Rφel〉 , (28)

W⊥(R) =
1

2µ2
nR

2

〈
φel

∣∣∣~Lel
1

(Eel −Hel)′
~Lel

∣∣∣φel〉 . (29)

In the last equation, it is assumed that the electronic wave
function φel in a ground molecular Σ state is rotationally in-
variant, which implies ~Ln = −~Lel with ~Ln = −iR× ~∇R and
~Lel = −i

∑
a ~ra × ~∇a .

The HamiltonianH(2)
n contains only the terms proportional

to (me/µn)2, but H(3)
n and H

(4)
n may have the terms with

the second and higher powers of the electron-to-nucleus mass
ratio. Because we are interested in the leading nonadiabatic
correction, i.e. in the terms proportional to (me/µn)2, all
the O((me/µn)3) corrections are neglected. However, some
terms from H

(3)
n and H(4)

n can be represented as (me/µn)2

correction to the potential, or (me/µn)3 to the nuclear ki-
netic energy. Their representation is not unique and may have
different but equivalent forms, which differ by a commutator
[Hn + Eel−E(2), Q] whose expectation value vanishes for an
arbitrary Q. These terms are also neglected for consistency
reasons. Hence we include only a term from the H(3)

n , which
has a unique representation and is the (me/µn)2 correction to
the potential [27], namely

δV(R) = − 1

2µ2
n

∂REel
〈
∂Rφel

∣∣∣[ 1

(Eel −Hel)′

]2∣∣∣∂Rφel〉
(30)
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and this correction is added to V(R) in Eq (25). The omit-
ted components of H(3)

n and of the higher-order Hamiltoni-
ans remain the main source of the uncertainty of the nonrela-
tivistic results obtained within NAPT. The magnitude of this
uncertainty can be estimated for each level separately by the
value of the second-order NAPT correction to this level scaled
by the me/µn factor. This estimation has been validated by
the direct variational computations described in the preced-
ing subsection. Because the direct calculations give an energy
that corresponds to the perturbative series summed up to in-
finite order, the difference between the NAPT and the direct
results accounts for all the omitted higher-order corrections
[23, 25]—their values turn out to be smaller than the simple
uncertainty estimation by the scaling. It has also been found
that the missing contribution grows proportionally to J(J+1)
with a slope depending on the vibrational quantum number.
We should also mention that the higher-order nonadiabatic
corrections are singular at R = 0. It means that the nona-
diabatic expansion does not work properly at a very small dis-
tance where the nuclear kinetic energy becomes comparable
to the electronic one. Nevertheless, at R = 0 the exact wave
function is as small as 10−25 (in a.u.), which makes these sin-
gular terms numerically negligible, but their existence indi-
cates possible limitations of NAPT.

Equation (19), after reduction to one-dimensional form and
the neglect of the O((me/µn)3) terms, can be explicitly writ-
ten as [27][
− 1

R2

∂

∂R

R2

2µ‖(R)

∂

∂R
+

J (J + 1)

2µ⊥(R)R2
+ Y(R)

]
χJ(R)

= E(2) χJ(R) , (31)

where the functions
1

2µ‖(R)
≡ 1

2µn
+W‖(R) (32)

and
1

2µ⊥(R)
≡ 1

2µn
+W⊥(R) (33)

can be interpreted as R-dependent vibrational and rotational
masses, and where the potential Y(R) for the movement of
the nuclei consists of the BO potential Eel(R) [30], the adia-
batic correction Ea(R) [31], and the nonadiabatic correction
δEna(R) [29] potentials. The latter correction is expressed in
terms of the functions defined above:

δEna(R) = U(R) +

(
2

R
+

∂

∂R

)
[V(R) + δV(R)] . (34)

Let us now return to the heteronuclear case, i.e. to the Hn

Hamiltonian (10) in its full form. The unitary transformation
from Ref. [28]

H̃ =
(
eλ~r·

~∇R

)+
H eλ~r·

~∇R (35)

with ~r =
∑
a ~ra and the nuclear mass asymmetry parameter

λ = −me

2

(
1

MB
− 1

MA

)
(36)

enables the heteronuclear part of the potential to be expressed
as an additional correction to the potential only,

δE ′na(R) = λ2
[〈
φel

∣∣∣∣ 1

me
∇2
R +

1

2
ri rj ∇iR∇

j
R(V )

∣∣∣∣φel〉
el

+

〈
φel

∣∣∣∣~r · ~∇R(V )
1

(Eel −Hel)′
~r · ~∇R(V )

∣∣∣∣φel〉
el

]
,

(37)

so that, finally,

Y(R) = Eel(R) + Ea(R) + δEna(R) + δE ′na(R) . (38)

There is, however, one problem with the heteronuclear correc-
tion δE ′na, because it behaves for small R as 1/R4 and thus is
singular. As mentioned earlier in this paragraph, NAPT does
not work at very small nuclear distances, but this region is
numerically insignificant. In practice, one can modify this po-
tential δE ′na(R) = δE ′na(R′) for R < R′ and check that for a
small R′ the results do not depend on its choice at the aimed
precision.

Often it is the dissociation energy DvJ of rovibrational lev-
els which is of interest. For this reason, we fix the origin of
the energy scale to the separated atoms limit and make all the
potentials vanish at infinity:

Ỹ(R) = Y(R)− Y(∞) . (39)

Similarly, we subtract the asymptotic value from W poten-
tials,

W̃(R) =W(R)−W(∞) , (40)

so that theR-dependent mass functions (32) and (33) correctly
tend to the reduced atomic mass. In this convention, the eigen-
value E(2) of the Hamiltonian in Eq. (31) corresponds to the
negative of DvJ .

Equation (31) has been solved using two distinct numerical
methods. One based on the Numerov integration method [32]
and the other on the discrete variable representation (DVR)
method, with mutual agreement between both of them. In this
work we use the DVR method, due to its great efficiency and
simplicity of implementation.

C. Discrete Variable Representation

The DVR method is a pseudospectral method, making use
of both a discrete grid and an associated basis set. There are
many different flavors of DVR, using various basis sets and
crafted for different integration ranges. The variant employed
here [15] rests on the Fourier-basis version proposed by Col-
bert and Miller in Ref. [33]. It assumes the following expan-
sion of the radial nuclear wave function:

χ(R) =

N∑
n=1

fnφn(R), (41)
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where φn(R) are particle-in-a-box functions

φn(R) =

(
2

b− a

)1/2

sin

[
nπ(R− a)

b− a

]
, (42)

where R ∈ [a, b]. The coefficients fn can be expressed via a
numerical quadrature with weights wn

fn =

N∑
m=1

wn φn(Rm)χ(Rm) . (43)

The position R is discretized on N points—equal to the num-
ber of basis functions φn

Rm = a+
m(b− a)

N + 1
, ∆R =

b− a
N + 1

, (44)

for m = 1, ..., N (which means that neither a nor b are grid
points themselves). The weights wn are all equal to the grid
separation ∆R in this type of DVR [34]. Combining Eqs. (41)
and (43), one gets

χ(R) =

N∑
n=1

N∑
m=1

∆Rφn(Rm)χ(Rm)φn(R)

=

N∑
m=1

χm ϕm(R), (45)

where ϕm(R) is a DVR orthonormal position basis [not to
be confused with the auxiliary basis of Eq. (42)], and χm is
proportional to the value of the wave function on the Rm grid
point

ϕm(R) =

N∑
n=1

φn(Rm)φn(R)
√

∆R , (46)

χm = χ(Rm)
√

∆R . (47)

It can be shown [33] that for φn of Eq. (42) the DVR basis
function ϕn exhibits asymptotically [i.e. for (a − b) → ∞

and N →∞] the following property:

ϕn(Rm) =
δnm√
∆R

. (48)

That is why the potential-energy matrices in the ϕn DVR basis
are diagonal:

Vij =

N∑
n=1

∆Rϕi(Rn)V (Rn)ϕj(Rn) = δijV (Rj) (49)

and

〈χ|V |χ〉 ≈
N∑
n=1

N∑
i=1

N∑
j=1

∆RχiχjV (Rn)ϕi(Rn)ϕj(Rn)

=

N∑
n=1

χnχnV (Rn). (50)

The interval of R in our problem is [0,∞), so a = 0. In
practical applications b and N cannot be infinite, but already
values as small as N = 200 and RN = 10.0 are usually suffi-
cient for most of our purposes. They only need to be increased
when investigating highly excited vibrational states.

The matrix elements of differential operators are nondiag-
onal but still can be expressed by simple formulas. Namely,
the Hamiltonian matrix elements in the BO approximation are
given by

Hij =
1

µn∆R2
(−1)i−j

(
1

(i− j)2
− 1

(i+ j)2

)
, (51)

Hii =
1

2µn∆R2

(
π2

3
− 1

2i2

)
+
J(J + 1)

2µnR2
i

+ Eel(Ri).

(52)

The nonadiabatic Schrödinger equation (31) leads to a
more elaborate formula—not only because of the “distance-
dependent masses” present, but also because W‖(R) is sub-
jected to differentiation:

Hij =



1

∆R2

(
1

2µa
+ W̃‖(Ri)

)(
π2

3
− 1

2i2

)
+
W̃ ′‖(Ri)
Ri

+
1

2
W̃ ′′‖ (Ri) +

(
1

2µa
+ W̃⊥(Ri)

)
J(J + 1)

R2
i

+ Ỹ(Ri) for i = j,

(−1)i−j

∆R2

(
1

µa
+ W̃‖(Ri) + W̃‖(Rj)

)(
1

(i− j)2
− 1

(i+ j)2

)
for i 6= j,

(53)

where W̃ ′‖ and W̃ ′′‖ are the first and second derivatives of W̃‖
with respect toR, and Ỹ(R) has been defined in Eqs. (38) and
(39). Note that in the above formula the reduced nuclear mass

µn is replaced with the reduced atomic mass µa

1

µa
=

1

mA +me
+

1

mB +me
. (54)

This is because Eq. (53) is written with respect to the disso-
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ciation limit and, as discussed in Refs. [27, 28], µ⊥(R) and
µ‖(R) tend to µa for R→∞.

The accuracy of W‖, W⊥, and δEna is considered to be
high enough to not contribute to the total nonrelativistic un-
certainty. This uncertainty is dominated by the estimate of
the neglected NAPT term, which is me/µn times the leading
nonadiabatic correction. This missing-term uncertainty tends
to be the largest source of the total theoretical error if the di-
rect nonadiabatic results are not available.

In the case of the heteronuclear-specific correction δE ′na,
the former calculations [28] have been significantly improved
here using the previously optimized ECG functions from
Ref. [35]. As a result, the numerical uncertainty of δE ′na is

also negligible.

IV. RELATIVISTIC CORRECTION E(4)

The second term in the α expansion (1) is the leading rela-
tivistic correction of the order α4m. It is the expectation value
of the Breit-Pauli Hamiltonian

E(4) = 〈Ψ|H(4)|Ψ〉. (55)

For the hydrogen molecule in the 1Σ+
g state (in which all the

electron spin-dependent terms vanish) this Hamiltonian takes
the following form [36]:

H(4) = −
∑
a

p4a
8
−
∑
X

p4X
8m3

X

+
1

2

∑
a,X

1

mX
pia

(
δij

raX
+
riaXr

j
aX

r3aX

)
pjX −

1

2
pi1

(
δij

r12
+
ri12r

j
12

r312

)
pj2

− 1

2mAmB
piA

(
δij

rAB
+
riABr

j
AB

r3AB

)
pjB +

π

2

∑
a,X

(
1 +

δsX
m2
X

)
δ3(raX) + πδ3(r12), (56)

where a goes over the electrons (1 and 2) andX – over the nu-
clei (A and B), and δs depends on the nuclear spin s: δs = 0
for s = 0 or 1, and δs = 1 for s = 1/2. Its first two terms ac-
count for the relativistic correction to the kinetic energy. The
third, fourth, and fifth terms are called the Breit corrections
(or “orbit-orbit coupling” terms) and can be attributed to the
relativistic retardation of the Coulomb potential [37]. The re-
maining contributions are represented by the so-called contact
terms and are proportional to the 3D Dirac delta functions. In
practice, even if the above Hamiltonian is used in the fully
nonadiabatic approach (treating electrons and nuclei on an
equal footing), the second term is neglected—being propor-
tional to the very small m3

e/m
3
X factor.

For the dissociation energy D, one subtracts E(4) from the
relativistic correction for separated atoms E(4)

A +E
(4)
B , where

E
(4)
X = −1

8
+

1

4

(
1

mX

)2

+O

(
1

mX

)3

. (57)

Note that the term proportional to 1/mX is not present in the
above formula; consequently, the relativistic recoil correction
for separated atoms is very small.

The direct calculations of the relativistic correction with the
nonadiabatic wave function have been performed only for the
ground molecular state v = 0, J = 0 [36, 38]. The results
for arbitrary vibrationally and rotationally excited states have
been obtained within the NAPT approach,

E(4) = E(4,0) + E(4,1) + . . . , (58)

described in the following subsections.

A. Leading-order relativistic correction, E(4,0)

The leading relativistic contribution in the BO approxima-
tion consists of the nuclear-mass-independent terms from the
Breit-Pauli Hamiltonian (56):

H(4,0) = −p
4
1 + p42

8
− 1

2
pi1

(
δij

r12
+
ri12r

j
12

r312

)
pj2 + πδ3(r12)

+
π

2

(
δ3(r1A) + δ3(r2A) + δ3(r1B) + δ3(r2B)

)
.

(59)

The correction to the BO potential energy is the expectation
value with the electronic wave function

E(4,0)(R) = 〈φel|H(4,0)|φel〉 . (60)

It was observed in [39] that the numerical convergence is sig-
nificantly improved when the electronic wave function φel sat-
isfies the electron-electron cusp condition. The final value of
the leading-order relativistic correction is evaluated as the ex-
pectation value with the nuclear wave function

E(4,0) = 〈χ|E(4,0)(R)|χ〉 (61)

and this is calculated using the DVR function from the non-
relativistic BO approximation. On the basis of the results
of Ref. [39], a numerical uncertainty δE(4,0) is estimated by
2× 10−6E(4,0).

B. Finite nuclear mass relativistic correction E(4,1)

The leading finite-nuclear-mass relativistic correction can
also be expressed in terms of effective internuclear potential
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and consists of three parts [35],

E(4,1)(R) = E(4,1)1 (R) + E(4,1)2 (R) + E(4,1)3 (R), (62)

where

E(4,1)1 (R) =
1

µn
〈~∇Rφrel|~∇Rφel〉 , (63)

E(4,1)2 (R) = − 1

µn
〈φrel|~∇2

el|φel〉 , (64)

E(4,1)3 (R) = 〈φel|H(4,1)|φel〉 , (65)

and φrel is a relativistic correction to the BO electronic wave
function:

|φrel〉 =
1

(Eel −Hel)′
H(4,0) |φel〉 . (66)

The Hamiltonian H(4,1) describes the electron-nucleus Breit
interaction, which in the coordinate system assumed in this
work takes the form

H(4,1) = (67)

− 1

4µn

∑
a=1,2

∇ia

(
δij

raA
+
riaAr

j
aA

r3aA
− δij

raB
−
riaBr

j
aB

r3aB

)
∇jR

+
1

4µn

∑
a=1,2

∇ia

(
δij

raA
+
riaAr

j
aA

r3aA
+
δij

raB
+
riaBr

j
aB

r3aB

)
∇jel.

This effective internuclear potential E(4,1) is used to obtain
the relativistic recoil correction to rovibrational levels, using

E(4,1) = 〈χ|E(4,1)(R)|χ〉 (68)

+ 2 〈χ|E(4,0)(R)
1

(E(2,0) −Hn)′
E(2,1)(R)|χ〉 ,

where E(2,1)(R) = Ea(R). The potential E(4,1)(R) has been
reported recently in Ref. [35]. The numerical error contributed
by the potential was estimated to be 2× 10−4 〈χ|E(4,1)|χ〉.
Furthermore, because currently no higher finite-nuclear-mass
relativistic corrections are known, the effect of their omission
is approximated by E(4,1)me/µn and included in the total
E(4) error estimate.

V. QED CORRECTIONS

A. Leading-order QED correction E(5)

The complete formula for the leading quantum electrody-
namic correction E(5) for H2 and its isotopologues was ob-
tained in Refs. [38, 40]. Direct (four-body) numerical cal-
culations have been performed only for the ground molecular
level, whereas for all the excited levels we use the BO approx-
imation. The leading QED Born-Oppenheimer contribution
can be expressed as

E(5,0) = 〈χ|E(5,0)(R)|χ〉 , (69)

where

E(5,0)(R) =
4

3

[
19

30
− 2 lnα− ln k0(R)

]∑
a,X

〈δ3(raX)〉el

+

[
164

15
+

14

3
lnα

]
〈δ3(r12)〉el −

7

6π

〈
1

r312

〉
el,ε

.

(70)

In the above formula the expectation values are evaluated with
the nonrelativistic wave function φel, and the notation 〈1/r3ij〉ε
means the following:〈

1

r3ij

〉
ε

= lim
ε→0

[〈
θ(rij − ε)

r3ij

〉
+ 4π(γ + ln ε) 〈δ3(rij)〉

]
,

(71)

where the symbol γ denotes the Euler-Mascheroni constant,
and θ is the Heaviside function. The Bethe logarithm ln k0(R)
is

ln k0(R) =
〈φel|~j (Hel − Eel) ln[2(Hel − Eel)]~j |φel〉

〈φel|~j(Hel − Eel)~j|φel〉
,

(72)

with ~j = −~p1/me − ~p2/me. It has been calculated in
Ref. [41], whereas the results for the Araki-Sucher term and
Dirac δ are taken from newer calculations reported in Refs.
[39, 42]. The numerical uncertainty is estimated to be ca.
5× 10−4 〈χ|E(5,0)(R)|χ〉. The greatest source of error in this
term comes from the uncalculated finite-nuclear-mass contri-
bution, estimated as E(5,0)me/µn. For the levels and tran-
sitions where the nonrelativistic contribution is calculated di-
rectly (so the NAPT error is removed), it dominates the total
theoretical uncertainty.

B. Higher-order QED correction E(6)

The higher-order QED contribution is calculated within the
BO approximation and is given by

E(6,0)(R) = 〈φel|H(6,0)|φel〉

+ 〈φel|H(4,0) 1

(Eel −Hel)′
H(4,0)|φel〉 , (73)

where H(4,0) is the Breit Hamiltonian in the nonrecoil limit,
and H(6,0) is the O(α2) correction to this Hamiltonian. The
explicit formulas for E(6,0)(R) are far too extensive to be pre-
sented here. They can be found in Ref. [42]. The total energy
contribution in this order is

E(6,0) = 〈χ|E(6,0)(R)|χ〉

+ 〈χ| E(4,0)(R)
1

(E(2,0) −Hn)′
E(4,0)(R) |χ〉 . (74)

The second term in the above equation is again the second-
order relativistic correction with respect to the relativistic
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BO potential (in our former works presented separately as
E

(6)
sec correction). The E(6,0)(R) potential was calculated in

Ref. [42] and E(4,0)(R) in Ref. [39]. The numerical error
was estimated as 3× 10−3E(6,0), whereas the missing finite-
nuclear-mass correction was estimated as E(6,0)me/µn.

C. Estimation of E(7)

The E(7) correction is of the highest order considered so
far for the hydrogen molecule. Currently, its complete form
is unknown. Here, we follow Ref. [40] and include the lead-
ing one- and two-loop radiative corrections known from the
hydrogen atom (see [43]) in the BO approximation

E(7) = 〈χ|E(7)(R)|χ〉 , (75)

where

E(7)(R) ≈ π 〈φel|
∑
a,X

δ3(raX)|φel〉 el
{

1

π

[
A60 (76)

+A61 lnα−2 +A62 ln2 α−2
]

+
1

π2
B50 +

1

π3
C40

}
.

As an uncertainty of the E(7) correction, following Ref. [40],
we assume 25% of its value.

VI. FINITE NUCLEAR SIZE EFFECT EFS

At the achieved accuracy level, the nuclear finite size effect
cannot be neglected anymore. This correction, when evalu-
ated in the BO approximation,

E
(4)
FS = 〈χ|E(4)FS (R)|χ〉 , (77)

is accounted for by the following formula:

E(4)FS (R) =
2π

3
〈φel|

∑
a,X

δ3(raX)|φel〉 el
(r2C,A + r2C,B)

2λ2
,

(78)

where λ is the reduced electron Compton wavelength; r2C,X
is the mean square charge radius of the nucleus X = A,B,
with rp = 0.8414(19) fm [44], rd = 2.12799(74) fm [44],
and rt = 1.7591(363) fm [45]. Any higher-order effects
due to the nuclear size or nuclear polarizability are neglected.
The accuracy of E(4)

FS is limited by the accuracy of the charge
radii. The connection between the dissociation energy and the
charge radius of a nucleus can potentially be utilized to deter-
mine the latter one provided that both theoretical and experi-
mental dissociation energy are known to a sufficient accuracy,
which is about 10−7 cm−1.

VII. UNCERTAINTY ESTIMATION

Previous sections devoted to individual components E(i) of
the α expansion (1) contain a short description of the uncer-
tainty estimates δE(i), which are assumed to be uncorrelated.

Therefore, the total uncertainty is the square-root of the sum
of squares of all the partial uncertainties. Depending on the
availability of the direct nonadiabatic results for a given rovi-
brational level we can distinguish three different cases. In the
first case, the direct nonadiabatic results are available for the
nonrelativistic energy as well as for relativistic and QED cor-
rections. In this case, currently represented by the ground lev-
els of all the isotopologues, the dominating uncertainty comes
from the incomplete knowledge of the E(7) term. In the sec-
ond case, only the nonrelativistic energy E(2) is known with
high accuracy from the direct nonadiabatic calculations. In
such a case, the overall accuracy is limited by the lack of the
recoil correction to the leading QED term E(5). Finally, in the
third and the most common case, all the energy components
are evaluated from the NAPT. Then, the limitations in accu-
racy originate either from the nonrelativistic or QED compo-
nent of the energy.

The estimation of the uncertainty assigned to a transition
energy is more complicated. Depending on the pair of the
states involved in a given transition, we observe smaller or
larger cancellation of different energy components. A sys-
tematic description of this cancellation is difficult, and we as-
sumed in general that the uncertainty assigned the a transition
energy is equal to the larger uncertainty out of these two states.
However, in particular cases, like the fundamental ν = 0→ 1
transitions, the cancellation of uncertainties is significant, and
we associate relative me/µn uncertainty to the energy differ-
ence, as demonstrated in Table I.

We also note that, because at the long-distance points the
accuracy of the potentials usually deteriorates, our error esti-
mates for highly excited levels can be inaccurate.

VIII. RESULTS AND SUMMARY

One of the most pronounced features of NAPT combined
with α expansion in Eq. (1) is that it gives access to an ar-
bitrary bound rovibrational energy level within the electronic
ground state. Consequently, it enables all transitions to be ob-
tained within this manifold of levels. Another merit of NAPT
with α expansion is the possibility of full control of the ac-
curacy of the results, as well as the potential of gradually in-
creasing this accuracy by improving the existing, and adding
new, terms to the expansion series.

The theoretical underpinning presented in this work as well
as numerical calculations performed over the past years en-
abled construction of a computer program [15] serving the
numerical values of the rovibrational energy levels and split-
tings between them for all the isotopologues of the hydro-
gen molecule. There are several thousands of such levels
and many more transitions available from this program. It
would be impractical to present such a large amount of data in
printed form. Therefore, this program has been made publicly
available to the scientific community so that numerical results
for levels or transitions of interest (in particular also for all
of them) can be easily generated by the reader. This form
of the presentation of the results has also another important
advantage—it is our intention to support the program in the
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TABLE I. Selected transition energies (in cm−1) obtained for H2 from the NAPT and direct nonadiabatic calculations with breakdown into
components. CODATA 2018 [44] values of physical constants are used. For a shorthand notation, we shall identify the αnmE(n) terms with
the bare coefficients E(n).

(0, 1) — (0, 0) (1, 0) — (0, 0) (1, 1) — (0, 1) (2, 1) — (0, 3) (3, 5) — (0, 3)

E(2)(NAPT) 118.485 262(7) 4 161.164 2(9) 4 155.252 0(9) 7 488.283 3(17) 12 559.750 0(25)

E(2)(direct) 118.485 260 5(1) 4 161.164 070 0(1) 4 155.251 869 3(1) 7 488.283 212 0(1) 12 559.749 918 5(1)

E(4) 0.002 583 6 0.023 553 9(2) 0.023 333 3(2) 0.028 570 7(3) 0.065 877 6(6)

E(5) −0.001 022 7(12) −0.021 318(26) −0.021 257(25) −0.036 018(43) −0.065 815(79)

E(6) −0.000 008 9 −0.000 191 3(6) −0.000 190 8(6) −0.000 326 3(10) −0.000 594 9(19)

E(7) 0.000 000 5(1) 0.000 010 3(26) 0.000 010 3(26) 0.000 017 4(44) 0.000 031 9(80)

E
(4)
FS −0.000 000 2 −0.000 003 2 −0.000 003 2 −0.000 005 4 −0.000 009 8

E 118.486 812 8(12) 4 161.166 122(26) 4 155.253 762(26) 7 488.275 451(43) 12 559.749 408(79)

Exp. 118.486 8(1) [46] 4 161.166 36(15) [2] 4 155.254 00(21) [2] 7 488.275 3(10) [47] 12 559.749 39(22) [48]
Diff. 0.000 0(1) −0.000 24(15) −0.000 24(21) +0.000 2(10) +0.000 02(23)

future by updating the input potentials and physical constants
and possibly by adding new functionalities—a guarantee that
it has the best currently available data.

Here, we present only a small selection of the numerical
results to illustrate the most important features of NAPT com-
bined with α expansion. In Table II we show the total dis-
sociation energy E for the ground level of three lightest iso-
topologues. These energies are compared with the reference
theoretical results obtained from direct nonadiabatic calcula-
tions and with the best available experimental data. This com-
parison shows the current accuracy limitations of NAPT but
simultaneously demonstrates that this method performs very
well because its results agree within uncertainties with direct
variational calculations.

The finite nuclear mass effects are the most significant in
H2 because it is the lightest isotopologue. Therefore, Table I

contains a few examples of transitions between rovibrational
levels of H2 with growing energies. In most cases, theoretical
energies are an order of magnitude more accurate than ex-
perimental values and in agreement with them. However, we
observe a significant 3σ discrepancy between the measured
dissociation energy and our calculations for HD, in spite of a
good agreement for H2 and D2; see Table II. Before drawing
any conclusions, this experimental value should be verified.
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[5] M. Schlösser, X. Zhao, M. Trivikram, W. Ubachs, and E. J.
Salumbides, J. Phys. B 50, 214004 (2017).

[6] R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs,
and K. S. E. Eikema, Phys. Rev. Lett. 120, 043204 (2018).

[7] C.-F. Cheng, J. Hussels, M. Niu, H. L. Bethlem, K. S. E.
Eikema, E. J. Salumbides, W. Ubachs, M. Beyer, N. J. Hölsch,
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[14] N. Hölsch, M. Beyer, E. J. Salumbides, K. S. E. Eikema,
W. Ubachs, C. Jungen, and F. Merkt, Phys. Rev. Lett. 122,
103002 (2019).

[15] H2SPECTRE ver. 7.0 Fortran source code (2019), URL
https://www.fuw.edu.pl/˜krp;
http://qcg.home.amu.edu.pl/qcg/public_
html/H2Spectre.html;
P. Czachorowski, Ph.D. thesis, University of Warsaw, Poland
(2019).

[16] E. Roueff, H. Abgrall, P. Czachorowski, K. Pachucki,
M. Puchalski, and J. Komasa, Astron. Astrophys. 630, A58
(2019).

https://www.fuw.edu.pl/~krp
http://qcg.home.amu.edu.pl/qcg/public_html/H2Spectre.html
http://qcg.home.amu.edu.pl/qcg/public_html/H2Spectre.html


10

TABLE II. Comparison of dissociation energies (in cm−1) of the ground levels of H2, D2, and HD obtained in the framework of NAPT with
the results of direct nonadiabatic calculations and with experimental data. CODATA 2018 [44] values of physical constants are used.

H2 D2 HD

E (NAPT) 36 118.069 45(53) 36 748.362 27(17) 36 405.782 37(33)
E (direct) 36 118.069 632(26) [40] 36 748.362 342(26) [38] 36 405.782 478(26) [38]
Experiment 36 118.069 45(31) [6] 36 748.362 86(68) [49] 36 405.783 66(36) [50]

[17] K.-F. Lai, P. Czachorowski, M. Schlosser, M. Puchalski, J. Ko-
masa, K. Pachucki, W. Ubachs, and E. J. Salumbides (2019),
submitted.
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