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ABSTRACT

The notion of monotonicity for operators from the Hilbert space
into itself is introduced as follows: T: §T) - } is said to be isotonic or
antitonic according as

(Txl—sz, X —xz)zo or (Tx —TXZ, X -—xZ)SO, Vx, X, € 8(T)

1 1 1 v 2

respectively. If an ¢ >0 exists such that T- (1+¢)I is isotonic then T

is said to be strictly supraunitary, whereas if for suchan ¢, T - (l-¢)I is

antitonic then T is called strictly infraunitary. The following theorem is

proved:

If a Lipschitzian mapping T defined on a closed ball about the origin
vanishes at the origin and is either strictly supra- or infraunitary then the
equation x = y + T x has a unique solution for any vy in a suitable closed
sphere about the origin. For a proper choice of an averaging factor «
the solution can be obtained by iteration of the operator x - y+ (1l -a) x4+ a2 T x

on the initial approximation x = 0 . Applications are given.



SOLVING FUNCTIONAL EQUATIONS BY CONTRACTIVE AVERAGINGl

E. H. Zarantonello

“For any continuous function Tx of a real variable growing everywhere

strictly faster or strictly slower than x, the equation

%= Tx

‘

has a unique solution. This solution can be obtained by iteration of the
function (l-a)x + aTx , for a sufficiently small number o ."

The purpose of this note is to show that the above theorem, and its
corresponding local form, remain valid in Hilbert spaces, provided the
notion of a function growing faster than another is adequately extended.

We shall work on a fixed Hilbert space f? , real but not necessarily
separable, and all operétors (denoted T, S, etc.) will have their domains
and ranges in -4 , and without exception will be single valued functions of their
arguments. As usual, the scalar product in 5/ will be denoted (x,y) ,
and the norm || x| .

Definition 1. An operator T is said to satisfy Lipschitz conditions
on a domain 47 if T is defined on 4 and there is a constant C such
that

(1) T, - Txoll < Cllxy- %l for any x,, % €2

1Sponsored by the U. S. Army under Contract No., DA-11-022-ORD-2059,
Mathematics Research Center, Madison, Wisconsin. Work partly done at
the "Facultad de Ingenieria, Universidad Nacional de Cuyo"”, San Juan,
Argentina.
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The infimum of all possible constants C , that is,

U_TXI - TXZ ”

sup
Xy ,X2 “ X~ Xz “

is called the Lipschitz norm of T on /&, and is denoted || T[I|ﬂ . Usually
the indication of the domain will be dropped, letting it be inferred from the
context.

1f Tl < 1, T is said to be contractive, and strictly contractive
if fllzil <1

Analogously, we say that T is expansive or strictly expansive on &
if for x;,%; € G

| %, - Tx |l Il Tx, - Tl

2 > k > 1 respectively.
" Xl‘X?."

" K~ Xz I

The ordering of functions by comparing their increments has the fol-
lowing natural extension to Hilbert space:
Definition 2. We shall say that an operator T is slower than an opera-

tor S on a domain & , if both are defined on A and if
(Tx; - TXz , %, - %2 ) < (8x%; - Sxz,x;-%x2) , forall x,,x € A

Such fact will be denoted T< S or S>T , indifferently. Comparison with
the zero operator leads to the notion of monotonicity. Thus we shall say that

T is isotonic or antitonic if T< 0 or T > 0 respectively; an operator which

is either isotonic or antitonic is said to be monotonic. On the other hand,
comparison with the identity operation I yields the classes of supra- and

infra-unitary operators, meaning that an operator T is supra- or infra-unitary

if T>1 or T< I respectively.
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For a more precise description of the relations of an operator T with

the identity it is convenient to introduce the following quantities:

+ T, - Txz,% - X
Mo (T)F—“ Sup ( 1 AR | 2)
K1,%2 € (X.I._XZ ’XI-XZ)

]J.—(T) i ink fTXl— TXZ,X]_—XZ)
X1,%2 € (X)-X2,X1- Xz)

Obviously p (1) = -u7-1) , » (M < ph(m) and I’ @l, Il < Nzl .
Now, T is said to be strictly supra- or strictly infra-unitary if p+(T) >1
or p+(T) < 1 respectively.

A fundamental tool in our arguments is Banach's contraction principle,
according to which a strictly contractive operator always has a fixpoint.
We shall state and prove this theorem in a form suitable for our purposes.

Lemma 1 (Contraction Principle). If T is strongly contractive on a closed

sphere §a(y): [x-vll < a about the point y , and if
(2) Iyl < a(- Mzl ,
then the equation

(3) % =¥+ T%
has a unique solution x in Sa (v)

The solution can be obtained by iteration of the operator T : X+ Tx=y+Tx ,

(v)"

on y

Proof: Consider the sequence

70 ~
y=Ty , Ty ,



= s #160

We shall first see that it can be continued indefinitely, that is, that all

k
the TV e Sa(y) . This is obviously true for ”\I“Dy . Proceeding by induction

0 -1 ~
assume if for T Y, Tlfy)y, E6 g Vi and prove it for T ny . In the first

(v) (v)

place we have, if 1<k <n ,

~k 1 ~k-1 ~k-1 Nk 2
T vl = 11Ty - 1757 %0 < el 1Ty - %) .

whence

i

k. k-1
vl

- k-1
4) NT y-T < Wth™ “dryll , x=1,2,...,n .

Now, by the triangle inequality

~~1N ~ T ~ ~ - ~Tl= ~ -2. ~
5) 1T -yl = IT -yl = 1T - vl +1 7™y -T2y [ 4o .+ Ty
n-1 n-2
< (™ "+ Mzl ™ "+ o+ Ty

- ®
<— |l <a
= 1=l

which is the desired conclusion. Then, by induction, it follows that (4) is

valid for all k's . Therefore, if n >m ,

n—-m
~vmtk ~mik-1 S +k-1
(6) 1T =TTy < 3 JF™s, okl 5( S )nTyn
k.‘_l k:l

m n
T - i

< I Tyl
= 1=l

Hence, as ||T|l < 1 , {T™y} is a Cauchy sequence. Let x be its limit.
Then, letting n — % in (5),

I Ty |l

7 =2, —_———
(7) -yl < T

and

- . -2 VN . ~n+1 _
Tx+y—Tx—nl_1_PmooT(T y)—nlimwT y=x ,

Tyl
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which proves that x is actually a solution of (3). It remains to check

unicity. Should there be two solutions x; and X in Sa(y) , then
Ixi-%2 = H1xi- T2l < W W=l
whence, since [Tl < 1 , it follows [[x-%ll =0 , thatis, x =x .

Remark. The contractivity of T has only been used on elements of
the sequence ’ii‘my , which all belong to the range of T , and hence it
would be enough to assume it on that part of Sa(y) belonging to the range
of T . In function spaces this applies, for instance, when the range of
T contains only non-negative functions and y is itself a non-negative
function. In such case the contractivity of T on non-negative functions is all
one needs.

The hypotheses of Lemma 1 are hard to check because they are ex-
pressed with reference to the datum y which may itself be subjected to
variations. The following form of the Contractions Principle obtained by
restricting the hypotheses and relaxing the conclusions will be found to be
more convenient.

Lemma 2, If T wvanishes at the origin and is strictly contractive on
a closed sphere §r(0) about the origin, then the equation

(8) X=y + Tx

has a unique solution x in "S_r(O) for every vy ¢ Sr(l IIIT]H (0). The operator

(1 —T)"1 is Lipschitzian and

(9) -]t < -zl

(v)

The solution can be obtained by iteration of the operator T =y+T
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Proof: Under the hypotheses in order that T be contractive on a
sphere Sa(y) it is necessary that vy e Sr(O) , 1in which case one may
take a=r- ||yl . Therefore, since [Tyl = l[Ty-Toll < M Tll Iyl the
requirement || Tyll < a(l-ll Tlif) of the previous Lemma would be fulfilled if
Izl Nyl < a@-HiTh) = «=llylha-Mzll) , thatis, if Nyl < r@-Mzll) -

Finally, if Xl and xz are solutions corresponding to Yl and Y,

- ¥ +Tx. - Tx., and “XI— XZH < “yl—y2 || + ”T“ ”x1~x2” whence

e s 1 2

17 %2 7Y
(9) follows at once.

Lemma 3. If Ta = (l-a)I + aT, the equations
X=y+Tx
X = ay + Tax

are equivalent for a# 0 .,

Proof: Obvious.

Lemma 4 (Averaging Principle). If 1< [[T|| < © in a domain A7 and
if either

a) T is strictly infra-unitary, or

b) T is strictly supra-unitary,

then Tq = (1-a)I + aT is strictly contractive for

+
+ 2(1-p (T)) )
(10) 0< a< 2a = in case (a) ,
(-p e+ W Tl 2 - @ Femn?
and for
(11) 2(1-p (T) -2a < a< 0 , in case (b) .

(L-p (T + M Tl - (= (T))?

Moreover,

WTll?- w2
(12) M . </ in case (a)
ot S -p e+ Tl 2- w2
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- "y / Tll?- (1) | o)
13 o~ il =< = : = in case .
(- ()P + M Tll?-1 ()

Proof; We have
“ Taxl“ T %2 ”2 = (1"3)2 " X))~ Xz “2+ a® H Tx; - Txz ||2+20(1'ﬂ)(x1‘X2,TX1' Tx;) ,

whence

(-0 +a? I Tl * 4 2a(l-a (D] I - %2 I , 1f O0O<a<1,

I Taxs - Toxall* < _
[(1-a)+ M T ?+2a(l-a) ()] | ;- %2 Il ® , if -1<a<0 .

The proof concludes by remarking that if p.+(T) < 1 the first term in square
brackets is < 1 for 0< a< 2a+ and attains its minimum (equal to the
square of right member of (13)) at a = a+ , Wwhile if [J.-—(T) > 1 the second
is < 1 for 2a < a< 0 with the minimum at a= a_

Combining now Lemrﬁas 2, 3 and 4 we obtain our main result:

Theorem 1. If T is Lipschitzian and either strictly infra- or supra-unitary

on a sphere Sr(O) and if T(0) =0 the equation

3

(14) x=vy+ Tx

has a unique solution x in Sr(O) obtainable by iteration, for each y e Sr (0) ,
1

where

r(1-fTili) if il <1
r(1-pt (1))

2_ . Frmd
- 1+j WrlZ-e D" e > 1, and wtm <
) (I-p @+ M Tll? - @ (m)?

(15)

r(p (T)-1)

;4 - 2 -
”J _I||TIII ~ (s (D) if fITll > 1 and p (T)> 1 .
(L-p (T2 + W Tl 2= (27 (T))?
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Correspondingly one has

(

([l Iyl
1=l il
+
(16) |lx-vll < J MLI%L__ (1 + *}—H (T)
-4 (1) et i Thi?- 1
ML (l 5 b (T)-1
L b (T)-1 2 (m-1) +ll Tl 2 - 1

it [Tl

) , i Tl >

), it fizll >

#160

L p+(’I‘) <1

1 ,p(T)>1 .

The actual determination of the quantities ||| T[| , p.+(T) and p (T) becomes

simpler when T is a differentiable operator.

In such cases these quantities

are directly related to the norm of the gradient of T and to the greatest and

smallest eigenvalues of its symmetrical part.

Theorem 2. If T is differentiable on a convex domain i and has a

bounded gradient VT(x) at each point x ¢ & , then
(17) Tl = sup [lvT(x)ll
X e
it
(18) p (T) = sup sup (VT(x)w,w)
Xxe L "0.)“:1
(19) b (T) =

inf inf (VT(X)w,
xTﬁHJW (VT(x)w,w)

Proof: For fixed x;, , xz and z the function
f(c) = (T((1-t)x, +txz ), 2)
is differentiable in t and

£1(t) = (VI((1-t)x + 132 ) (%2 - %), 2)

Hence, by the mean value theorem

(20) (Txz2=Txy, 2) = £(1) - £(0) = (VT((1-0)x; +6%2 )(x; - %2) , 2) ,

0<e<1.
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Letting now, 2z = Tx,;-Tx; , one obtains

| T%, - Tx; || 2 < sup [|vVT(x) Il xz- s ll Tz - Tyl
X € b
which implies

Tl < sup [vT(x)|l
X € 5

As the opposite inequality is obvious, (18) is proved. Similar proofs based
on (21) hold for (19) and (20).

For transforms defined in the whole space one may surmise, arguing
from the one~dimensional case, that for existence it is sufficient that the
hypotheses of the previous theorems about the growth of the operator be ful-
filled at infinity only. This conjecture may easily be proved for completely
continuous operators by an application of Schauder's extension of Brouwer's
Fix Point Theorem. Naturélly the localization of the order relation T< S at
infinity should be understood as meaning the existence of a sphere outside
which the above relation holds.

Theorem 3. If T is completely continuous in the whole space and if it

is Lipschitzian and either strictly infra- or strictly supra-unitary at infinity,

then the equation
(21) X=y + Tx

has a solution at least for every v .
Proof: Based on Lemma 3, let us choose an ap and an r such that

T is strictly contractive outside a sphere of radius r , and replace (22)

Qo

by the equivalent equation

(22) x=apy + Ty X
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Let T. denote the operator agy + T4. . Then if xy is a point with
ap ag

%l =r and if [x]| >r ,
ITag =l < Ty x-Tagxo I+ T %0l < Wyl 5= x0 ll+ 1Ty %o I
< Mol il + 11 T Il 1 xoll + 1 Tag 0l

soif lxll > (Mol Nxoll + 1 Tap %ol )/(1-M Taolll) , ITapxll < Il

That means that pdints at a distance from origin greater than some R are
brought closer to the origin by ﬂ'I';O . The sphere SR(O) is not necessarily
mapped into itself by ’fao , but since ﬁfﬂo is bounded, its image will be
contained in some SR1 (0) with R; > R . By this construction it is clear then
that SRl (0) is mapped into itself by 'Tvuo . Finally, Tﬂo being a linear
combination of the identity and a completely continuous operator and mapping
SR1 (0) into itself must have a fixed point in SRl (0) by virtue of Schauder's
Fix Point Theorem.

Before closing up this brief theory of functional equations we would
like to make a few comments about its discretization., Let's suppose that
5/ is separable and let Pn be an increasing sequence of projections approaching
the identity . Consider then the operators
Tn = PnT Pn , constructed from a fixed one T . It is easily checked that
i) <wtm , wE) 2 eTm and liT < Wil . o if conditions
of Theorem 1 are verified for T they are also verified for Tn and the equa-

tions

(23) x =y, +t Tnxn y Y, = Pny y
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have unique solutions Xn within SI_(O) for y e Sr1 (0) , and II xn- yn Il
admit estimates (17) uniformly. Moreover, if I Tnz— Tz|| — 0 uniformly

over Sr(O) (for instance if T is completely continuous), then a little re-
flection shows that the solutions Xn tend to the solution x of x=y + Tx .
As equations (22) are really equations on finite dimensional spaces, they pro-
vide, within the frame of this theory, a discretization scheme for equations of
the form x=y + Tx .

We wish also to say a few words about how could one proceed to ex-
tend this theory to spaces other than Hilbert spaces. Reflexive Banach spaces
seem to offer the proper ground for generalizations. For one thing, it is possi-
ble there to furnish what looks like a natural extension of the notion of order
of operators in Hilbert space. Simply notice that in reflexive Banach spaces

* onto their conjugates with the

there is a unique one-one mapping X = a
property that (x,x”) = |x||*> = ||x*||*> ; with this operation construct a pseudo
scalar product [x,y]= %(x,y*)+ %(x”;y) and use this in place of the ordinary
scalar product to define S< T . On the other hand, the proofs of Lemmas 1,
2 and 3 go through unchanged, as they don't make use of the notion of order.
The crucial point is Lemma 4, which, if at all provable, seems to call for a

%

careful study of the way the operation x —x* acts on sums of vectors.

Applications

We shall now exhibit a few applications of the theory just presented.
Our first application is of an entirely general nature and gives sufficient con-
ditions for the local invertibility of an operator. Next we especialize our

theory to deal with equations of Hammerstein type (Acta Math. 54 (1930), 117-76)
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and at the end we give an application to a specific case originated in the
theory of free boundaries.

Application 1, A Lipschitzian operator is locally invertible at any point

2
where it is strictly monotonic (isotonic or antitonic) .
In fact, the local invertibility of T at x, amounts to say that the
equation

(24) y = T(Xo +X) - TXo

has an unique solution x in a neighborhood of the origin for each y in

another such neighborhood. Now (25) is equivalent to either one of the equa-

tions
(25) x =[x+ (T(x +%)-Txo)] - ¥
(26) X=[x= (T(xo +x%)-T%0)] + ¥

If T is isotonic, take equation (26), remark that the operator in square
brackets is strictly supra-unitary, and conclude from Theorem 1 the local
invertibility of T . If T is antitonic, the operator in square brackets in
(26) is strictly infra-unitary, and the invertibility of T follows as before
from Theorem 1.

On the real line, a milder notion of strict monotonicity, namely that
(Tx; - TXz, X;-X2) be #0 and of the same sign for x; # x, , is both
necessary and sufficient. The necessity of this condition is obviously not

true for dimensions greater than 1 , but one wonders if such condition

T is strictly isotonic (antitonic) at xo if (Tx,= Txz, % - %2 )/l % - x%1[% >
k>0 (<k<0) , in a neighborhood of %X, .
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is sufficient in Hilbert space. For completely continuous operators, the
sufficiency is easily proved with the help of Schauder's Fix Point Theorem.

Application 2. Let us take now 97: Lf (0,1) . To any function of

two variables f(t,u) , 0<t< 1 , -% < u< +% one may assign the opera-

tor £ which transforms the function u(t) into f£(t,u(t)) . Conditions can be
given under which ¥ maps 1? into itself (consult for instance the recent
work of Krasnozelski "Topological methods in the theory of non-linear integral
equations", of which an English translation is due to appear soon). We shall
not enter into this question here, but shall assume that (t,0) =0 and that
the incremental ratio (f(t,u;)-f(t,uz))/(u;-uz) remains uniformly bounded
for all u; and u, , conditions which certainly guarantee that f is an
operator of L* inte L% .

By combining the above type of operators with linear ones, a large class
of non-linear operators is generated, among which those of Hammerstein type

are counted. We shall consider here operators of the form H*tH , Where H

is linear and bounded, and H* is its adjoint. Noticing that

e * B lngngtn—ngxl (t)) 2
(HHx, - H*Hx;, %2-%;) = [ (Hx (t)-Hx, (t))* dt
0 Hx;(t) - Hx, (t)

’

one derives at once the inequalities

ing JL0)IE0 )] )2 < X (e E) < X (rtem) <

t:ulpuZ Uitz Ilwﬂ=1
(27)
o f(t,ul)-f(t,ug)] sup [l Holl? .
Uy =4z

t’uljuz ]I&J":l
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These inegualities make it plain what conditions should be imposed on
the function f(t,u) and the operator H in order to make H*fH either supra-
or infra-unitary. We prefer however to dress these conditions in a different
guise more often met in the applications,

Theorem 4. If D is a self-adjoint and positive definite operator in

L?, f(t,u) a differentiable function vanishing for u=0 , and if either

£

a) (28) (sup?‘ﬂ;—’—u—)) sup (Dw,w) < 1 ,
u
t,u |l =1
or
b) (29 1<(inf if_‘i’_”_’) inf (Dw,o) ,
ou
t,u | ll =1

»
then the equation
(30 x(t) = y(t) + £(t, Dx(t))
has an unique solution x(t) obtainable by iteration.

Proof: Take z =\Dx as the unknown function and replace (1) by the

equivalent equation

(31) z=nNDy +NDEfNDz .

By inequality (28), ND£N Dz is either infra- or supra-unitary according to
whether a) or b) is valid respectively, and Theorem 1 can be applied to reach
the desired conclusion.

This Corollary can also be phrased so as to include systems of func-
tional equations. We shall simply state the results, trusting that the reader

will have no difficulty in filling in the details. Before, let us recall that
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for linear self-adjoint operators ?\+(D) and k_(D) simply coincide with the
greatest and the smallest eigenvalues of D

Theorem 5. Let D}, D, e, Dn be n self-adjoint, positive definite
operators in L’ , and fl. (tyuy, eeo, Un) be n differentiable functions of
n + 1 variables vanishing when u, = 0, i=1,...,n . Then, if either

of, of,
a) The greatest eigenvalue of the matrix %(gﬁ—-}%—uL) multiplied by
j i

&

max(k+(Dl )s )\+(D2 } JR— ?L+(Dn)) remains below a constant less than one, or

of, of .
b) The smallest eigenvalue of the matrix %(aul +—871L) multiplied by
bl i

min()\"(D1 ), )L—(D )y 2a gy )\—(Dn)) remains above a constant greater than one,
2

the system of equations
(32 xi(t) — yi(t) + fi(t,Dl X3 (t), D2z (t), oo ey ann(t)) i=l,2,c0en

has an unique solution which can be obtained by iteration.

Application 3. This application is devoted to a constructive existence

proof of a cavity flow past a symmetric, convex arc of circle. The determina-
tions of such a flow can be reduced to the solution of the single integral equation

(cf. Birkhoff-Zarantonello, "Wakes, jets; and cavities", chapters VI and VII),

-D\ (o)
(33) xio) <@ 2izle ==
fv((r)e— ((T)d(r
0

where
a) 0 is the angular extent of the arc of circle.
b) v(o) is a known function describing the geometrical structure of the

flow in question. It is always non-negative and bounded.

c) D is Dini's integral operator for the half-circle. It is associated
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with the kernel

sinj s sinjo
)

A
q
[A
=

i

0
b
0

w18

1 1 is]? _ 2
D(s, o) = 5= log [tanacr+tanzsl _
o

1 1
tanso+tanss

(A
n
IA
=

D is positive definite and completely continuous. It maps functions in L (0,m)
. . : =1 : :

into continuous ones. Its eigenvalues are j , and the corresponding eigen-
functions 5 Ssinjo, j= bydiwsw

d) M{¢) is the unknown function, We shall assume \ e 17(0,m)

To apply our theory to (32) we shall first replace it by the equivalent equation

-DR(U') ]

B vio)e
(34) ’\/—DR(O') =0 '\l-ﬁ[ s -D)\'(U)da,

v(o)e
0

and take here x(c¢) = NDA\ (o) as the unknown function. Thus (34) becomes

NDx ]

(35) x=0 '\/ﬁ_[vi_
f ve_mxdv

0

The proof consists in showing that the operator

J5 o WD
e D[J-ﬂve-xfﬁx ]

0

is antitonic, and hence, a fortiori, infra-unitary. To this effect, we compute
-\ Dx
VT(x) , orrather (VT(x)w,w) . Letting  be the function ve D , one

finds at once
5
(VI(x)0,0) = 55 (Txtew) o) = TQI_)Z {(¢,NDw)? - (WDw,NDw)(w,1)} .

Now, by Schwarz inequality

- T 2 m 2 ™ ™
(p,NDw)® = ({ Lp'\f_ﬁwd(r) = (g (Wﬁm)(@)da) < { (Wd’ﬁw)"dug (N§)? do

< (WNDw,NDu)(y,1) ,
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and

(VI(x)w,w) < 0

By Theorem 2, this is equivalent to say that T is antitonic.

Q. D. E.

=[P
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