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CHAPTER I
INTRODUCTION

The purpose of statistical mechanics 1s to establish
relationships between the observed macroscoplc properties of
systems composed of many particles, and the mechanlcal pro-
pertles of these particles and their interactions. Statisti-
cal mechanics attempts to proceed from the laws of microscople
dynamics to the prediction of macroscopilc resuits. These
dynamic laws have the form of differential equations., Thelir
solutlion depends upon the initial state of the system, The
formalism of Etatistical mechanlics must therefore provide:

1) a method for constructing a suitable representation of the
initial state of the system; 2) a method of analyzing the
relevant part of the many~body dynamical problem,*

This first aspect requires an extension of the theory of
measurements, Both classical and quantum mechanlics contain
prescriptions for constructing initial states 1f the results
of a complete measurement are available, For & macroscoplc
system such a measurement cannot be performed. Only a small
number o dynamic varlables are actually measured. Even for
a microscopic system a complete measurement is never actually
performed. Therefore, extensioné to the theory of measure-

ments have been glven., This is a problem of statistical

¥It is important to keep in mind the fact that statistical
mechanlics seeks to predict macroscoplc results, This means
that 1) and 2) need not represent the exact microscopic
aspects of the initial state and its dynamic development.
They need only correspond to the relevant macroscoplc
behavior of the systenm.
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inference, In the quantum mechanical case®, the prescrip-
tlons generally consist of methoda for constructing initiel
density matrices or allowed manifolds of states which are to
be averaged over,

One such prescriptionl)is the method of "equal a2 priori
probablilities and random a priori phases of aécessible statesa,"
This is based upon'Liouville's Theorem and Laplace's "Principlé
of Insufficient Reason," Hoﬁever, the available information
13 seldom of the type which permits an obvious resolution of
the states into accessible and inaccessible ones. It 1s also
difficult to generalize this method beyond the probiema of
thermodynamic equilibrium.

Recently, & general method kas been given for the con-
struction of density matrices based upon partial knowledge of
the state of the system.z) Thlis method of statistical
inference is called a maximum-entropy estimate (hereafter
referred to as MEE). It gives the least blased density matrix
consistent with the available information. E. T. Jaynesa)
hes shown that the MEE formallsm reproduces the canocnlcal
equilibrium statistical mechanics of Glbbs.

MEE is applicable to any system. In particular, it can
be used to conatruct a densliiy matrix for a microscopic

system when the measurement is less than complete. The MEE

¥We shall discuss the guantum mechanical situation., Similar
results exist for the classical case,
1) R. C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, London, 1948), Chapter IX, Sec. Ol.
2) E, T, Jaynes, Phys., Rev, 106, 620 (1957), Phys. Rev. 108,
171 (1957).
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formalism is the only general method so far proposed for
treating this situation, A complete measurement can, in
principle, be made on a microscoplc system. In this case
the state of the system can be determined within the frame-
work of gquantum mechanics, This limiting case provides an
interesting check of the consistency of the MEE formallsm.
In the case of a complete measurement, the density matrix
must reduce to a projection operator specifying a single
"pure" quantum state. In Chapter II we investigate this
problem for the case of a non-relativistic electron.

A MEE density matrix should not be identified as describ-
ing the "true" microscopic state of the system. Rather it
represenﬁs in some sense the manifold of posslible states con=-
sistent with the experimental observations, In order %o
ciarify the precise meaning of this we 1nvestigate several
propertiesa of a MEE for a macroscopic spin system, Chapter III.
We prove two thsorems concerning a high probability manifold |
of states characterized by the MEE density matrix, These
theorems were origlinally proved under different assumptions
by C. E, Shannon.B) This discussion allows us to identify
the high probability manifold of a MEE density matrix with
the manifold of experimentally allowed states.

The statistical mechanics of a system in thermodynamic
equilibrium requires only this specification of the initial
state. The detalled dynamlc aspects of the many-body problem,

3)C. E. Shannon, Bell System Tech, J. 27, 379, 623 (1948). 1Im
Appendix A we review some of the results of information theory.
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part (2), are thereby avoided., More generally all equilibrium
problems involve only the characterization of the initlal
state. By equilibrium we mean that the values of the macro-
scopic observables are stationary in time. Thisg includes the
class of statlionary states in which external constraints |
(concentration gradients, temperature gradients, etc.) prevent
the system rrdm reaching thermodynamic equilibrium. In thelr
Encyklopddie artlicle on statistical mechanics, P, and T. Ehren-
festu) a;k whether the distribution functlion which desecrilbes
the statlonary state of an irreversible process could be con-
sidered as in some sense "relatively most probable,”" and
whether 1t could be characterized as determining the extremum
of some function?>) |

The MEE forﬁalism provides an answer to this question,
In Chapter IV we consider the problem of statlornary, constrained
equilibrium., Initially, the equation of state for a spin
system |

f(M,H,T) = O

is dlscussed, This is a thermal equilibrium problem, If the

4) P, and T. Ehrenfest, Ency, d. Math. Wissen, Bd. IV, No. 32
(Leipzig 1911), Footnote 231, p. 52.
5) I, Prigogine has suggested that the principle of minimum en-

tropy production is the ansawer to this question. Etude

Thzrmogxgamigue des Phenomenes Irreversibles (Liegé, 1947)
Pe owever e actual use ess o is principle 1is
questionable. M. J. Klein, Termodinamica Dei Processi Irre~
versibili, edited by N. Zanichelll (Socleta ltallana DI Fisica,
Bologna, 1960) p. 203, states, "It is somewhat doubtful,
however, whether the principle (of minimum entropy production)
gives a characterization of the steady state which is really
comparable to the characterization of the equilibrium state
a3 that of maximum entropy. ...From both ocur statistical de-
velopment and from the thermodynamlic development of the prin-
ciple one sees that the informatlion needed to apply the prin-
ciple 1is aluays large enough so that the principle supplles
nothing new,"
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initial information consists of the temperature T and the
field H, the standard computational procecdure of equlilibrium
statlstical mechanlos allows the megnetization M to be calcu-
lated. Using thls standard formallsm of equilibrium statis-
tical mechanics, it 1s not clear how to caloculate T when M
and H are given, However, in a consistent theory the same
equation of state must emerge whether the initial information
specifies (T,H), (H,M) or (M,T). The MEE formalism allows us
tc treat this problem, The important point is that when H
and M are given we must find an explicit manner of stating
that the system is in.equilibrium. We require that the entropy
be maximized over the manifold of p's which commute with the
Hamiltonlan and glve the speclfied value of M, This prescrip~
tion reproduces the equilibrium equation of state,

Using this form of the equilibrium constraint a general
formalism for constrained equilibrium problems is given. As
in the case of thermodynamic equilibrium the problem 1ls simply
to construct a representation of the initial state. While
this avolds the explicit problems assoclated with the dynami-
cal time development, this stationary formulation does not
remaln completely separated from the dynamics. We find that
the initlal density matrices depend upon the "diagonal parts"
of the observed operators F. The "diagonal pért" of an opera-
tor F 1s easentially the d.c. part‘of the Heisenﬁerg operator
F(t). F(t) obeys the equations of motion

Fit) = o [H Fo]
K
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Using this constrained equilibrium formalism we investi-
gate the problem of steady diffusion. For a small concentra-
tion gradient the diffusion tensor is calculated. We obtaln
a relation having the same form as the transport coefficient

relations calculated by R. Kubo et. al.6)

In principle our
method could be used to treat,in a higher order approximation,
non-linear effects occurring in constrained equilibrium
problems. EKubo's thsory is not applicable to these effects
since he treats‘a system which 1s evolving in time toward
thermal equilibrium, |

In Chapters V and VI we treat certaln aspects of the
dynamic time development of the many-body system. In Chapter
V we discuss the Second Law of thermodynamics from the point
of view ﬁf the MEE formalism, The relationship between the
information theory entropy and the experimental entropy 1s
di scussed, A definltion of entropy for non-equilibrium
states is glven, The time development of this entropy is
shown to obey the Second Law, The problem of the conditions
under which a laboratory process is lsentropic 1s discussed,
As an example we consider a spin system in an external fleld
which 1s changing in time. _

In the final chapter (VI), we investigate two related

problems of the dynamic behavior of a macroscoplc system,

6) R. Kubo, M. Yokota, and S. Naka jima, Journ. Phys. Soc.
(Japan), 12, 1203 (1957).
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The first of these 1s the time decay of equilibrium correla-
tion fluctuations., The second 18 the irreversible tendency
of macroscoplc systehs to approach a state of equilibrium.
These two aspects of irreversibility are related. The time
&ependance of a dynamlc variable depends upon the correlation
functions of the interaction responsible for its time
development., .
Two examples are given in which a correlation function
can be exactly calculated. The firat of these is for the
ring of N exchange~coupled spins. The kth spin-up correlation
runction,<7;'7:ﬂ£>, 18 calculated for a particular initial
state, The operator 7:'givos 1 if the kbd spin is up and O
if 1t is down. This problem provides a simpie illustration
of the Poincaré recurrence phenomenon, The second example is
the calculatioﬁ of correlation functions for thermal equilibrium
electromagnetic fields (black-quy correlation functions).
These examples show that the fundamental cause of irre-
versible decay is a dephasing, and consequent destructive
interference among the terms of a sum of matrix elements, The
conditions on the initial state of the system, the Hamiltonian
,J{'and the observed operator F under which this dephasing
persists over the range of laboratory times are discussed,
The long time behavior of the expectation value of a dynamic
variable can be characterized by a distribution of poles
(s - 1E")“1. 7),8) This distribution is determined by the

7) S. Golden and H, C, Longuet-Higgins, Journ, of Chem. Phy. 33,
1479 (1960).
8) N. Saito, Phys. Rev, 117, 1163 (1960).
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initial state {, , the Hamiltonlan /&, and the operator F.
It 18 m (") = (dE' F(E"+£’ £ with,

FLEE') = f«/ou/-:' (‘f,lf«)(E&IFIE‘J’>(5""I‘£>

where |E«) represents an energy eigenstate of M .

We analyze the time response for various distributions
of poles. It is shown that (F(t)) decays to zero if the dis-
tribution F(E,E') has no singularities as strong as a $-
function, For ( F(t)) to irreversibly approach & non-zero
equilibrium value, F(E,E!') must contain a J(E-—E') singularity.
If F(E,E') contains singularities of the form {(E-E'+w) the
long time behavior of ¢F(t)) 1s oscillatory.



CHAPTER II

Maximum Entropy Estimates for Microscopic Systems

Quantum mechanics provides a prescription for converting
the 1nformation contained in a wave function or denslty matrix
into predictions about experimental measurements. However,
‘the equally necessary inverse of this process, whereby one may
construct a wave function or density matrix given certain
experimental results 1s, in general, not uniquely provided
within the frameworﬁ‘of quantum mechanies, The standard
approachg) to this problem assumes that 1f the result of
mpasuring a dynamic varlable D glves a value D! lying witﬁin

D"< D'< D't the wave function is given by,

(2-1)

t)b - 4'4,.‘ U

‘AZ'II“AI‘.
where Dun s Dﬁun and the summations are only over the wvalues
of n for which D"¢ Qa<'D"'. The coefficlents a, are unspeci-
fied. If the eiéenvalueé"of D are non-degenerate and discrete,
we may, with a sufficlently preclse measurement, reduce the
above sumations (2-1) to a single elgenstate., In this case
the standard quantum mechanics formulation does provide s
unique means of constructing a wave function from experimental
observations.,

More generally, 1f the elgenstates of D are discrete,

but degenerate, a sufficliently precise measurement of D reduces

9) F. Mandl, Quantum Mechanics (Butterworths Scientific
Publications, London, 1954), Chapter II,
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the summations (2-~1) to the manifold of states all baving the
eigenvalue DY, —Houever, within this manifold the coefficlents
a are unspeéified. In order to specify these coafficients
the notion of a complete set 6f commuting observables is intro-
duced, That 1s, let L coomute with D, Now a measurement of
L will allow a possibllity of further reducing the summations
in (2-1). The sum will then extend over the intersection of
the manifold of states characterized by the éigenvalﬁes D! and
Lt*, This process is continued until a complete spécificaéion
of the state 6f the system is obtained, Only in this limiting
case does quantum mechanics provide a unique method of trens-
lating ekperimental results lnto 1ts mathematical formallsm,
For a mlcroscopic system the complete messurement out-
lined above 1s, at least in principle, & possibility. For
macroscoplc systems it is an impossibility. For this reason
extensions to the quantum mechanlcal prescription have been
given for constructing states glven experimental observations

10) The most general of these prescrip=-

of macroscoplc systens,
tions 1s that provided by the concept of a maximume-entropy
estimate (hereafter referred to as MEE), This is based upon
the existence of a unique measure (called the entropy) of the
uncertainty represented by a probability distribution.¥ E, T,
Jaynesll) has shown that a MEE provides a unique relationshlp

between a density matrix and the experimental expectation

10) R. C. Tolman, op. cit.

*Shannon's (op. c¢it.) uniqueness theorem for the entropy is
stated in Appendix A,

11) E, T, Jaynes, op. cit,
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values of dynamlc varlables, He used thls formalism to
discuss the statistical mechanics of macroscopic systems.
However the MEE method is not restricted to macroscopic
systems. In this chapter we will apply it to a microscopic
system,

The criterion of a MEE 1s to produce the least biased
description of the manifold of states consistent with given
expectation values of certain quantities, This means that
no possible state of the system 1s ignored. A MEE assigns
positive weight to every quantum state that is not absolutely
excluded by the given information. For a microscopic system
& complete measurement is possible., In this case the deﬁsity
matrix must reduce to one which describes a pure state. It
ls of interest to see how the MEE formalism handles this
limiting case,

An Experiment on a Mlcroscopic System

Consider.an experimental observation of a non-relativistic
free particle of spin one half. One possible complete set of
commuting observables contains the momentum operator p and the
z=component of spln anguler momentum Sz. Another possible set
is obtained by replacing the momentum operator by the position
operator ¥, However, in general an experimental observation
of the system determines in some degree both position and
momentum,

Suppose an experimental observation of the particle shows

that |
(X>=(p>=0 (2-2a)
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<x:)= AX; <F;) = A[’s ¢ = l, Z’3 (2-2b)

(537 = ka (2-2¢)

Since [x,p] = ifi there exists an uncertainty relation between

the conjugate position and momentum coordinates of the particle.

X
Axap = — (2-3)

A complete measurement can be characterized by the equalities

- X -
A X Afa = = (2 l;.a.?
' i
a =t (2-4b)
For this limlting cese the state of the system can be determined
within the framework of guantum mechanics.la)
™ LY
_.L( xl +xl ) _y -
5[,-.- c e ¥ AN axp 4’% .[’M“‘ + (2-5)
. , a=-4

Where & and/S are the spin-up and spln-down eigenstates of S,.
"C 1s a normalization constant,

In the case of an inequality 1n.(2-3) or in the case
where a ¥ +%, quantum mechanics does not provide a method of
uniquely determining the wave function (or more generally the
density matrix) corresponding to the experimental informetion

Eq. (2-2). The problem of characterizing this initial state

12) W, Pauli, Die Allgemeinen Prinzi ien Der Wbllenmechanik,
(Reprinted from Handbuc 8 R
1, Tiel; J. W. Edwards Publisher, Ann Arbor, Michigan,
1950) p. 101,
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is not merely an academic question. I. R. Senitzkyl3) in
'Jaiscussing noise limitations in microwave devices has shown
that the predicted velocity dlstribution of an electron beam
which passes through a microwave cavity depehds upon the de-
talls of the wave packet representing the initially assumed
electron state. The initial information concerning thls state
has the form of (2-2) with

Ax: ap.?? B
The MEE formalism provides the only general method so far
proposed for treating this type of problem.

The MEE prescriptlon selects the density matrixif which

conditionally maximizes the functional

S[f] = - 77./1«/
subject to the constraints imposed by the experimental obser-
vation (2-2)

ﬁ/}(" - Ax‘ 7;Iff?‘= AF‘
77:f52_ = ka

We shall consider the one dimensional case for simplicity.
The results are easlly generallzed to the three dimensional
case, since the space part of/p factors into the direct pro-

duct of three one-dimensional density matrices.

13) I. R. Senitzky, Phys. Rev. 95, 904 (1954).
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Introducing Lagrange multipliers we seek to unconditlion-
ally maximize the functional

S [/] —), nfxt")xmfpl‘)a 75"52 = )II 73/)( "').’- 72/”
The resulting MEE density matrix, normalized to unity 1is

= P XX Np 25 Sa ~dy K- M)
f 2

with the partition function Z()) given by

2A) = Tn exp (-2 X7 )a-f"—)s Sa")'fx").ff’)
TheA paremeters are determined by

Axl - <x‘l.> - - %i'kg

(2=64)
Ap* = 4pM) = _%_)..A% (2-6b)
La = 45,9 = _ 9)_?34&2 | (2-6¢)
0 = LX) = --3—51“‘**
o = <= '%Tr"i‘

Since the space and spin operators commute, Z may be factored
into a product consisting of a spin part and a space part.
The spin part of this product 1s

Ty Ak

(2-7)
In the space part we note by inspection that A’-l- and )5

mast vanish to satisfy the zero expectation values of position

and momentum. The trace is most easily evaluated in a repre-

sentation where )lxz + Aapa is dlagonal, The basis states

-1l -



for this representation are the harmonic oseclllator wave

functions. 1h)

()lx‘.f )a.F")'M) = 2()‘ >1.)%t (m+ %J "")

The space part of the trace becomes

%
—2MA) Kk (mth) !
pace ~ : 2 ainh ﬁ(A,)«,)

The values of the A parsmeters are found from (2-6),

PYSIIE NPY S N S 1oy N

(2-8)

))l -2.— )’
Apt= _ 2 = K . £ %
P et = B () kO
ko = -2— 2 =-K foU k%
A3 = 2
Solving these equations leads to the relatlions,
-1 2 ‘
N o= £ 48 AR L opax (2-9a)
ax 2 Apbx
A = ]!;- 37" et & P (2-9b)
)3 = —_2— O (-2a) (2-9¢)

Substituting these values into the partition function we find,

(—2—}"44&"4?" - 1 ]‘/z.

i - 4a*

2ol = |

(2-10)

The density matrix becomes

- [ I- 4a* ]I/LC._ >¢KL—>LP1—)3 SE‘
f. l;_)LAxLAP\_I

1) L. I. Schiff, Quantum Mechanics, Second Edition (McGraw=-
. Hill Book Company, Inc., New York, 1955) pp. 60, 62.
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Now consider the probability which this density matrix

assigns to the state ,nt) « This describes a spin-up (plus)

or spin-down (minus) pafticle in the 111;-1—1 harmonlic oscillator
space satate,

‘a

Y
o2 L3 ), _15::

Pnt) = imt |pimty =[ I-4ar ]
é’)‘dx‘df‘-l

Using the relations (2-9) this becomes
m

2
| t2a = Apax i
Pm,t) = -

l+-2—dpﬁx _&A AX + 1
+ = P

This shows that n = 0 1s always the most probable state., If
a >» 0 then the spin-up states have greater probabllity than
the spin-down states and vice=versa.

Suppose the experiment provides a complete measurement of
the system. That is A x and A p are measured as accurately as

the Heisenberg uncertalnty prinelple allows,.

AxAdp =X
Furthermore A

¥

&

where we have arbltrarily assumed the system to have been

found in the spin-up state. In this case
_ECM,'*') = SM 0

L(m-) = o
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Thus in this limlting case of & complete measurement, the MEE
density matrix corresponds to the pure state

'of) = d e fYox~ | <

@m)% (4x) Y~

This is just the result, Eq. (2-5), one obtains using the
standard quantum mechanical formallsm for constructing a state
given a complete meaéuremant.

It is interesting to observe that 1f 4xdp ¢ %h, the
probabilities associatéd with the odd n states are negative.
fhis is simply a manifestation of the Heisenberg uncertainty
principle. 7 ,

Finally, let us evaluate the entropy S associated with
‘this density métrix.

S= - Tapsaf

S = b2+ AXTFAAPY+ M3 A
Using the relations (2-9) and (2-10) we find

{4 b - -t '
S= éit“‘"%' - %_‘,&.!,:! + (&=L} b (1-24) ~(a+ D) g tit2a) +4u2

where b = 2—%—{9. For b= 1 and a = t% the entropy S 1s

zero, This corresponds to a complete measurement, For an

incomplete measurement in which
a = o
oxap > _.t
A

the entropy becomes

- 17 -



S HAeb = An RSP o gy

So roughly the number of reasonably probable states for a
spin one-half particle known to be in a reglon of phase space
Axdp 1is

W = ZAXAE
R

This is simply the statement that a quantum state corresponds

to a phase volume of i per degree of freedom,

- 18 -



CHAPTER III

The High Probability Manlfold Associmted with a Maximum
Entropy Density Matrix

In Appendix A three fundamental theorems of informatlon

theory are stated. In Chapter II the first of these theorems
was used 1n the MEE construction of a density matrix. We now
wish to investigate the physical interpretation of Theorems

II and III. The information theory formulation of the second
theorem 1s statéd in terms of the probabilities assocliated
wlth ergodiclS) Markov sequences, In discussing the statistli-
cal mechanics of a macroscoplc system we are lnterested 1n'

the probabllitles associated with the global states of the
system, For the limiting case of & macroscopic system composed
of a large number of non-interacying particles, the eigenstates
of any MEE density matrix based on expectation values of quan-
tities of the form F =J§F&, where F; operates only on the ith
particle, factor into products of single particle statea.lé)
For this 1dealized system, there exists a particularly simple,
direct connection with the information theory theorems.

A global quantum state corresponds to an ergodic sequence,
and the single particle states correspond to the symbols
appearing in the sequence. Just as the sequences may be separ-
ated into two classes conslisting of a high probabllity and a
low probability group (Theorem II), the menifold of global

15) See Appendix A for the definition of ergodic.
16) As an example, conaider a system of non-interacting spins
located in an external magnetic field.



quantum states may be sepafated into a high probability mani-
fold (HPM) and a low probability manifold (LEM). Furthermore,
(Theorem III) a HPM can be defined such thgt all the states
belonging to the HPM have nearly the same probabllity wl
where W 1s the dimensionality of the HPM,

The importance of these theorems in the physlcal case is
directly associated.with the interpretation of the HPM belong-
ing to a MEE density matrix, Since a MEE represents the least
biased probabllity assignment consistent with the experimental
conditions, 1t 1s surprising that it may actually specify a
sharply definedlmanifold of hlgh probability states, Further-
more, Theorem III shows that 1t assigns essentlally the sanme
probabllity to all the states in this manifold. This HFM must
therefore represent the manifold of experimentally allowed
quantum states for the system of interest., This identification
forms a basis for discussing reversible and irreversible
processes.lT)

Shannon!s proofls)

of these theorems is based upon the
assumed ergodlc property of the symbol sequence. In the case
of a system of interacting particles the global state wave
function will not have thls property. The interaction produces
correlations between the single particle states which cannot

be described by an ergodic Markov process. In order to clariry‘
the effect of thls on the existence of a HPFM we wlll study a

system of Interacting spins. The spins are located on a rigld

17) See Chapter V,
18) C. E. Shannon, op. cit.



lattice and interact by means of a dipole-dipole interaction.
The lattice is located in an external magnetic field H.

| The general question of the existence of high probablility
manifolds for coupled spin systems has been discussed by R.
Nelson19). Our treatment is not as general as Nelson'a since
a high temperature approximation 1s used, However, 15 is for
a three dimensional system for which Nelson's results are not
epplicable. We reach the same concluslon aé Nelson does for
his one dimensional enalysis, If the strength of the inter-
action falls off with distance rapldliy enough,then a HPM exists.
We have not found a general criterion for Just how rapld this
must be, It i1s sufficiently rapid if the correlations between
spins produced by the interaction vanlish for spins separated
by more than some finite distance d. For the particular case
considered here the criterion is that the effective local
field Hp Eq. (3-14) be independent of the total number N of
spins in the 1limit N -0,

Amcan st

Definitlons of a High Probébili@;,Manifold (HPM) and Separability

Conslder a system of N lnteracting spins described by a
Hamiltonian # . An experimental observation gives{M{)?= E. The
MEE density matrix is given by '

/ = e_"l‘ﬂ
z<@)
with
5(/3) = 7—;&“,‘“

19) R.- Nelson, "The Statistical Basis of the Second Law,"
(Thesis, Stanford University Physics Department, 1961).
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whereﬂ is determined by the condition

TepH = £
Each eigenstate of /X represents a global state of the spin
system, Let the degeneracy of the nth energy elgenstate be
denoted by gn. The probability assigned an energy elgenstate

In) is, Em

E“"= <mlflm> = e
R

Order the states such that
SlPl?.' 821’2 2 eee 2 SnPnZ Sn+1Pn+1l ssa

Select in order from thils series thes degenserate eigenstates

associated with gy, g5, ««s Continue this selection untll, for
the first time, the sum of prdbabilities of the states selected

1s greater than or equal to A (6< A< 1),
m(A)

Zog bk o= (3-1)

=y
The dimensionallty of the manifold selected in this manner 1is
m(})

W()) = Z 3; (3=2)

X
This manifold of states wlll be called the high probabllity
manifold (HPM)20), The remaining states form the low probability
manifold (LPM).

20) This definition of the HPM excludes certaln highly probable
states (such as the ground state) which have small degeneracy
factors. In this sense it differs from the definitlion of
the high probabllit{y sequences given in Appendix A, Theorem
ITI. It corresponds to the definition of HFM given by
Thecrem III, which 1s more appropriate physically.



Let w be defined by the relation
- Mo L ey W) = ,gg w -
Lo w2 (3-3)
N represents the number of spins in the system, We shall say
that the state space assoclated with a denslty matrix 1s sep-

arable (i.e. the HPM is sharply defined) if W is independent
of X (0<&A <),

- The Method of Calculation
Define a density of states function N(E) by the relation

Z(fs) = Tne X = SJE N(R) e'f'f | (3-4)

. For Ia=a wé have the normalization condition

Tl = gjf NE) (3-5)

_w
For a system of non-interacting spins, located in an external

fleld H, N(E) is a Gaussian centered about E ® 0 and has an
RMS width ﬁ?ﬂ.al) Where k is Boltzmann's constant, C is
Curie's constant, and H is the external field.

i!e are interested in the case in which there exists a
dipole~dipole interaction between the spins. Let the system
contain N spins of angular momentum I located in a rigid
lattlice., The Hamiltonlan consists of the Zeeman Interaction
with an external fileld H and the dipole-~dipole interaction D,

H=-Hm + D (3-6)

21) See Appendix B.
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N
where .
M=aZ Lz

. A v
:D"-—" .Z—,Z: I?“w(‘l)ICIf
C)" AP
Note that TrA = TrMD = O, In Appendix B, N(E) is calculated
for this system in the high.teﬁbefature approximation, In
this approximation we formally expand Z in powers of § . Then

using Eq. (3=4) to define N(E) we have

fmmc‘ﬁ’,lf =' 2(/5) - al(1+ /;'5._“ ;'n:f")
< ocwa A

To this same order in P we find,

N‘E) _ 'o ' c D (3"7)

T A% |
where

No =72 = c2T+0)"

A = 177;7::1 = ZAC (Ht““ HL‘) 7 (3-8a)

f = NarI(I+1) (3-8b)
3 A , |

”‘ _ 7;.01. (3-80)

L Tam>

Compare (3-7) to the result for the non-interacting system of
spins, Appendix B. We note that, in the approximation used,

the effect of the interaction i1s simply to increase the width
' (2 + B2)¥ 22

of the Gaussian by a factor proportional to + HF)®,

H

22) From this vantage point 1t is not surprising that a HPM
exists in the high temperature 1limit, The fact that only
the average lccal field Hy enters the density of states
function means in effect we are dealing with a system of
"ggn-in eIacting" spins located in a magnetic field

+ Hf)Z, -
. _2'4._




We now replace the summations in Eq's (3-1) and (3-2)
by integrations over N(E). The only proﬁlem is to find the
1imits of integration. The energy E; corresponding to g;Py
maximizes the function N(E)e-PE.

-PBE
i M(E) e P / = O
dE e,
Using Eq. (3-7) one obtains |
- = a4 (3-9)
E = -2

The sum in Eq's (3-1) and (3-2) extends to the set of degen~
erate states ﬁ()). This corresponds in the continuous formu-

lation to some energy En()).

e

Et +fg£ = EA‘C)7

——

a
The roots of thlis equation are
- - 4 a “ Y
Ee = ~PA 1 [(48), £y,

Define ['()) by
' !
Es = £ 2 AP (3-10)

Then Eq. (3=-1) can be written as

£y .
g wie) e~ PRdE
£ (3-11)

emm———

j W) e_"PEJE

./
i

where the limits of integration E; are given by (3-10). This
determines JM()), Eq. (3-10), as a function of ) . Eq. (3-2)

becomes

-25 -



Eq
Wa) = gme:ds (3-12)
£

The procedure is now to find ¥ ()) from (3-11), evaluate
W()) from (3-12), =nd then to investigate the 1imit

Mim. L Ly W Q)
N=waa N
Using the expression for N(E) (3-7) in (3-11) we find
Ey g
S e o -PEJ,;-'
£

oo _g‘—
J e” F PF ye
— -

>/
i

Let E = El' +a%x then

e
) < ) S = ] o)
—¥(Q)

This bas the approximate solutions
| T .
= ) 2o
Y'io)) = ,
[l t-2) A —1

The importent point 1s that the N dependence in the limits

E, is contained in the factor A, and {'(Q) is finite for

A#1,0.
The dimensionality of the HPM is W()). From (3-7) and
(3-12) we have |
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’ l‘ N. — — .
( —_ —-T'_"" c a JE

W()}) can be bounded as follows23)

" E-‘ | | 3
7 < ClEr-E) 2 W) £ _/Y___, & (E.-E.)
i~ A% | ”'({‘A .
with P
E,-£- =2 8P
Therefore i e _ _5_"!1
MoeT T My e WS L e B
ITh "
Now assuming ) £ 1, 0 we obtain bounds on the giim L ¥ log W (})
-» os

,e?tzm)/z-*(f -4y < Ao L lgm-h‘dgarw) ,2,..(5*4‘3‘)(3-13)

The A -dependent term appearing in the lower bound of Eq. (3-13)
is

Y
zé‘.)‘__y) g~ 2ELS 4 ,34"“
Nomo “Na" Nam ye, 2N

The ) -dependent term in the upper bound of Eq. (3-13) has the
opposite éign to this, We shall now examine the behavior of
this term in the limit as N goes to infinity. A varies as

23) The point is that for a given A we can find an N such that
E_< E+< 0. From the defining equation (3-10) for E'.t it
follows that E_< E,« NowE_= -/@24-1-4 {3} For’a

given A # 1,0, d‘(?«) is finite. A varies as N, therefore
we may pick an N such that E < O. In particular this is

true for N > £ 3

p" Z,R"I(rﬁ)(ff"-f A



N(Hgﬂf). Therefore if Hf is independent of N, the p) -dependent
terms vanish as N'%. "Howewer, if Hi varies as N, the )-dependent
terms will not wanish in the limit of large N, Therefore the
criterion for separability is that the square of the effective'
local field TA D+

L §

A = TAM™ (3-14)

be independent of N in the limit as N goes to infinity. This
: ’

is the case for a dipole-dipole interaction between spins in
a rigid lattice,
For the separable case the upper and lower bounds in Eq.

{(3=-13) converge to the same limit. This gives

| .. 200y (3-15)

The right-~hand side is independent of‘) and therefore the state

space is separable. Furthermore, the entropy of the spin
system S= -Tiflﬁf, calculated to second order in/S is

S e N%(zu,)__ YU T (T+H) (F4 ﬂ,})]

€

/&37 = S /?W“) (3-16)

N-bon

Therefore

and log w is the entropy per spin. This corresponds to
Theorem II in Appendix A,

We shall next investigate the.probability associated with
a state belonging to the HPM., The energy of a HPM state must
lie between E, and E_, Eq. (3-10). Therefore the probability

agsociated with a HPM state is bounded by the Boltzmann
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factors,zm
%
e P E~-0*¥)

o < P
7

' [}
C_p<E,+A"*‘)

IN

(214" e (ar+1)” e P2

Next we note that

-pE -
é?? [ e P ! ‘2—*] l b S
2+ e PT,"

Furthermore, E, varies as N and A%‘ veries as N%. Therefore,

glven §> 0, we can find an N’ such that for N> N'
-3
/ &!Z___ ’ < ¢
/v
In this 1imit we have

F=Ww

This result corresponds to Theorem III in Appendix A,

-N

We may summarize these results by observing that 1f the
state space assoclated with a density matrix 1s separable,
then it 1s possible to treat the states as though there were
just W of them each having probability W N, The entropy S
determines the size of W. s
~

7y c
For a MEE density matrix, corresponding to no experimental
information concerning the state of the system, S = N log
(2I + 1) and W= 21 + 1. For a MEE density matrix, corres-

ponding to some expei'imental observation having bearing on

2li) See footnote 23,



the state of the system, S< N log(2I + 1) and W<(2I + 1).
In this case we note that in the 1imit of large N the'HPM
of states corresponds to a negliglbly small fractlion of the
possible global states of the system. It 1s just thls frac-
tion of the states which we must deal with in analyzing

experimental results.
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CHAPTER IV

MEE for Statlionary Problems

The problemrof theoretical physlcs i1s the predlction of
exparimentally reproduclble results. Reproducibility means
that for almost all of the quantum states allowed by the experli-
mental control, the observed resultg are similar, This does
not exclude fluctuations; in fact,.it makes them méaningful.
This macroscoplc unifonmityZS) means that reproducible experi-
mental results may be calcuiated by averaging over the mani-
-fold of experimentally allowed states. Fluctuations may of
course be calculated in this same manner. Therefore, the
problem 1s simply to constrdct this manifold corresponding to
a given experimental set up. The MEE formalism should provide
a method for dolng this,

As discussed in Appendlx A 1t does provide a unique
method for constructing a probabllity distribution. This is
unique in the sense that it is the least biased distribution
consistent with the given experimental information. Further-~
more, éhis density matrix characterizes a separation of the
states of the system into two manifolds, One manifold (the

HPM) contains states, the sum of whose probabilities approaches

25) J. Von Neumann, Z, Physik 57, 30 (1929). P, Bocchieri
and A, Loinger, Phys. Rev, 948 (1958) repeat Von
Neumannt's argument after ng & unitary transformation,
They show that for the "overwhelming majority" of the
macroscopically allowed-initial states of the.system
the expectation values of the dynamic varlables of
interest are the same, This 1s what we refer to as
macroscoplec uniformity,

See also E. T. Jaynes, Phys. Rev, 108, 171 (1957).
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arbitrarily close to unity. The dimensionality W of this
manifold 1s —
log W=3

where S is the entropy of the distribution., The probability
assoclated with any state belonging to the HFM 1s essentially

%m Now consider what these facts ilmply. The least blased
probability assignment consistent with the experimental arrange-
ment characterizes a HFM of uniformly probable states, :This
must therefore correspond to the experimentally allowed mani-
fold of states. Thus we have a principle for constructing

this manifold,

In this chapter we shall begin an investigatiocn of the
manifolds assoclated with stationary experiments. In a
stationary experiment the values of the observed quéntities
do not depend upon the tims. A specilal class of statlionary
experiments are those of thermodynamic equilibrium. For this
case Jaynesaé) has shown that the MEE formalism reduces to
the standard computational rules of equilibrium statistical
mechanices. Specifically, if the information characterizing
the experimentally allowed states 1ls the average energy, the
MEE density matrix has the canonical form ef (=),

Now conslider a more general type of stationary experiment.
For example, let us suppose that steady, external constraints

(concentration gradients, temperature gradients) prevent a

system from reaching thermal equilibrium, At pfesent there

26) E, T, Jaynes, op. cit,
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does not exist a computational formallsm equivalent to equili-
brium statisticel mechanics for this type of stationary
process. We believe MEE provides the basis for such a forma-
liam, The problem is two-fold. We must correctly snumerate
the relevant experimental information; and secondly, we must
calculate the MEE density matrix consistent with this
information.

In order to investigate the possible methods of charac-
terizing stationary‘éxperiments, we shall first consider a
thermal equilibrium problem, The adjantage of this 1s that
the correct results are known from equilibrium statistical
mechanics, For example, the equation of state for a apip
system establishes an equilibrium relgtionahip between H, M
and T. The statement that a unique aquation of state exlsts
means, experimentally, that given any tyo of the quantities
H, M, T, the third is determined. Thus, 1n a consistent
theory, the same equation of state must emerge whethqr the MEE
density matrix is based on knowledge of (T,H), (H,M), or (M,T).
Conventional statistical mechanics considers only the first
of these cases, However, in the latter cases 1t is necessary
to explicitly state (1n‘soms form) that the physical situation
we wish to describe 18 statlonary in time, Analysis of this

problem leads to a method of imposing the stationary constraint.

The Equation of State for a Spin System

One of the properties characterlizing a thermodynamic

system 13 an experimentally reproducible equation of state.
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Consider a system of spins located on a rigid lattice and
interacting by means of a dipole-dipole interaction, For
this system we expect an equation of state establishing the
relationship between T, H and M.

r(T;H;M) =0

Usually one conslders T and H as given, The density matrix

descrlibing this situation is

p = e 2o X (1)
L __4M+D
- A=

where D represents the dlpole-dlipole lnteraction., The equa-
tlon of state 1s obtained by calculating the expecté.tion
value of the magnetization,

{my = Tap M

In lowest order, the high temperature expansion of the equa-
tion of state 1s Curle's Law.
| c H

MY = TapM = = (4=2)
L T N LD
C =X Taz =~ 3=&

We assume this equation of state 1s a reproducible ex-
perimental result. Therefore, this value of /M) must be not
only the average obtained from the density matrix (4-1) but
the value characteristic of each of the great majority of the

- 3 -



elgenstates in the HPM corresponding to (4-1). This HPM
corresponds physically to the manifold of experimentally
allowed states. Now conslider the case in which the wvalues
of the external field H and the magnetization M are given,
This information, coupled with a correct statement of the
stationary nature of the equilibrium situation, must charac-
terlze this same experimentally allowed manifold of states.
To verify thlis we shall construct the maximum entropy
density matrix consistent with the (M)', H information. A
determination of the temperature assoclated with thls denslty
matrix ylelds an equation of state. Under approximations
equivalent to the high temperature expansion this equation
of state should be just the Curie Law, Eq. (4~2). The den-
sity matrix will, in general, not be canonical, Therefore,
in order to proceed we need an operational definition of ths
tempe rature associated with a manifcld of states. In the
case of a canonical density matrix the temperature is defined-
in terms of a parameter which multiplies # . Specifically
one has
4 (<20))
A0
A natural generalization of this is provided by Gibbs! Second

-

|
= (4=3)

Analogy definltion of temperature.27)

27) J. Willard Gibbs, Elementary Principles in Statistical
Mechanics, (Dover Publilcations, Inc.,, New York, N. Y.,
I960; originally published by the Yale University Press,
New Haven, Conn. 1902) Chapter XIV.
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Lo d hpg b } (b=Ls)
T dE Fe <>
N(E) represents the energy density of states function and k
is Boltzmann's constant., {}{{)1s the expectation value of the
energy. Thié expectation value may be defined over any mani-
fold of states, In particular, Eq. (4-4) can be used to
operationally define ﬁhe'temperature of a single quantum
state. Therefore, by using Eq. (4-lj) we may say that tem-
perature is a property of a single, global, guantum state.
When temperature is a useful parameter in correlating experi-
mental observation, Eqe. (4-l) will agree with experimental
results., For a canonical density matrix which 1s separable
(1.e. a sharply defined HPM exista), the temperature defined
by Eq. (4-lf) agrees with that of Eq. (4~3) to order N'%.
Where N is proportional to the number of degrees of freedom
6f the system,

To begin with, let us consider the MEE density matrix
conslstent with the expectation value of the magnetization

<M) and the value of the external field H., It has the form

7= e re=>,M (4=5)
Z = 72 e— M
d, = A2 il

and A, 1s determined by the requirement

<MY =—-§_>T,l«%
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For a statlionary situation)( M > should be independent of time.
Using the density matrix (4=5) we find

d ¢<my = € TA [oxIM =o0
dé % Iy

4> ¢my - - L TALLpaL, 51 # 0
At* % .

Further, higher order time derivatives will also not vanlsh.
Therefore, the density matrix (h—S) does not describe a sta-
tionary ex.periment.aa)

Therefore, we must find a method of explicitly stating
the information that the experimental observs.bies are station-
ary. One posslbility 1s to restrict the adnissible density
matrices to the claass which commute with the Hamiltonian of
the system,

[#,p]=0 (4-6)

We shall call Eq. (4-6) the "strong stationary condition.”
If it is satisfied then the ;xpectation value of the magn;ti-
zation will be statlonary. Moreover, the expectatlon values
of any dynamic variable wlll be stationary.

The MEE density matrix will be constructed by maximizing

SL'/»‘Y = - 7?//4'/

268) Had we continued the calculation (evaluating {#?, and then
T using_Eq. (4-l4))we would have found, keeping terms of

order H% | M) (- /le) /1: 7a D%
T = CH HY L Tamr
This 1s not the correct equilibrium equation of state.
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subject to ‘the .constraints
Tap =1

and the "strong stationary condition™

[ﬁﬂ]:o /{=~//M*D

where (M) and H are known, The ansalysis is moat conveniently

carried out in a representation in which M 18 diagonal.
Him) = £, [m>

f wlll be stationary if it has the form
<mjpim) = <Ml plimy 5m,m

Assuming this form for f,we maximize the expression
S- M)
The result 18,29)

~ o=, <[ Mim)
dm|plm) = € Re (4=7)

-2, <HIMIm)
- e
2 = =

- - Lu?
N, =R M ))‘/«

From f we may calculate <), then using Eq. (4~4) we calculate
the temperature associated with 2 . This determines the equa-
tion of state for the spin system.

29) A detailed analg:is of this variational problem is given
later in this chapter where the general stationary problem _
i1s dlscussed.
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We shall use a formal expansion of the exponential.
When the calculation 1s completed it will be clear that this
1s an expansion in the ratio of an energy per spin to k‘I‘.BO)
Throughout the calculation the states jnd will be the eigen=-
states of the to£a1 Hamiltonian X . Using the density matrix
given in Eq. (4=7) the expectation value for the magnetization

is A, <miMi
5 <miMim) € Aol M)
(Mmy = - NPT
- A, <m
Ze

Expanding the exponential and keeplng only the lowest non-
vanishing contribution to (M) we obtailn
2.
2 A nMim)

(M> "'J':"")/ o
741

The zero order term varies as TrM which vanishes, This equa-
tion determines the value of the parameter A, s in terms of
the expectation value of the magnetization.

> =~ <y 22 (4-8)

I m mimdT
M
Again using the density matrix (4-7), the expectation

value for the total energy of the spin aystem is

S kml Himy @~ N1 SHIHIMD
Peal

{H)

5 e mMin)

~

'30) The expansion parameter in the high temperature approxi-
mation 1s the ratio of the energy per spin to kT. See
footnote p. 1092, J., H. Van Vleck, Supp. Vol, VI, Serie X,
Del Nuovo Cimento (1?57). ﬁ e example which we.
consider uH/kT ~10"2 for H~1l0% gauss and T ~1°K,
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Expanding the exponential we obtaln 1in lowest order

Ay = = A 2o <M HIH> L] 11 i
TAL

The zero order term varies as Trj/4 which wanlshes. Since

1a diagonal in the |n) representation we may write the lasat

equation for () in terms of a trace.

oy = — >, TaHM
71 1

Since TrMD vanishes this last expression becomes

HY = X H Mt (4=9)
yZ R

Finally, substituting the expression for )‘ given in (4-8) we
obtain |

CHY = ~-H <M anm " (4=-10)
%’(mmm) :

In the 1imit D =» 0 we get the expected result,

In order to evaluate (/) we must calculate the sum

5 LMl MIm Y (4-11)

2

We shall seek to cast this sum (4=11) into the form of a trace,
The advantage of this 1s the well known fact that the value

of a trace 1is representation‘ independent. In particular we
may use the representation in which M is diagonal, Let these

states be represented by /M7,

Mimy = 1m> M,
- Lo -



The exact energy elgenstate |n) may be expandsd in

terms of the |n,7? basis states,

/M>~IM0>+£M'°></" |]——— D Im) + -
M3 m°-€“:
Only the lowest order D correction to |n,> will be kept.
This 1s consistent with the fact that in calculating (M)
and <)) only the lowest order contributions were retained.,

Let the [n,) eigenfunctions be normalized to unity. Then

] MInYy = (mlMim, >+z:_’<_ﬂ1”ﬂl'.(<m; 1Mimd) - (m,mm.>)

(€'¢ r )1

Now compute the square of the matrix element ¢n|M/n) ,
keeping terms of order D2 in the interaction.

SmIMImY = (mpl MMy

gz o 1emeiDImi I (<m,wm.>-<momm.,>)(mmm.)

#, (L ~E, )"

The sum (4=~11) becomes, to order D2 in the interaction,

ZK"‘W"‘) = SemlMl ﬂ!.) +2 2 I<M.IDIA.)>/ / <) I MimlYim ) M) ..(,%m/,,»)

/“o l'cﬁ'o (E m;

The lest term may be written as,

S ema IEDMT MY A 10D MIIm> L 7o

Momd : (Emc" Em',)m
The first term is simply TrMZ, Therefore the sum (4-11) can
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be cast in the form,

I

S ) Mimy: = Tamt - izl (4-12)
M

Using this in (L4~10) one obtains

am?

SHY = ~H <MY
Tam® = 7P

Define a local field

2 _ 72 D*
L 7/—'/‘12.
then,
. = Hmd
AHY = Ry (4=13)
/—/f)

The high temperature approximation to the energy density

of states N(E) has been given, Eq. (3~7). Using the definition

of T Eq., (4=4) we find

- d AL;m)/ =

0 -2 ¢
T JE
4 E=<H>

a

Substituting the expectation value of A , Eq. (4-13), this

becomes, - "
, M. <md _Q‘__E[,-(%’:"}

=cH

—
-—

T e =) (He )

To second order in D° (H% = TrDa/Trna) we obtain
| LMy
T ¢ H
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Therefore the equation of state giving T in terms of <M)

and H is Curie's Law
: CH

T o= 23

£

Vv

This 13 exactly the equation of state obtained in the high
temperature approximation from the density matrix characterized
by the initial information T,H.

Since the "strong stationary condition" Eq. (4-6) re-
pfoduces the Curie Law for this equilibrium.problem, we shall
use 1t to investigate non~equilibrium problems. A general
formalism using Eg. {4=6) to specify the stationary character
of the physical problem is developed. The concept of the
diagonal part of an operator allows the density matrix to be
written in a representation independent form (as opposgd to
Eq. (4=7)% An expliclt representation for the diagonal part

of an operator allows us to calculate with this formallsm,

A General Statlionary Formallsm Using the Strong Statlonary
Condition

Although the previous example concerned & thermal equl~
librium problem, the analysis was based upon only the sta-
tionary character of the observations, Thlis suggests that
we extend this same method to stationary; non=equilibrium
problems., |

Suppose we are glven the expectation values of the opera-
tors Fy, FoeeeFpe The density matrix which represents the
most unbiased description of the state of the system consis-

tent with these condltions 1s
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- . F.
o™ Z Xt (=24s)

where ), and ), are determined by

;Z - 7—5 e ?A«E

)°=,&2

= -9 f.2
{FY 5y

If any of the F; fall to commute with the Hamlltonlan, the
density matrix (4-1l) is not stationary. Its time dependancé
is determined by the Liouville equation

c'f = [Hp] ¢h = 1 in this section)

Suppose besides being given the above expectation valuesu

of F;, we are interested in descrlbing a statlonary experiment.
A weak condition characterizing a stationary experiment 1is

glven by

‘J 72/0 F(z‘) = 0 ()4_..15)

"with cﬂ'f -‘-J,{-(-
e

Sufficlent conditions for (L4-15) are

[MFT=0 or  [HpIl=0
We shall be interested in cases where [# sF4] = 0. As before,
we will assume the "strong stationary condition."

[H,rT=0 (4-26)



We now dalculate p by maximizing the entropy S = -Trplnf
over the manifold of density matrices which commute with }(,
and which satlsfy the constraints,

77l_f F = <F> | (4=17)
Proceeding in the standard manner let
TLpT = Tap Lup + 2 ), Tapf;

Let /=f+é7 ) [/_’_) MH]=0 wheref is the density
metrix which makes J stationary. If is an arbitrary variation
subject to the constraint [/ )]= 0. Then taking the first

variatlion,

{ _
P T[/J +e7]/ —=o
we find €=e
Tay [lp + ZNFE]=o0 (4-18)

It Pl_were completely arbitrary, one would require the operator
1dentity ,Eaf—r Z2,F, =0, However, we have the constraint

I ) M] = 0. Let us write this constraint condition in a re-
presentation which diagonalizes H .

Higvy = 1EVYE  (y=19)

Where vV represents the additional quantum numbers associated
with the state,
ZEV[LHY|ew) =0

CE—E" <EU,7'E'1"> =0 (4-20)

¥An additive term +1 has besn omitted inslde the bracket, Eqe
(4-18), sincef will . be normalized at the end of the calcula%ion.
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When E # E', the matrix element £/} /E¥)) vanishes, How-
ever, within any degenerate ma.nifold of }{ the mai:rix elements
of # may be arbitrary. The condition on f given by equation
(4=18) 1is therefore,

CEy) Mug + 2 AN |Ew) =0 (4-21)

Let us define the "diagonal part“ of Fi by the relation
KEVIR. vy = JE, CEy|F[EDLL) (4=22)
Since f is dlagonel in E, we may write Eq. (4~21) in the form
(Ev| np + 2) 7. [E/wt) = | (4-23)

Since the states IE v)form a complete set, we have the operator

relation

Anpg + Z B =0 (4=2Y)
The steady state MEE density matrix normalized to unity is
therefore __ = . 6‘
C ) < _.-Z): F.
7= = FOD =T T (g
22 |

We shall now proceed to construct an explicit representa-

tion for the diagonal operator Fd. Let
= F -c [#AT (h-26)
then we have satisfied, for well behaved A, the condlition,
CEvI FIIEP) = CEL|FIEDL!)

In order to remove the non-dlagonel part of F we require

CEv] FIE'P') = ¢ { Ev| I'W,A]If'y’) E4 £
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Therefore let A have the off dlagonal matrix elements

{EX|FIE'L')
(CE-E')

E+ E’ (4-27)

LEVIAIEW =

A formal representation for A is

o . " .é -
A = Lom fdé et oM g o o (be28)

£€~>»o

Taking matrix elements we have

-" E [E'PID LEV|FIE“"
A=/éM(VIF -

Evro ((E-F') + € (CE—E’)

\

Therefore the diagonal part of an operator can be represented

by
2 f ] f-}({— —(‘ f
Fo=F-fdee® Fp) Fr)y=e" Fe 7 e29)

Where, in order to ease the notation, we have omitted "%%5:.
This limiting process is undarstood to occur at the en& of
the calculation. Actually it 1s sufficient to let € remain
finite if 1t 1s small compared to the energy level spacing.
In the limlt of continuous energy levels € must go to zero.

In order to gain a more physical picture of the '"diagonal
part" of an operator, consider Eq. (4-29). Let us treat
F(t) as a c-number function having a d,c, part F,+ Carrying
out the Integration we obtain in the limit ¢ goés to zero

F =K - /é&_'«:o GJ:F'(*)E&{-«/{

Therefore the "dlagonal part" of an operator is that part

which remains constant under a unitary tranaformation generated
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by the Hamiltonian X . It is just this time independent
part which one would expeét to play a role in stationary pro=-
cesses,

As an example of this formalism we consider the problem
of steady-state diffusion of particles through a lattice. For
small concentistion gradients we obtain an expression for the
diffusion constant. This is identical to that obtained by
R. Kubo et, al. uaiﬁg‘a different method.31? Higher order
-approximations of the stationary MEE formallsm provide a pre-
scription for calculating non-linear effects in steady-state
problems, Kubo's formalism 1s not applidable to this problem.
He assumes that'ths constraints preventing‘tho system from
reaching thermodynamic equilibrium are removed et t = ¢, His
results are based upon the time development of the density

matrix as it evolves toward equilibrium.Ba)

The Problem of Steady-State Diffusion
Gonsider the problem of steady-state diffusion of particlas

through a lattice, We assume that the observed quantities
characterizing this problem are the temperature of the system
T and the expectation value of the concentration of particles

(n(x)) « From a conceptual point of view, the second quanti-

31) R. Kubo et. al, op. cit. This method is based upon
Onsager's assumptlon that the aversge regression of spon-
taneous - fluctuations follow the macroscopic laws of
irreversible processes, For a calculation more closely
related to ours, see S. Nakajima, Prog. Theor. FPhysa,
(Japan) 20, 9L8° (1958)

32) For higher order approximation in Kubot!'s formalism see
. ?. ?egnard and H, B. Callen, Rev., Mod,-Phys. 31, 1017,
1959). ’
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zation formalism is partlicularly appropriate to this problem
since any attempt to describe a atate of steady flow in terms
of configuration space would involve particle coordinates
appéaring and disappearing from the reglon of interest. In
addition, the second quantization formalism automatically
takes account of the Bose or Fermi statistics of identicel
particles, whereas in configuration space treatments this 1is
accomplished only be imposing additional arbitrary constraints
on the problem, Let the Hamliltonian for the system be

H = fJBx §L+(x) [;§V1+ V(x))t,L()() (h-30.)
The density of particles operator 1is
M) = 'f+6x; 3[0:) (4=31)
The continulty equation 1is
Mm+ Ty =0 (4=32)
with the current operator defined by the felation

7 = Ae 5L+:.% v (4-33)
Given T and <n(x)) the steady-state MEE density matrix

is, Eq. (4=26)
| p S e

F = PP (4-34)

where nd(x) is the dlagonal part of the operator n{(x) and

2, [un] = 72 A P mper g
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ZP[A(x)J is a function of B and a funetionsal of,u(x}.33) |
/2 equals (x7)"1 and the chemical potential u(x) is determined
by the condltion

Shi2 o, T ]

& ulx)

LMY = (4=~36)

§
where 7, represents a variational derivative,

The expectation value of the current density J(x) is
Ly = Tap7e (4-37)

Assuming a small density gradient we expand the density matrix
keeplng only the lowest order term

P‘,( ] ! - 7

where

S -
/MJ ()(’,"('S) - Cﬂ MJ(X') e Hs

e—fb)‘/
2(p

—p
2 =Tael

ﬂ’:

33) In the case where the local temperature T(x) is a function
- of position

p= exp (- fd3x [ poo P (~E v o) pya])

ZLpex), 0]
and Z is a functional of/s(x) and/a(x).

4 - M2
X} = = —
/) A TUx) <m0y S Al
For a discussion of the partition functlonal see L, W,
Davis, "The Statistical Basis of Hydrodynamics and Kinetic

Theory," (M. L. Report No. 755, Stanford University, 1960).
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Next, using the representation Eq. (4~29) for a diagonal

operator we have

(] .
et - . N
My (X',-i3) = mxy-is) - gtfée_ m (¥, t-is) (4=39)

-0

Inserting (4~39) into (4-38) and noting that
apj = L7 =0 (4-4o)

72 /. f“‘”i-«'ﬂ/"(x) = (mixy-cs17(x)) =0 (4=41)

we find

| o o ,P

(Y = - JJ{e f g’ijﬁx',d(x') (Al -es) F00), (=42)
_2 P

Eq. (4~40) states that the expectation value of the current
flow in equilibrium vanishes, Eq. (4-~}1) follows as a con-
sequence of time inversion symmetry. Under time inversion T
changes sign but n does not. Using the continuity equation
(4=32) we replace n by -T7"'/_',

o<t (Tds (sp ueer B! < Ftte 700y (ek3)
<7lm> é—SJf-e 25 \d3x' MOV 7% / ° .
o Q F '
Integrating this by parts we obtaln,

. ° PJJ L} ' 92

17-,,‘,) = —Sdée , f A% Flaw - </ (x), t-és) 7 (R

—

e (P
+ r;lé € J ds §d$ /ux')</(" 1‘—;5)/ ’*’)> (L4=Lky)

— "0
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The correlation function (T(x',t—is)j(x)>. decays to zero
for IE - %' greater than some correlation length L., We
expect L, 1“:0 be of order the mean fres path of the particles
in the lattice, When X 1s more than a correlation length
away from the surface only the first term in Eq. (4-ll4) con-
tributes. When X is within a correlation length of the sur-
face, the surface term in Eq. (4-lli) provides the correction
to the current density due to the presence of the surface
;egion.

For steady-state diffusion we exXpect
V- 7y =0 | (4=45)

when X 18 in a source free region (l1.e. when X 1s not near
the surface). Taking the gradient of the first term in Eq.
(4~hly) we have the volume integral

IJ:VXI 'ﬁ'/a(x’) e < 7(!',"'—-«'5) ?‘7(")2 (4-U46)

In component form this is

3xr 2 oy & < e (X £-¢3) (X)7 (b-47)
SJX‘)x,ax 3% 7 /k

For an isotropic medium the correlation function depends only
on the distance IE'— EI » and orthogonal current densitles

are not correlated. In this case Eq. (4-47) becomes

. Jix' O awx) 3 ¢ o X 08D 4. (X) (4=48)
g‘# S Ix! X, 7 /i .

'

- 52 -



Integrating by parts and collecting components

T ju) ~ SaPX' 7w ) 7,00, ¢-i5) ﬁ.m_)' (4-49)
The surface term vanishes since x is many correlation lengths from
the surface. Therefore, the divergence of the current density will
vanish insi_de the material if the chemical potential satisfies La.‘pla,ce's
equation,

V:a ) = 0 (4-50)

This is simply the statement that there are no sources or sinks of
particles inside thé material.

If the gradient of the chemical potential is constant over distance

of order a correlation length then Eq'. (4-44) becomes

o0 = — T (ot €T [ ds (e g i aos
47 ) = - AL ’_S.. ] 'y d>x’ (1(!,‘!--::)/0‘2 |

The local, diffusion transport coefficient is therefore34)
° P
et
Duw = b SJ*Q 2\ (4, K} #=29) ) (4-52)
ck €->0 ? K 7‘ 0
—00 0

This is similar to the transport coefficient relations obtained by

R. Kubo et, a1.35)

34) As previously noted, for the case of a continuous spectrum,
the limit & =» 0 is taken at the end of the calculation,

35) R, Kubo et. al., op. cit.
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CHAPTER V

The Second Law of Thermodynamies
(Reversible and Irreversible Processes)

The traditional statements of the Second Law of bﬁgfmo-
dynamics are assoclated with the names of Clausius and Kelvin,

It is impossible to construct a cyclic process36)
whose only effect 1s to:

1) transfer heat from a heat reservoir at
temperature T, to a heat reservoir at
tempsrature Ta where T,> Tl'

2) absorb heat from & heat reservoir and
convert this heat into work,

Analysis of these statements implies the exlstence of a state
function of the thermodynamlic wvariables, the entropy S, and
an absolute temperature scale T. These two thermmodynamic
quantities are related to the infinitesimal heat d) absorbed
by the system in a quasi-static process,

dQ = Tds - (5-1)

A gquasi-static process can be defined as an ordered succession
of equilibrium states. A real process 1s a temporal succession
of equilibrium and nonequilibrium states. For real processes

the equallty sign in (5-1) is replaced by an inequality.

aQ < Tds (6-2)

Definition of Sg and 353

Experimentally the entropy dlfference between two equili-
brium states is found by measuring and summing the increments

36) A cyclic process 1s one in which the system 1s eventually
returned to its initial state,
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%? which occur during a real process which connects the two
states. This real proceas takes place over times long conmpared
to the relaxation times characterlzing the physical system.

In this sense it approximates a quasi-static process, and we
ldentify S, with the symbol S appearing in the Second Law.

Let the specific heat C for the particular process of interest
be defined by

C = %‘-‘; ' (5-3)

Then the experimental entropy difference 1is
z .
S~ 5 = a‘a - [edl (5-4)
e - T .
We have labeled the experimental entropy Se to distinguish it
from the information entropy Si which will be introduced next,

The information theory entropy 1s deflined as a functional‘
of a density matrix_f .

In a representation which,diagonalizesJP s Eq. (5=5) becomes

S. = - %PMA.PM _P’“.—: (Mf/olm>

[

Sy 1s a consistent measure of the amount of uncertainty in the
probablility assignment of f o The unigueness of thls measure
is discussed in Appendlx A. In the case wharejo 18 separable,
5S4 1s essentially the logafithm of the number of states in

the HPM belonging to F .37) We have defined S; as a dimension-

37) This corresponds to Boltzmann's original interpretation of
log W as a measure of the number of experimentally compa-
tible atates,
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less quantity.38?

The felat;onship between Sg and Sy can be inferred from
the observatlon that the Gibbs' Canonical formalism predicts
experimental results. A MEE c&nsiatent with the experimental
expectation value of the energy glves the canonical density
matrix of Gibbs, Therefore we conclude: Iin thermal equili=-
brium, the experimental emntropy S,, Eq. (5-4), forms an
upper bound to the information theory entropy Sy, Eq. (5-5),
for all posaible density matrices compatible with the experi-
mental expectation value of the energy.39) For thermal
equilibrium in which S, depends upon the values of additional
varliables (Fi) s (e.g. mole numbers, volume, uniform rotational
angular velocity) this same relationship between S and Sy
‘holds. Let S, depend upon the experimentally measured equili-
brium values {F;? , Let p be the MEE density matrix consis-
tent with these expectation values (Fy?, Then

S¢ = SyLP] (5-6)

This is an experimental fact since the MEE formalism reproduces
the results of equilibrium statistical mechaniés and the se
results agree with experiments. This relationship between

Se and S; wlll now be used to define S, for non-equilibrium
states. This definition has three lmportant consequences:

38) In discussing the relatlon between S; and S, a factor of
-k (Boltzmann's constant) will be need% Fo? convenience
we shall temporarily work in the syatem of units where k =1,
39) Implicit in this conclusion is the assumption that S, and
S3 are measured from the same reference state,
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1) Se(t) 18 a function 6f experimentally measured quantities
(Fi(t)>‘; 2) for thermal equilibrium it reduces to the
thermodynamic entropy; 3) Sg(t) obeys the Second Law as we
will now show.

The Time Development of the Entropy
' The Second Law states that the experimental entropy S of

an isolated system increases or remains the same., Now conslder
ths time development of the information theory entropy, S4.

The Schrodinger equation implles that p develops in time under
& unitary transformation. Since S; 1s defined by the trace of
a functlon depending only on p , it remalins constant in time.
This fact has seemed paradoxical when the distinction between
Se and S; has been ignored.uo) Having distinguished between

Sg and Sy the semantlic origin of the paradox is obvious,

Since S, forms an upper bound to Sy, the fact that S; 1s con-
stant in time does not contradict the Second Law.

Before giving an ‘analytic formulation of the Second Law,
we shall sketch a geometrical argument due to Dr. E, T, Jaynes,
This argument 1ls based upon three fundamental notibns: 1) the
theorist must predict only experimentally reproducible results;
2) there exlsts a HPM of states associated with the MEE density
matrix characterizing the experimentally allowed states; 3)
the time evolutlon of the system 1s determined by the Schro-
dinger equation.hl)

40) Actually this is a sematic difficulty arising from the use
, of the word entropy to mean two different thlings.

41) Alternately, we could require the system to obey Hamilton's
equations. The invariance of the dimenslons of a manifold
under a unltary transformation would be replaced by
Liouville's theorem,



A MEE gives, for the inltial density matrix, the broadest
possible probabllity assignment consistent with the experi-
mental information characterizing the initlal state., Ths fact
that experimental results are reproducible must therefore
mean that almost all states consistent with the initial infor-
mation glve the same experimental results, These experimentally
allowed states form the HPM assoclated with the inltial denslty
metrix., Let this manifold /) (o) have dimension W(o). One of
the properties of a separable density matrix is that

A LlT == Tape dup, = L We)

to order N‘%. N varles as the number of degrees of freedom
of the system, Since the initlal density matrix i1s obtained
by a MEE conslstent with the experimental constraints at time
t, » we have the equallty
SLl) = SLIAT = AaWO)
The Schrodinger equation lmplies that the system deve%ops
in time under a unitary transformation U (t, t_).
¢ U = M Cr A= 1
The initial manlfold develops in time under U,
Wmee) = U ‘o) #¢o)
U represents a rotation of the state space which preserves
the dimensions of the manifold. Therefore the manifold My(t)
1s of dimension W(o). |
Since we are dealing with a system which gives experimen-
tally reproducible results the manifold /y(t) must be embedded
in the manifold of states ”h}t) consistent with the experimental
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observations on the system at time t. Therefore the dimen-
sionality W(t) of the manifold Mf(t) must be greater than or
equal to W(o). However, M (t) forms the HPM of the MEE den~
sity matrix consistent with the experimental observations at
time t. Therefore,from (5-6) we identify S,(t) with log WE(t);
where W.(t) 1s the dimensionality of A/ (t). This gives the
Second Law,

53”'"""4‘7“/5(“ z leg WH) -_-/z? Wtey = 3, ()

Analytic Formulation of the Second Law

Consider an experiment which measures the expectation’
values of certain dynamical variables Fy(1 = 1,...N) belonging
to a system.l'z) At the Initlal time t, the expectation values
are {Fy ), . The MEE density matrix consistent with this

information is

.- 2 Xk (5-7)

Following (5-6) we identify S,(t,) withSy[A]

N
S, () = —/’71/,,&,/0 = ), -f-‘% Y < F: 7,

42) Throughout this discussion we shall assume that these
measurements are of macroscoplc quantities and do not
produce Important perturbations on the system,
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The system develops in time under the Hamiltonlan H (t).h'3)
The time dependence of H may be due to variations of external
mechanical parameters such as electromagnetic field strengths.

The equation of motion for an operator Fy is

) =i [ F@R]  Fthl=F
At a later time %t the expectation values wlll be

{Ew) = Tap Rl

The MEE density matrix consistent with these expectation

values 1s
with
D () e Au B,
o
(RO = Sy e
P ‘z.)‘.(HF,:
=

For reproducible experiments, the observed expectation values
at time t,{ Fy >t,w111 be equal to the calculated results
<F1(t)2 s 1} (t) correctly describes the dynamics, a.nd/o
correctly describes the initial manifold of posslble states.
However, 1t is lmportant to keep clearly in mind that the
expectation values (Fj_(t)z , which determine /-ﬂt , are

calculated numbers.

43) The system is considered as thermally isolated from its
surroundings so that its time development 1s completely
characterized by a Hamiltonian, .
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Identifying the experimental entropy Sogt) at time t
with the information entropy of the MEE density matrix_ﬁi we
have

S i) = -Tappnfe = Alt) + ,(?__.),.H}(E./f))a
This may be recast in the convenlent form

S (t) =- Tapt)baf, (5-9)
where Jo(t) is the time developed density matrix generated

from j% .
Pl = [HH), //197 7 = s (5-10)

Eq. (5=9) will be taken as the fundamental relation giving the

time dependent entropy of a system.hh) In thermal equilibrium

1t reduces to the standard Gibbs! form., It provides a natural

‘extension of this for non-equiliﬁrium situations. .
The analytic formulation of the Second Law 1s obtained

by considering the entropy difference,

AS = W)= Sglh) = ~Taptt)bus, +T,,]po,4%

BS = Tapl) (Luptt) -Hufe ) (5-11)

Choose a representation [n) which diagonalizes p(t). The
concave property of the function Iux implies | |

dml bnfpIlmy & tn <m] g Im) (5-12)

H. Mori, Journ. Phys. Soc. (Japan), 11, 1029 (1956), has
i) used this same deflnitign rog ge(%s.'“’ 56)s
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This inequality manifests itself as an increase in A S, It
erises from the possibility that £, and /(t) do not commute.hs)
Using (5=12) in (5-11) we find

As 2 Z,(Ml/(*).lm> ( on Ll p () im)y —/l« <ml e 1my) (5-13)

> p (| p b Im)
4s = % (mlpledim) Ln { Ll ppim? )

Now using the inequality fux 2 /- ;‘(- it follows that

As z 2. nlptt)imy (- i"_’&’_m_)_) (5-14)

(m}/l-(-)IM)
The right hand side of this lnequality vanishes since

Trp = Tr/»\(t) = 1., The final result is the Second Law,

A3 = 5, /(‘,—Se_(‘éo)z o

Reversible and Irreversible Processes

The dynamical equationsa which determine the time develop~-
ment of a system are inveriant under time reversal, Classi-
cally this means that if all velocitiesub) are reversed, and
time proceeds in the reverse dilrectlon, the system wlll move
back al&ng its past trajJectory in phase space. This 13 a
classically allowed symmetry property since F = ma involves
only second derivatives with respect to time,.

45) The entropy increase corresponding to the inequality (5-12)
arises from the statistlcal features inherent in quantum
mechaniecs. R. C. Tolman, op. cit., refers to (5-13) as
Klein's L.erma, The important peint 1s that for macroscopic
systems the inequality in (5-13) is negligible., The sig-
nificant inequality Eq. (5-14) arises from L. x 2z I~x~/,

j6) All external magnetic fields must also be reversed in

- direction.
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In quantum mechanics the state of the system is represen=-
ted by a wave function ?J(t). Let F(X,p) be a Hermitian
operator depending upon position and momentum. The time re-
versed state function ff(t) related to the state ‘/’(t) may

be characterized as follows,
5@ t) = <qwl F 551 1904) = fenl Fez,prldetl) = f;f’?,'—ﬁrf) (5-15)

We shall now glve an explicit form for (/(t) and show that
ir Sb(t) is a possible solution of the Schrodinger equation
then so is ¢(t). This 1s the sense in which the dynamics
are invariant under time reversal, In this analysis we shall
a8sume 11'13 a acalarlﬂ) and H 1s an even function of the momen-
tum 48)

| Introduce a time inversion operator T.

Q1t) = T Y-t (5-16)

Eq. (5-15) will be satisfied if T corresponds to the operation
of taking the complex conjugate., T 1s therefore an antiunitary

operator.l‘g) Some useful properties of T are

T T

k1) If ‘}' is a spinor then the time reversal operator mixes 1ts
components, It essentlally changes spin-up to spin-down.
See E. P, Wigner, Group Theory (Acedemic Press, New York,
1959), Chapter 2b.

48) If a magnetic field 1s present the Hamiltonian will have
an odd term in the momentum. However the basic time in-
variance symmetry Eq. (5-17) is maintained since the exter-
nal magnetic flelds must be reversed in direction under
time reversal,

49) Let some state { be expanded in terms of a complete,
orthogonal set of functions u,, # == ajun. 0 is an anti-
unitary opar_ator if for any set a,, Y- PR 0’9 = .Zaj', od, .
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(TRI4Y = Iy
TPT =-F

The last relatlion follows simply by considering p in the

x-representation, Using these relations we shall now show

that Eq. (5-15) 1s satiaflied by (5-16).
Fo (RyB4) = P FKE) QHAD
= LTdt6)] F&p ITd <))

x
= 4O T Fezp) T4t

1

eal Feg-py 1 gee)’

= et | Fexy~p) 14 E0) = F(R,Ft)

The last step follows since F 1s Hermitian,
If 90(1:) satlisfies the Schrodinger equation then s will
the time reversed solution 90(1:).

Lo ) = Al

To show this, let T operate on both sides of this equation,
Since H 18 an even function of P 1t is invarlant under the

time reversal operator T.

THT" = H
Therefore,

kTG = AT 4H)
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Changing t to =t one obtalns the desired fesult,

%471{) = HPK)

This dynamic reversibility of the equations of motion 1s
in contrast to the experimentally observed tendency for macro-
scople processes to proceed spontaneously in only one direction.
This latter behavior of macroscoplc systems 1la referred to as
irreversible. Just as in the case of the word entropy the word
irreversible has lead to semantic difficultles. These d4diffi-
culties have at times obscured the physics. Thus we find
Tolman®0) stating:

"We thus find that the principle of dynamical
reversibility would hold in the quantum mechanics in
much the same way as in the classical mechanics.

Hence, the introduction of the quantum mechanics--

at least in its present form--cannot be regarded as

throwing any new kind of light on the problem of the

actual phenomenclogical irreversiblility of thermo-
dynamic processes. Just as in the classical mechanlos,
this irreversibility will have to be explained by
considering the probable bebhavior of a collectlon

or ensemble of systems rather than from consideration

of the purely mechanical behavior of a single system."
Experiments are not performed on an ensemble of systems, but
upon a single system., The fact that a process 1s observed
to go in a eértain direction must imply that this is true for
the great majorlity of global quantum states consistent with
-the experimental control.

A fundamental criterion for irreversible processes 1s
that formulated by Einstein® According to Einstein, irrever-

8ibility arises from a lack of experimental control. An

50) R. C, Tolman, op. cit., Chapter XI, the last paragraph of
. Section 95,
# W, Ritz and A, Einstein, Phggu:. Zelts. 10, 323 (1909).



irreversible process can be made to proceed reproducibly in
one direction in the laboratory, with a degree of control over
initial conditions which fixes the values of only a few
macroachic_parameters. The inverse process is not prohibited
by any law of physlics. However, 1ln order to realize 1t

reproducibly we would require a far greater degree of control,

involving microscopic details of the initlal state. In other
words, the initial state for the inverse process has a very
low a=-priori probability, as long as we are restricted to
macroscoplc accuracy in controlling experimental conditions.

This same criterion for the existence of experimentally
obsarved irreversible processes 1s found by examining the
relation for S,(t), Eqe (5-9). The choice of the dynamical
variables Fy; whose expectation values at time t are calculated
to specify_f} depends upon the specifilc experiment. A3 we
increase this number we further restrict the form of the MEE
density matrix Py. If it were possible to make f. = P(t) then
the entropy Eq. (5-9) would remain constant. However, this
exact equallity would require that the operators Fi form a
complete, commuting set., Experimentally ﬁe do not have
this microscopic control available.sl)

From this vantege point it 1s clear that the entropy
Eq. (5=9) will increase in time. It is not clear that there
exist isentroplc experimental processes in which this entropy

increase can approach zero. This seems to require the

51) A complete measurement of thils type would violate our
. assumption that the act of measurement does not perturb
the system in an observable manner.
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equality £, = pP(t) which is experimentally unattainable., How
then are we to explaln the exlistence of isentropic processesa?

The concept of a HPM provides an answer to this problem.
In Chﬁpter IIT we showed that under certain physically realized
conditions a éharply defined manifold of states could be
assoclated with a MEE density matrix. The sum of the proba-
bilitles associated with the states in this manifold approaches
arbitrarily close to one. The probabillity associated with
almost all states in this HPM i1s equal to w1 where W repre-
sents the dimensions of the HPM, Furthermore, the informatlion
theory entropy assoclated with the MEE denslty matrix ia{equal
| to the logarithm of W,

In terms of these concepts we may now give a simple
characterization of an experimentally reversible process. A
reversible process is one 1ln which sufficlent contfoi can be
maintained so that the dimensionality of the HPM associated
with f,. is equal to that of the HFM associlated withpfg. The
HPM or_f% must, of course, span the same manifold of states
that the HPM of p(t) spans. However, this last requirement
is a consequence of the fact that we analyze only reproducible
experiments. The possibility of lsentropic experimental
processes 1s thus directly assoclated with the existence of
a HPFM,

A more detalled understanding of the relationship
between lsentroplc processesa and HPM's is obtained by examining
the matrix elements of the denslty matrix. The existence of
HPM's implies that the only important matrix elements ofuf%
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ande(t) are given by

mlptt)Imy = - for |n) 1in the HFM of p(t)
(M'I,Q_[m') = —"’7; for |n') in the HPM of £,

If W' equals W, and the HPM's overiap then

<ml pifilm) (ﬂu Cmlprer[m) -,&(mlﬁ/,u)) = 0

-over the only region in which the matrix elaments,'appearing
in the expression (5«13), give important contributions., Out-
side this HPM we do not make any requlrements. “Furthermore,
we do not make any phase requirements on off dlagonal matrix
elements. As previously noted, the requirement that the HPM's
overlap 1s always satlsfied for reproducible experiments, -
Therefore the condition that a process bé isentropic is

simply W = W'.Sa?

The reqﬁirement‘ji = P(%) would indeed have meant that
microscopic control would be necessary to obtain an isentropilc
process according to our derinitibn of 8g(t). However, the
nuch weaker reéuirement upon the dimensiohaiity of f% can be
maintained under suitable experimental situations. One such

isentroplc process will be analyzed in the next section.

Exanmple of an Isentrople Process

We shall) agaln consider the spin system characterized by
e Hamiltonlan ..

H, = -HEM +D

52) See the footnote number L5 concerning Klein's Lemma.
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Let the system be initlially in equilibrium

— e’/;";{. // -
ﬁ,— i — e = - H M+ D

Z,
where F% is determined by
— - - 2 . -
(}{,)o = 77)/¢ He = j_koAZ(ﬁ ) (5 17?'

Now let the magnetic field change in time. According to Eqe.
(5=9) the entropy at time t is

Slt) = - 7;1/('{')}‘1/.{.

where

e -pEM,

2 = 74 e PHH (5-18)

(5-19)

and_f>(t) is the time developed density matrix

/w-) = Ol#) fo 0t
(O = A, V) V=) K=l

It 1a convenient to shift the time dependence to the

dynamic variables and write Eq. (5-19) as

-2
CHED, = Ta p CHOMB+ D)) = - ﬁgfﬁ.&f (5-20)
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where MIE) = OTH) MU ) D) =0t DU

Using this notation
S 1) = An 2y + ) L)

Taking the time derivative we find

dsuy = 4 3 1) L H1E) w1 d cHmwny  (5-21
i ) #,&Jfa»p HI, +3 qu( 7, )

From Eq. (5=-18)

4 o — B ) SHI), +BE) HIH LMY, (5-22)
d¢ Au gé ﬁ ﬂ 3 _

where

(M7f=—;777ﬁ/‘7

Purthexrmore the change 1n the internal energy of the spin
system is related to the work done by the external fleld,

degtty, = - (M), dH
Therefore ) _
d = - H It W
L CHH), = —HIE) <M 7, (5.23)
Using (5-22) and (5-23) in Eq. (5-21) we have
j&srﬂ = ) Hit) ( <my, = <MIY,) (5-24)

Flrst consider the case in which H< 0 over a field range

H} to Hp (H1 > Hp). Furthermore assume H,>> H, where H_ 1is
the local dipolar field defined by

2
< EZ
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Let T (H) be the relazation time characterizing the exchange
of Zeeman and dipolar energy.53) Then we may obtaln the
following estimate for the right hand side of Eq. (5=-24),

MY = SMIDY & L + dmn ¢ -2
(MY, = <mien) = o <MY, (5-25)

The time rate of change of' the entropy 1s

d st) =~ ﬂ’”f”ﬂf*’ M7,

a—

4¢ Hét)
Furthermore, in the high temperature approximation

SHt) = /vﬂy (2L+41) - /;IHH/H<M>+ (5-26)

Z
Therefore
ds . 2T H I |

-YM"'S H /{ (5"'27)

where
— (2L +1)
Su = 74
From (5-27) the condition that the process be isentroplc is
’Eﬁé/_ ¢ 1 (5-28)

For the case in which H £ Hy, Eq. (5-25) and Eq. (5-26)
must be modifled. |

53) N, Bloembergen, S. Shapiro, P, S, Pershan, J, O, Artman,
Phys. Rev. 11k, 445 (1959) have calculated 2 (H), Within
thelr approximation 2 gt 4

A

Ty ~ 2tp [ IHx

where for H??Hy, 4 is the line wldth due to the non-secular
terms in D, For H£Hy they find T(H) approaches the
spin-spin relaxation Iiime eand 1ls independent of H,
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(Nzt — (ﬂ/{_}>‘ A ?H('f) 4/"7{.
L H*E) + /[L‘]%-

z
Sl) = Nhey(2241) — P [HEY +H T (g
- H ) 7{:
The expression for the entropy change becomes

6‘5 . 27'//'” o/// (5-29)
JM'—S (”1_,_,/‘:2-)3’1_

For H i-HL,‘T‘approaches the spin-spin relaxation time and 1s
independent of H, Assuming H 1s constant we integrate Eq.
(5"29) .
— S(2) . i I
g ( Eﬁﬂ__figri) ~ 2&&;41? —

S - S (H@+H7)'%  (Hm+p2)%

In the low fleld range the 1lsentroplc conditlon 1s therefore

HT .4 (5-30)

.
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CHAPTER VI

The amics of Irreverslble Processes

Introduction

In this chapter we investigate certaln aspects of the
dynamies of irreversible processes. One aspect of irrever-
sibility is the tendency of macroscopic systems to approach
a state of equilibrium. We define equilibrium operationally
by the requirement that the values of macroscoplically measured
quantities shall not change in time, More specifie types of
equilibrium are further characterized by the requirement that
different parts of the system have the same value of some
intensive property (e.g. temperature, thermal equilibrium;
pressure, mechanlical equilibrium; chemical potential, chemi-
cal equilibrium). One of the fundamental problems of irre-
versibilisy 1is the determination of the properties of the
Hemiltonien /{ , the initlal state, and the observed dynamic
variables Fy which are necessary and sufficient to imply that
the system approaches equilibrium, '

A second and related aspect of irreversibility is the
time decay of thermal equillbrium fluctuetion correlations.
Let F be a dynamlc varlable whose time development is deter-
mined by the Heisenberg equation of motion.

Fto = ¢ [H FOT  (#=1)

Let‘fﬂ represent the equillibrium density matrix for the system.

An autocorrelation function can be defined by the relation



crt) = PR <FF (6-1)
TapF* <F*D

where F stands for F(0). For a macroscopic system we expect
c(t) to vanish for large t.°t) Actually G(t) should become
very small for t long compared to some characteristic time T,
called the correlation time of F. |

These two aspects of irreversibility are closely related.
The time dependence of a dynamic variable can be related to |
correlastion functions of the interaction responsible for its
time development. In the next section we shall discuss this
relationship. We will then examine some of the properties of
the correlation functions when the energy spectrum of the
system 1s discrete. As an example of this case we evaluate
an autocorrelation function for e ring of N exchangé-coupled
spins. We then exaﬁlne the dependence of this correlation
function on N and t. For finite N the time dependence 1s
almost-periodic.55) However if we take the limit N-»@ before

5li) In general C(t) should approach a constant value for large
t. If [#p1= O and TrpF = 0, then we expect the correla-
tion function to vanish eventuslly. If TrpF = {(F> f 0,
then consider the correlation function of the operator
F =-<P), It is primarily this class of thermal equili-
brium fluctuation correlation functions which we shall
be lnterested in.

55) A set of real numbers {7:}1s called relatively dense if
there exlats a number T such that every interval
t<t<t + T of length T contains at least one member of
the set.. A continuous function £(t) 1s called almost-

eriodic if for any € > 0 there exists a relatively

gense set of numbers {7.} such that |£f(t + T;)=£(t)] 2 €
for =00 < t <oco, See Harald Bohr, Almost~Perlodic Functions,
(Chelsea Publishing Co., New York (1947) 7J.
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the limit t-—><°° , the autocorrelation function goes to zero
in the latter limit. In the limit N-—>eo the energy spectrum
of the system becomeé-continuous. This is responsible for
the qualitative difference between the asymptotic time be-
havior of a finite and an infinlte system.56)

The properties of the autocorrelation function are then
examined for the case of a continuous energy spectrum. As
an examplie of this case the autocorrelation function
CExEx(t,Ej> is calculated for a thermal equilibrium radiation
field. E, stands for E,(0,0)}. We conclude by applying some
of the results obtalned from our analysis of the time behavior
of correlation functions to the fundamental problem of tie

approach to equlilibrium of macroscopic observables,

'Some Examples of the Relatlonshlip Between Correlation Functions
and the Time Development of Dynamic Variables

The Green's functions, or propagators, assocciated with a
many body systém have the form of correlation functlons, This
is the fundamental relationship between the time evolution of
a system and the correlation function, Rather than review
this férmalism57) we will present some examples which illus-
trate this relationship.

56) This 1s assoclated with the Poincard recurrence phenomenon
of a finlte system. Poincare recurrence means that a given
initial state will recur, not exactly, but to any desired
defree of accuracy, infinitely often. Classlcally the
initial state 1s specified by a point in phase space,
Quantum mechanically 1t can be specified by the expecta-
tion values of a complete set of commuting observables,

57) P. C. Martin and J. Schwinger, Phys. Rev, 115, 1342 (1959)
L. D. Landau, JETP 3L, 262 (1958),
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Consider a system of interacting spins having a Hamilton-

ian

j{n =—/I°M2- +‘D

Let D represent, for instance, the dipole-dipole interaction,
Suppose the initial state of the system is characterized by

an average value of energy, and an external magnetic field

H, + AH., At t = 0 let AH vanish., What 1s the time develop=-

ment of the Z=-component of magnetization?

(Mute)) = Tap My (t) (6-2)
where _/5 (//,-AH/‘Q)
f= £
2(p)
)= 73 e P CHo ~ AR Mg )
¢ Mo C ——t'}{o{_

/12(1‘) My
Expanding the density matrix we obtaln in lowest order

P
e—/?ﬂo [I"' AH LIS Mz,("ib')) (6-3)

f.—'-_

2, () (1-pad LMy, )

where

_f}{o —5;{0
MZ (-¢cs) = € Mi.f'

Zo(f’) = 72 e P

_ppH-
(Mz—>, = 7ac r? N%
| Z,(3)



Substituting (6~3) into (6=-2) we obtain, in this order

P
(M) = (M, - aH M, [ s [ (M M) T(6mn)
A ZNe
Since _#., commutes with exp(-j/g}/‘,) we may write the expecta-
tion value (Mz(-is)Mz(t)> In the form of a correlation
function58) |
( /‘12__ Mz_('é+c'$)>o
< M T

The higher order corrections involve higher order correlation

functions. For example the next order correction to Eq. (6-4)

contains the third order correlation function

( My My (-c5,405) My (¢+¢5,))
As & second example, conslder the problem of the lnter-

action of a magnetic moment with a thermal equilibrium radia-

tion fleld.
H = ot 7 A+ W
W = )Z K “m Ak (% =
7 = ¢35 (2T +~ kX -
Va4 Iy wk ) (K’( (qkae —akhe( )

[aha, 4::1-)'] = Skk' gn'

68) Since Tx,ﬂ $# 0 and [A., ]f 0 we do not expect this correla-
tion functfon to decay to zero, However, we do expect 1t
to eventually approach an equlilibrium value.
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where we have gquantized the radiagtion field in a box of volume

V. Golng to the field interaction representation we have

Gl 7, 05T )

iwte =iwt

where H(t) = e H e . Computing the commutation relation

in (6=5)

G &) = Za. (W5 W) — KIT7 1) (6-6)

The equations for oy (t) and (t) follow by ecylic permutation

.
’y
T = 2o (M) 75 () ~ A, 1) sw)  (6-1)

i) = e (KW GH) — Ao o)) O

Integrating Eqs. (6-7) and (6-8) to obtain formal relations

for 7 (t) and i;{t) we write Eq. (6-6) as

it = R A CACTORY /+)g;zo1)
ZL
oy (dé, § P B k) Tt) - KB ) (6] (6-9)

~ Hy ) Hoy th) 03 th) + A, 01 K ) g;/r‘,i?

Assume that the initial state of the radiation field is des-
eribed by the thermal equilibrium density matrix

—p W
- e P 2, =The PY
fw w P
- 2,y (f3)
Multiplying Eq. (6-9) by‘/L and tracing out the radiation field

one obtalns
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1
G 2 gl S# CHel#) Hy 1)), ) (6-20)

where Z0), = Trf0. The approximation made in obtalning
(6=10) consists in the replacement

W) oz ()0 — S B th) 7, 5 ()

That is, we include only that part of the trace in which H.(t)
emits or absorbs a quantum absorbed or emitted by Hk(t1)°
This 1s the 1owest order correlation approximation.

In obtaining Eq. (6-10) we further note that

<HY, = < H ) =0

My () My 1)), = </J,m//0, 41,

The time dependence of (Hy(t)Hx(ty)), can be simplified
since exp(iWt) commutes with /, .

{ﬂx/'[‘)#x/ﬂ}>w = <Al¥ l€—¢,) #X>W = <H(1>w '}(H,) (6-11).

Using this in Eg. (6-10) we have the lowest order correlation

funetion relation

£
Gt = sur (B, )4 FEGY S k) 62

The Laplace transform of Eq. (6-12) gives

ST3(5) - oz o = ~ SUuS L HY), £y 7= 7 (5)

where



L) = Solh: ‘)

0

Solving this equation one obtains

— . g3 19 (6-13)

Therefore in this approximation the time behavior of ¢ ,(t)
is determined by the zeros of

S g <HED, Flo (6-11)

For example if f£(t) = e-t/i

fer= TUo T

and Eq. (6-1ly) has zeros at

S = .__.L +/ t)"—é/’de‘(ﬂ,?k,

Since there is no zero at s = 0, a;(t) vanishes as t goes to
infinity. '

Later we shall explicitly evaluate f(t) for the black-
body radiation fleld, It does not have the form of a slimple
exponential decay. Furthermore, uslng fhe correct f(s), Eq.
{6-14) is found to have a zero at s = 0. Therefore, in this

lowest order approximation ¢ ;(t) remains finite as & goes to
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1nfinity.59) Higher order approximations involving correla-
tion functions of the form (Hx(t)Hz(tl)Hz(tz)Hx(tB)> are
responsible for the long time decay of ¢ ,(t).

Correlation Functions for Systems Having Discrete Energy Spectra

In general we may define an nth order correlation function,
(Rt BB f (£a) 7 (6-15)
(R R

The expectation value may be taken for a single quantum state

or a&s an average over a manifold of states. The time dependence

59) Consider the case in which the spin states are separated by
some energy € . Suppose the spin 1s initially in the upper
state, The transition probabllity to the lower state 1s
given in the lowest order Born approximation by

fo = am B Pa (1w k[t S, v e-E,,,)
W'

= znlme ety |34 yiamer) yap fenror() [(e-ch) (a)
am’ G v

The energy dependence is therefore

yaAA’Jce—cA) - e
cy

and &~ vanishes as € >0, This 1s exactly the situation
for a spln interacting with a radiation field (no external
magnetic fleld). The exponential correlation function
exp(~-t/T ), which implied relaxation, grossly misrepre-
sents the low energy behavior of the radiatlion spectrum,
This 1s the danger inherent in arbitrarily replacing a
correlation funetion by an exponential decay.

The actual relaxation mechanism appears in higher
Born approximations. Fluctuations in the black-body
radiation field p:jgduce a fluctuating energy separation
€ of eorder /MH§>" « During these fluctuwatlions, transi-
tlons can occur, which in lowest order produce a ragsi-
tion probability given by Eq. (a) in whiché = u<Hz =,
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of the F; are determined by the Helsenberg equations of motion

Fj:’i [%F:j (k’l)

The autocorrelation function for a dynamic variable F is ob-
tained as & special case of (6~15)

(Ft,] Ft&)) (6-16)
LF2)
If the expectation value 13 taken with respect to an energy
eigenstate or as an average over & density matrix which com-

mutes with the Hamiltonian, Eq. (6-16) is a function of

ta = 1.
cur = SEF2 t= €= % (6-17)
CFY .
Let the eigenstates of H have a dlscrete spectrum
Himy = alm) (6-18)

where n stands for the complete set of guantum numbers needed
to specify the state of the system., We shall assume that all
of these quantum numbers are discrete. The normalization is

then
dmmty = Smme

where the J =symbol represents a product of Kronecker $'s
for 2ll the quantum numbers needed to specify thes state. Let
c(t), Eq. (6=17) be defined with respect to a density matrix

cwr = Tap FEE)
| 771//""
- 81 -
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[24,07 =0

HE i KT
Foy = e Fe

Taking the trace, Eq. (6-18), in the energy representation

one obtains
Woml

my [ I Elm) | et |
f - % Lmjpimy [<{m ? (6-19)

_42:<O"lfbM§>l</an7An>ll
A

where

b\.),vnM = am ™ wm

Také the Laplace transform of Eq. (6-19)
<mlpimy [¢m|Flamd] T

oD
JJ& et = 5= ¢ pmsm
° FARZIILY | <miFIm> [*
MM

This has poles along the imaginary axls of the s-plane.

S = Wy,
Therefore, unless {n|Fim} = 0 when &), # O the long time
behavior of the correlation function 1s oscillatory?' Mor e
precisely, C(t) is an almost-periodic function. If <n|F|m) = 0
when W, # O, then the correlation function is identically
equal to unity for all time,

The long time osclllatory behﬁvior seemws in direct con-
trast to the éxperimentally observed (irreversible) decay of

60)

the correlation function, We may understand these two

60) We consider thermal equllibrium fluctuation correlations.
#* We assume <m|p|m) 0. - 82 -



aspects of C(t) by considering Eq. (6-19). Initially at
= 0 all phases are zero and the matrix elements add up in
a constructive manner to give C(t) = 1. This represents an

upp;r bound on C(t) since
Z’zmlﬂm)](mlr-'lm}l"e"""Mmf £/2<MI/IM7I<M1F’”)IL (6~20)
m mm

As t increases, there occurs a dephasing of the varlious terms
of the left hand sum, Eq. (6-20). It 1s this dephasing which
causes the correlation function to decay initially. In fact,
dephasing is the dynamlc cause of irreverslibllity. For a
sufficiently long time associated with the alstribution of

Y yn values, C(%) will again approach arbitrarily close to
one. Roughly, one may say that this time is given by the
inverse frequency (~~1; where ¢O is Eﬁmﬁensurablé with the
energy differences (o, of the dominant matrix elements
occuring in the sum on the left hand side of Eq. (6-20). This
Poincare recurrence is a well known property of almost-periodic

61)

functlions, We thus see the relatlionship between the pos-

sible time decay of correlations and the almost-perlodlc nature
of thelr time dependence, According to Sﬁoluchowski,62) an
irreversible process is one whose initial macroscople state
has a recurrence time long compared to laboratory times., We

now consider an illustration of these 1deas,

61) Harasld Bohr, op. cit.
62) M. von Smoluchowski, Physik. 2. 13, 1069 (1912), 1L,
261 (1913).
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Example of a Correlation Function for a Ring of N Exchange~-
Coupled Spins

Consider a ring of N exchange-coupled spins, The Hamil~

tonlan is
fos > |
H %{ Loy mt4 (6-21)
I - ] + at_k—:: g F;_,_(
My M 2

Initially all‘spins are spin-down except for the kB one which
is spin-up. We shall study the time evolution of this state,
In particular we evaluate the spin-up correlation function for

“the kB spin
Cit) = <4 | acto gtmerm Ly (e-22)

The expectatlon value is taken with respect to the initial

" 8tate

']Lk = F'l P [5“__, S Pre T Pw (6=23)

where /3 represents a spin~down state and o« represents a
spin-up state. The operator(gy -Qﬁpwogives 1 if the k¥ spin
1s up and O if it is down. Let the operator (oi?fxai—)operate
to the left in (6-22) to give

cet) = <4 Nactte) g 140

= 24 10t gt vm 14D

}
A
E&
z

+

¢t) = ~ 14 1) (6-213)



where U(t) = exp(-;é?j) and

¢ 10) = um &

We shall now calculate §(t)
Let

S, = 2 %, | (6-25)

2 A=t
This 1s a constant of the motion

[ 5, H1 =0

Therefore, the time development of an elgenstate ofAZfz takes
place only in the manifcld of states with the same 57, eigen-
value, The manifold with eigenvalué,;f: 2 1 -« N is spanned
by the basls

7%:"('/31"' [Pn (6-26)
Stz:ﬁ’o(lﬁ"'_“ﬂ”

4 = for i

From this basis we construct another orthogonal basis,

ﬂ ("2.77”
S e Wy ¢ P2 w (6-27)
L m , ) ) 7

ll‘é:—' ‘7,1,4

For thls basis we have,

HE, = [teoem-2) + 2holnzn,]d — (6-28)
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Therefore, .%; are eigenstates of energy with eigenvaluesé3)
E, = hw(W-2) + 2% en 20, (6-29)

V:/,z,"';ﬂ

The initlal state of the system is assumed to be,

o= PP Pt % Prts T P
In order to find the time development of thils state we expand
it in terms of the Qz,basis.
! ALK
= — é e
t& N Tpo " f%w
Its time development is given by

(RUPK

£t
—Ht St
(=€ ®¢ - L e & )fp (6=30)

A/’ Y=
Now we evaluate the expectation value °f(aﬁ”ﬁ(025L

VA u(kom) u B-K [+ 5T £, ¢
CHe) = 225 R g dlatalp )
Yaemf=1 (h¢r k kT
., ! L LEm e
7V_1_ Y=y * (6-31)
since

Pt Vi o B E) =S me €

For t = 0 we have as exXpected
C(ol =

63) This solution was first given by H. Bethe, Zs, f, Phys,
71, 205 (1931).
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From Eq. (6-29) it follows that

am,, . e 2
E, -E,. = 2hw (coa &y )

Inserting this into Eq. (6-31) we proceed to calculate

N
cgwt ( F LUV m
C{{—):—L-._Ze -4 MNV m”,“_)

Pz
N oo . .
L T em ) iy
MUz e o /h('?wf)-e J aot)
Using the relation -
N cMmATTDY <
J“ -Z c n = Z JM,)N
N Y= A:—ﬂb
we obtainéh')
cre) = 1§01 (6=32)
oo /un').
¢ b
fi6) = )2_:_:,3 I,y (20?) (6-33)

For a finite number of spins, C(t) is an almost-periodic
function. Specificelly, for the case N = 2 we find

fe)= = e Ty (Guwt) = dnzwt

and A= -

C ) = ent Gut)

Now consider the limiting case for N — oo

Hem. A4 = T, wt)

N —> oo ‘

6L4) It is interesting to note that E, Schrodinger found a
similar Bessel function relation for a ring composed of
N equal mass polnts coupled by identical springs.
Ann. d. Phys. 4lj, 1916 ?1911;).
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and the correlation function has an irreversible, oscillatory

decay to zero.
CH) = T,5(awd) (6-34)

In this limit the energy spectrum has become continuous. In
the next sectlon we shall examine correlation functions for
systems having continuous energy spectra. The possibility of
an asymptotic time decay is directly associated with the exis-
tence of a continuous spectrum.

For large, but fipite N we shall examine the behavior of

f as a function of Z2 = 2wt.

CNT

—_—

4 _Am
@)= T,(2)+ € T T, (2) +e "J’N(%)

+ef”T Iy (2 +e”‘.”’rj_‘w (2) +
Assume N 1ls even, -
F2) = To@ +2( T () + T, (z)+ )

For large velues of N and Z we have the asymptotlc relations,bS)

ﬂ(M‘("'()

2 By~ e ik = [ 1~ BF

I/;TTN'Z'&J\ o

2% 3¢ g5
65) P, M, Morse and H., Feshbach, Methods of Theoretical Physics,
Vol, I, (McGraw-Hill Book Company, Inc.,.New York, I§E§)

Pe 6310
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Z>N J;,(%)ﬂ«mdm[ﬂknp—ﬂp—?l’] Zg,‘f,’/g%ﬁ'

~ Therefore, for Z<N
A

$(2)—To(2) ~ & Moo
N %

For Z~N
!
f(;) - T~ oy

In order for the infinite series JN(Z)+J2N(Z)+... to give a
contribution of order 1 we must therefbi'e assﬁme Z>N, In
this case we have
A e [Nz-nmT_ 1
J;v Z) ~ 2% z g I
We will need at least Z% terms like this to obtain a contribu-

tion of order one. We shall require that Z be greater tian

the order of the ZEX term, This implies

v
ZEN ¢ 2 = 2oH>HN7
Therefore the time Z} which must elapse before f(t) departs

appreciably from J, (2wt) is given by,

'L‘P > -g—f (6=35)

| Finally, we consider an alternative method of estimating
this Poincar_; recurrence time. It gives essentlally the same
result as Eq., (6~35), Furthermore it shows the relationship
between '('r and the inverse frequency cormensurable with a

majority of the energy differences in the sum, Eq. (6-31),

- 89 -



For large N the energy level separation becomes

- = /T, anr =~ an Y-
f;, EV-H 2% e (m‘-v-v m”wm) Zﬂw(.ﬁ)u

A large number®€) of the energy differences appearing in the

stm N (Eu-EL)E
1 2: e =
N Y =i

are very nearly multiples of
27\
zke (Z7)

Therefore the Poincaré recurrence time for C(t) is giver‘;"by

z

N
/C'P m (6-36)

For fizo ~1e.v. and N ~ 10°3 we have

’CP A _;_{a_q_;f = /0ﬂsec~ 1015 years

Actually, this is short as far as most Poincaré recurrence
times for systems with 1023 particles.67) This 1s a conse-
quence of the relatively simple structure of A (l.e. it only
couples nearest neighbors) and the special choice of the
initial state having 2‘,' = N-1l, Since<s' is a constant of
the motion, when the kB spin is spin-up the remaining 10231

spins are automatically spin-down.

66) Large means of order &N for & # O,

67) For multiply periﬁd:lc Hamilton-Jacobl systems, H, Frisch
shows that T, ~ €™, € 1s the error of recurrence and N
1s the number of degrees of freedom of the system,

Phys. Rev, 104, 1 (1956).



For this simple example we have been able to find the
time development of the initisl state and explicitly calcu=-
late the correlation function {gg+ gp- ¢R+(t) sp-(t)) . For
finite N it exhibits an almost pefiodic structure, For in-
finite N 1t decays to zero like J,2(2wt). For large N the
correlation function behaves like JOZ(Zth) for times less
than.-ﬁqé « Thls clearly shows the relationship between the
decayhzgd the almost-periodic structures of C(t) for diserete
energy levela, We see that this behavior is associated with

two properties of the system:

1) The large number of closely spaced energy levels
for large N.

2) The large number of energy elgenstates needed in
the expansion of the initial state.

We can further see from this example that the dynamic cause
of irreversible behavior 13 related to a dephasing of matrix

elements produced by the unitary time transformation.

COrreiation Functions for Systems with Continuous Energy Spectra

We shall consider a system having a continuous energy

spectrum, Let the elgenstates of the system be represented

by [Ee),

HIExY = [ExD E (6-37)

Where X represents the set of additional quantum numbers
necessary to specify an eigenstate of the system. For con=-
venlence, we shall assume that these additional quantum num-

bers also have a continuous spectrum. The normalization is
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then
(E'«l', E‘d) = g(E’—E) J(d’-at) (6-38)

where J(o('-o() represents a product of Dirac S -functions for
the set of quantum numbers contained in & . In the case where
some of the X quantum numbers are discrete (e.g. polarizastion
or spin) we must replace the Dirac { «function by a Kronecker J
and the corresponding integration by a summation. Only the
continuous neture of the energy spectrum is germane to the
following discussion.

Writing the autocorrelation function of F in this repre- °

sentation we find

LF*)

v SCELEIE
(FFU) =JJde!JEJE' LE<|plELY [¢exlFrewy|” e (k= 1)

Taking the Fourier transform of C{(t) we obtain

~ o
busr = [dtctre™™

¢ (w) = sl du ' AEJE? ZE¢] /IE-OIIE-U FlER)) 15(5’—5-“.)
F*

In the case where F(t) is a random variable, G(/v) 1s called

(6-39)

the "special density" or "power spectrum" of the correlation

function C{t); and Eq. (6-39) 1s then the Wiener-Khintchine
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theorem. In the present case F(t) is determined by the
Helsenberg equations of motion. G{«& ) represents the nor-
malized transition probability density for the system to
absort an energy quantum fiw in & treansition produced by F.

This 1s clear from the followlng considerations.

27 | Qe [ FIE<Y] S (e/-F-w) (6-40)

1s the transition probability (per unit time), first order
Born approximation, for the system to go from state |Ex)
to state |E' x!') with the absorptiﬁnlof energy ht . Let
(E« |p|E<) be the probability that the system is initially
in the state |E«> . Then the total transition probability
for the absorption of enargif?é/obtgined by averaging Eq.
(6-40) over initial states and summing over final states.

2nfal£4£'clodezf [<e'x ] FlE«y )* § (E'~E-w)(Ea<(f/£.(>

Normalizing this we obtain G(e).
In order to study the long time behavior of the correla-

tion function we consider its Laplace transform,

C(s) = g c’Séc#Hd{

= A | i fur dEAE" (ExMIE-()[(Eu(IFI&'{'?Iz
<F? 5o ¢ CE-E) “"‘1‘”

In the limit 83-»0 we have
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i — - mdteEy P
£-£'

—

Replacing this in Eq. (6=41) we have

' 2z
L Cts) = 27 JJoca'-:':{EJs’hrf/f'f')-"”—'—,V‘“'/”“’I“"”’F’E“')I
S—>o : <F*) £-£

Since C(s) is real, the "rinciple value contribution must

vanish., This 1s evidently the case since we may replace

2
CE<]p 1E<) |<E<IFIE'%"]
in the integral Eq. (6-39) by the symmetrized form

%{(a ///5-<>1<Eaur/5'<'>l‘ + (E’.z/f ,5/,(,},45:,</F15_<,>,=)

Therefore we have
rs
M C5) = ZL [JdJJrJzJe’ Ce<lplen) ](E.zlf-/séz')} S(e-€') (6=42)
<F2) )

If <&« I,ﬂlEot)}(alFlEé(’)llis a well behaved function of E and

E! then Lim C(s) is finite.%8) This implies that C(t) vanishes
as t goes to infinity. This result is in marked contrast to

the recurrence property of C(t) fér systems with discrete

energy spectrums, It 1s exactly the result one would expect
from the previous example of exchange-coupled spins, As an |

example of a correlation function for a system having a

68) This is an important requirement, and essentially charac-
terizes the class of operators and density matrices for
which correlations eventually decay. We shall return to
it in the last section of this chapter,
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continuous energy spectrum we consider <ExEx(t,E)) for a

thermal equilibrium radiation field,

Blectromagnetic Field Correlation Functions

The Hamiltonian of the electromagnetic field in a cubie

box of volume V = L3 may be written

where &), and ak'; satisfy the commutatlon relations

(6=lly)
[dK), dk-t)'] = Jkk' S})I

- +
[a‘fhak’)'] = [a:};dk‘)’]:o
k stands for a vector (kx’kyvkz)° Assuming periodic boundary

condiltions

— M
k‘ = z___._._:'r /u=0,i"ll‘i2'--

The electromagnetlc fleld operators are glven in terms of

ayy and e ! by the relations®?)

A AMhw, = — (kX + —ck-X

E=cZ 750 Gu lage - ) (6-145)

73 — (kX —c kX

& ZVH*CL (Re&,) (A= - agy e “) (6-46)
Loy

The time behavlior of ey, is determined by

69) We are using the wave gauge V'A = 0, ?0- O.
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o CORT (6=17)

For thermal equilibrium, the state of the radlation field
is characterized by the density matrix

We now calculate the autocorrelation function for the electric

fileld, Since it 1s a field quantity this correlation function

wlll depend upon space a&s well as time,

Coxer o SEERAD T EEET (o)
(fxz> 777/015_);L

Er stands for Ex(0,0)., Using Eqs. (6-45) and (6~47) the

numerator becomes

(E E Ry =5 f?”tuf‘[zﬂ#w-&(g;).:)('g,);?) (6-449)
) 93P 1% V4 '

. /
—— - }{ + ((K"("wk.f)
y Ine P (Ak» — Ak ) (Axrpr € — a:,), €

?(/6)

- (. (k-’X - Uk‘f.)

)

In order for the trace not to vanish we must pair the creation
and annihilation operators. The only terms to contribute have

the form
—mH 3 - (kX - o E) (KX~ e )
The " (a . al e + e -
(Aka ") + A X s )
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Teking the trace we flnd

-pXM
Tae P dk)dih

= M+
.?!,a)
ﬂc'ﬁ” a:; ‘ﬂk) —
= mk
,?‘(P)
where :
— i
m, = -
k epﬁwk -/ (6 50)

The expectation value { ExEx('i,t)> is therefore

N _ —c(KX=Cht) kX)) T (e
i (znvﬁwk (en.’i‘)‘[(m,;ﬂ)e_ + M ® ](6 51)
K>

So far we have actually been treating a system which has
a discrete spectrum., Now allow the volume V to be infinlte

and make the replacement

2oz — [ LA
y @y’
We are now dealing with a continuous spectrum. Eq. (6-51)

can be written

. — A 2 - _(' (R'K-Uk'f) . e
ffﬁ-f% (e o) 2 G ¥) [imeiye . e fw]
n X

The angular integration is conveniently performed by choosing
the polar axis along the X~direction. The polarization sum

becomes
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(&, 1) = e
A

= (16T %
= (1€7) Yumk)—(%_lf) V.. ()

and the plane wave can be expanded

Y,
G'K.X: 477,2: ‘(/X(kr) g Y, (o) é{ [Qk)
1-—0 ':...’Q

The Yoy are spherical harmonics. (1, refers to the angular
coordinates of E’and.!lk refers to the angular coordinates

of kK, Note that the x-axls has been chosen as the polar axls,
Jp are spherical Bessel functlons and r = (2 + 32 + 22)%.

Let H(kr) be defined as the angular integral ' |

fraen = 2 (dace™™ 04,2 (6-52)

Il

' _ (47T 3
70(“"') (F} ya

The expectation value (E,E.(X,t)) 1s therefore,’0)

(Ex Ex (R ) = ztcpk K’ :;;';‘* ¢ €5 harr  (6-53)

70) Eq. (6~53) 1llustrates why it is sometimes convenient to
define a symmetrized correlation function
%2 (BxEx(X,t) + Ex(X,t)Ex> . This does not eliminate the
singularity in e correlation function, but it does
remove 1lts imaginary part.
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The second term in Eq. (6=-53) corresponds to spontaneous
emission. It 1s singular. Conslider an atom going from an
exclted state ¢e(x) to its ground state ¢o(x) by the spontan-
eous emission of a quantum hw . The transition probability
for thls process has the foxmT1)

o .
fa/z‘ f,[3x 1<$ o Juoo]d ooy ™ { E, Ey (%, 1)) et
- o6 .
Carrying out the t integration before the k integration 1n
{ExEx(X,t)) we obtain a finite, meaningful result.

For the remainder of this analysis we shall consider only
the first (non-singular)part of {E Ex(X,t)) , Eqe (6-53), We
shall denote this by the subscript "1", ILet 4'= t/P‘h,
1= r/phe and y = @¥ck, then o

Ex B (FH)), = + fJ;z ety Hery)

3T Ric> e¥ -l

For t+ 2 X = 0 we have the normalization integral

[dy —p>— - Z

o eg-/ /s

The correlation function is therefore,

¢

< Ey Ey (X)) /5 P Heyy
7 4) = 1 _ __fdyymy 1P (6-51)
(E,:.)i ’r? A e’—/

" Inserting H(7y) from Eq. (6-52) this becomes

1

71) We have assumed an interaction of the form AE,
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oQ
- 5 3end'y . - P, (ca®) 1,
¢ (%,t) = 17_7._., g‘a/y 0"’:9—! (J.(‘I,‘r) I, cn?) 1 ty)

= A P, (cnt) B t)

(6~55)
where
22 () = L+ (3a1)
(r¢) = EJJ Pemdy
CR HIGTE I (s

The integrals F, and F, are evaluated in Appendix C., The

results are

15 1 eadmli ‘ sk I
_ 1 - -1 4 GeAT (6-57)
£, rt) zny WY LR e and3 )
Frt) = 15 {cMrra _L —ephTE g
g | g TG gaane owr ) (659)

e _emATl » andl )
2mY nir; M’n/}' 3N

where



The black-body correlation function for venlishing space

separation becomes

= 3 2 ~ 3 (6~59)
— -+ A
¢ r6,#) ’5[ PRV L ATy ()4 >

This is plotted in Graph 1. It decays to zero as expected
from our previous discussion.?a) The order of magnitude of
the decey time 1s 2R/kT = w~l, where #ito = 31T, For t = O,
we have the spacial correlation function of black-body radia-
tion,

F., tr,o) - P, (een®) F; )

¢, o)

This 1s axlial symmetric about the x-axis, TFor © = 0 it

becomes,
C (%0 = L X0 = FXe)

for ¢ = /2, x = 0, / (y2 + 22)% it is;

C,tp o) = F(po0) +7 Rtlp0)

These spasilal correlation functlions are plotted in Graph 2.

72) The Laplace tranaform of C1(0,t) has no s~ =1 pole., In
fact, it actually vanishes in the 1imit s—0.

L 4
¢ (s)= Soer £(af) = 515 da‘l_;__
Y A ed (%{)1,51_

- ' /S 2
%C(:)- _(i(/gt)5=o

S >0 S0
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0.0




(r,t=0) —»
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Further second order correlastion functions for the
field variables E and H can be calculated in the same manner.
The major differences occur as a result of the polarization

sum. We conclude this section by noting several of these,
{ Ex E;()—(‘,'{-)) A 23 . (Z).' 3)(237) = A2 8, MGKM@,‘

For X = 0 thls expectation value vanishes. We shall there-
fore normalize this correlation function with respect to

ZE2),

< Ey E4 (X41)
* 7 % = 3 puecadaund F, (n7)

2 z
< EQ )1
In a similar manner we find
{ Ey Ep(R+4))
T = % aiecanecad Knt)

< EXY,
The polarization sum for (H,H,(X,t)) 1is sinz-e'k. This as
the same angular dependence as the polarization sum for
JEEx(X,t)? . Therefore their correlation functions are iden-
tical. The polarization sum for(HxEx('i,tD vanishes. The
polarization sum for {HyEr(X,t) 1s A

(/-la., E (R ) ~ 2)’. (Kx€y): 7 (€5-1) = K o @ 0 O
and we find the correlation function

< HO'/ E,( (5(‘!4)71
EZY,

an @ ain & f,_’(r;{-)

|

»lw
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where

v

od
. - 3,4,.,;\(}"
Flont) = = | dy g7
7 o ed-1

Jr'ry>

The Approach to Equilibrium of Macroscopic Observables

From the preceding discussion of correlation functions
we have seen that the dynamic cause of thelr irreversible
decay 1s a dephasing, and consequent destructive interference
among the terms of a sum of matrix elements. For a system
having a finite number of degrees of freedom the character of
thls Interference will eventually become constructive and the
system will return arbitrarily close to its initial state,
However, for large systems this Poincaré recurrence time 1s
many orders of magnitudé larger than any labo;atory time of
interest. Formally it may be mathematicali; convenient to
consider the asymptotic time behavliocr. If this is the case
we have seen that one must take the limit N->-o before taking
the limit t »>eo . In this way the almest-periodic structure
of the matrix element is eliminated. We shall now use these
notions to lnvestigate the irreverslible tendency of macro-

scopic systems to approach equilibrium., In particular we

are necessary in order for T?/DF(t) to approach equilibrium,
Let the time development of a system be determined by H

We initially conslider the case of a discrete spectrum
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A My = Ly, IMY (6-60)

LM Imy = §pim

If the inltlal state of the system is l/; s the time evolution
of the dynamic variable F is

LA IFEdY = el e TR e Mgy (k=)

= 5 1 e 1mycmiFim) (m e M4,
M

PN o
5 <dalmy <mIFlamy <l dy e
~ am (6-61)

where &, = O =(ps At t = 0 all the terms in Eq. (6-61)
will add in a constructive manner. As t increases we are
interested in the interference which causes (& [F(t)]4,) to
change from its iInitlal value to a final equilibrium value.
The long time character of thls interference depends upon the
distribution of energy level spacings wnm which contribute
to the sum (6-61). For initial states (f;, and operators F
such that (6-61) consists of only a small number of terms,
the interference effects will give rise to oscillatlons on

a laboratory time scale. For the al ternate case in which the
sum (6-51) consists of a large number of exponential terms

the 1nterference effects are observed as an lrreversible
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change on a laboratory time scale. Necessary condltlons for
this latter effect are: 1) the expansion of ‘,l:, in terms of

the energy elgenstates .n? contains a large number of terms;73)
2) F has a large number of off diagonal matrix elements in the
energy representation;7u) 3) the energy levels are closely
spaced.

In order to obtain a more quantitative criterion for
irreversible change, consider the Laplace transform of Eq.
(6=61),
<dy 1> (mIFIm) <mid,)

g-¢ MMM

Fee S,,:;* e S€ o |FIOIL) =/"2A1" (6-62)
F(s) has a series of poles locéted along the imaginary Q-axis.
(%JF%t)lqﬁ)is an almost-periodic function. As previously
noted, the physically relevant, asymptotic, time behavior 1s
most easily found by going to the limiting case of a contin-
uous spectrum. In this case the poles become continuously
distributed. The time behavior is then determined by the
density of pocles. We lllustrate this by some examples.

Consider the case in which there are 2N+l poleé uniformly
- distributed along the Imaglinary s-axls between + i.

73) In actual practice the initial state of the system is
often represented by a density matrix, This implies an
additional summation and the possibility for an increase
in the number of exponential terms contributing to the

_ sum Eq. (6-61).

T4) Most macroscopic observables consist of the sum of a
large number of one or two particle operators, This is
the reason they satisfy condition (2), _
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c N
£ () = —— > e 7
N m=

In the limit of large N we find

! .

Fadamd o s +

and f£(t) decays as t-1,

(6-63)

Next consider the distribution generated by projecting

onto the imaginary axls a uniform distribution of N points

on the unit cirecle,

!
S-¢ O anm
L

Mx

—_ AL
Fﬂ;(s)‘_ﬂ

2
n

The lnverse Laplace transform of thls 1s
Ao (eRIM )L

e = 5 2 €

=1

In the 1limit of large N we find

(6-6l)

¢ (Cat)t
L) = Aim £, 08) = JJ R
N> o

where Jgo(t) is the zero order Bessel function.
/éZW1 (1 s 2_\% (¢-Ir
Jo (t) ~ (—7‘7{-—) cre ;,—’
7t >0
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Therefore f£(t) decays like t"%. The difference between this
case and the previous one can be seen by examining the distrl-
bution of poles, Let s = x + 1y, then for the first case the
dlstribution of polss is .
A <
/W(O"/) = A 10", “f
%7I> I

For the second case it is

!
—o %
M(J) = { 2n (,J)
o Ic?'>/

The slower time decay assoclated with the latter distribution

Q;I <

arises from the singularitles at y = + 1,

Finally, consider the distribution of poles

gt _ (g
mey) = S - 2 s <y <o (6-65)
2m5a z mha |

The lnverse Laplace transform is

os oy _(t2)*
Sl = [agmyre®’ o e 5y

The decay time of f£(t) varles as a~l, In the limit a—>0,
£(t) does not decay. In this limit the distribution of poles

becomes
im mly) = 2 Segtn 2 Sy-n) (6=66)
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These examples illustrate the importance of the singulari-
tlies which occur in the density of poles distribution function.
It is the 5 ~function singularities which are responsible for
the asymptotic time behavior of an expectation velue., The
effects of singularities which are weaker than a d -function
vanish in the asymptotic time limit, We shall now construct
the density of poles distribution function which determines
the time development of the expectation value of a dynamic
variable F,

We assume the energy spectrum of the system 1s continuous,
Let the initial state be 4;. Using the basis, Eq. (6-37),

we have

HAE-E')E

CRIZA0N =fJ£J£'J4alot' e L, 1ExY Ex| FlE'L) et 1) (6-67)

The Laplace transform of Eq. (6-67) is

F(s) = S‘:bdé 32 d, I Fte) (4,)

Fi5) = [dedetdudar (HolE4CEI FIE) 1)

S—¢ (E-E')

3 E'=F-£°

Fis) = JJE".:;.‘__%:__
The density of poles distributlon function is M(£%) = fJE'F(E'-'&E,'E')

where,

F(E;E’} = S.dot A’ <4o IE“><E‘(IFIE’0(‘>(E'¢;(”‘/:’> (6-68)
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From the dlscussion examples 1t appears that one can implicitly
state requirements (1), (2) and (3) (p. 107) in terms of the
behavior of F(E,E’).75) Ir F(E,E") has no singularities as
strong as a § -fux‘lction, then (F‘ét)} asymptotically decays to
zero. If F(E,E') has the form

FCEE) = F(E)S(E-E) + F (£, E") (6-69)

where F2(E,E!') has no singularities as strong as a § -function,
then < F('t))‘asymptotically approaches the equilibrium value

Fte)? = E [, (E (6-70)
LFD, (e fice)
If F(E,E') has a singularity of the type
L FYE) (S(E-Eed) 4§ (E~E-w) ) (6-71)
then <{F(t)) wlll have a term

({auf . SAE F%e (6=-72)

Unless
jdz FUe) =0 (6=73)

the long time behavior of {F(t)) will be oscillatory.

In general we expect the density of poles function for a
macroscoplc system to have the form shown in Eq. (6-69). The
§ = singularity arises from the group of matrix elements

75) See H. Longuet-Higgins and S, Golden, Journ, of Chem, Phys.
33, 1479 (1960).
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having E equal to E', It is Jjust this group of matrix ele-
ments which maintaix:x their phase relationship in time., The
other terms in the series, Eq. (6-67), become dephased due
to the time dependent exponential phase factors exp(i(E-E!')t).
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APPENDIX A
Three Fundamental Theorems of Information Theory

In this appendix we will atate three theorems of infor-

76) These

mation theory originally given by C. E. Shannon.
theorems provide a background for the information theory éon—
cepts used in this thesis., The first theorem is concerned
with the uniqueness of the entropy functional as a measure
of the uncertelnty associated with a probabllity distribution.
The next two theorems are related to the existence pf,'and
the probabllities associated with, a certain class of sequen=-
ces generated by a Markov process, |

Shannon originally formulated information theory to
provide a mathematical theory of communication, The basle
problems of communlcation thcory are concerned with the
trensfer of information by means of messages, Khinchin?7)
has since given a discussion of Shennon's work in which some
of the practical detalls associated nith communication pro=
blems have been avoided. The following discussion will draw
h@avily from both these sources. |

Consider a system which has only two possible states s)
and sp, Let p; and pp represent the probability that the
system is in the states 8; and a; respectively. Following
Khinchin we shall call this a finite scheme and denote 1t by

76) C. E. Shannon, op. cit.
77) A. I. Khinchin, Mathematlical Foundations of Information
Theory (Dover Publications, Inc., New York, .
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(81 ’2)
Pl P2
One characteristic of a finlte scheme 1s the uncertainty it

represents, To 1llustrate this consider the two schemes

(81 ’2) (81 ’2)
0.5 0.5 «99 .01
Given the first sScheme one feels uncertain as to the state in
whiech the system will be found. Given the second scheme one
reeléxquite certain that the system will be found in state 8.
This same property can be described by saying that the result
of a measurement determining the state of the system conveys
more information in the first case than in the second,

The first theorem of interest 1s concerned with pre-

scribing a unique measure for the uncertainty (or information

obtained by a measurement) associated with the finite scheme S,

81 82 ese HN
8= (A-1)
P1 P2 eee Py

If such a measure, H(pl, P2s ...pN), (called the entropy)
exists, i1t should satlsafy certain conslistency conditions.
The most important of these is the composition law whiech
results from the requirement that the entropies of equivalent
finite schemes should be equal. Instead of gliving the fin-
i1te scheme S directly, one might give a finite scheme S, con=-
sisting of a set of composite states (e.g. The first composite
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state consists of the states A,, A, and A3 and the probability
pi of this composite state 1s the sum of the probabllities of
the system being in the individual states A,, A, or A3. The
second composite state conslats of the states Ah and AS eth
Let the entropy assoclated with S, be H(S,). Now suppose 1in
addition to S, one has all the conditional schemes Sy contain-
ing ths conditional probabilities for the individual states
making up the izg_composite state given that the LEE composite
state has occurred.: Let the entropy of S; be H(S;). The
nutually dependent schemes So,Sl, ees contain the same infor-

mation as the original scheme S, They are therefore equiva-

lent schemes and we obtalin the composition law
H(S) = H(Sg) + pyH(S;) + ppH(S,) + ...

where pi represents the probabllity associated with the 122
composite state as given by S,. The welght factors pi occur
because the additional entropy associated with the 188 com-
posite state scheme is encountered only with probability pi.

Another consistency condition necessary to provide agree-
ment with common sense 1s: 1if all py are equal; Py = %; then
H 1s a monotonic increasing function of N, The final require-
ment on H 18 that 1t be a continuous function of the pPgs We
78)

are now in a position to state the first theorenm,

Theorem I The Uniqueness Theorem: The only H satisfying the

three consistency conditions has the form

78) Theorems I, II and III of this Appendix correspond to
Shannon's theorems 2, l, and 3 respectively.
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N
H= -k 2 Pi log pi
i=1
where k 1s a positive consatant.

In the followlng discussion we shall set k equal to one and
use natural logaritims,

Shannon's first paper 1s concerned wlth messages gener-
ated by a stétionary, finite, Markov chaln. A stationary,
finite, Markov chaln is characterized by a set of posslble
states 87, 83, ...3y and a transition pgbbzbility matrix pyj.
Where p4j denotes the conditional probablility that s, will
be the next state in the chain 1f the present state 1s s4,
Let the probabllity of the state s; be denoted by Py. If
the system 1s 1in state sy, then the transition probabilities
Pix Torm a finite scheme

(31 Ba see SN )
Pyl P32 eee Piy
The entropy of this scheme is

N

H =-Z'p1 o
15 k logpix

The average entropy per state In the chain 1s

N
H= Ez_ 11’131 (A-2)
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The applications of Theorem I in communication theory are -
based upon the relationship between H and a special class of
high probabllity sequences.‘ Sequences are formed by taking
consecutive states of a Markov chain. For a Markov chain
having N different states there are NI' different sequences

containing r states., These sequences have the fomm
Skl Skz ees Skr (A-"B)

where ki takes on the values 1 to N. The probablility asso-
ciated with the sequence (A-3) is

P(r) B Pklpklka see (A"'l‘-)

r-1¥r
In Shannon's work the existence of a speclal class of
seqguences 1s préved for the case in which the Markov process
ils ergodic.79)’8°) Ergodic means that the Markov process
obeys the law of large numbers. That i1s, the fractlon of
times a given state 8, occurs in a sequence of length r will

differ from P; by an arbitrarily small amount with a probability
arbitrarily close to unity for sufficlently large r.

Arrange the N different sequences of the form (A-3) in
order of decreasing probability (A-l). Select in order,

79) A process 1s ergodic if it 1ls possible to meke a transi-
tion from any state to any other state in a finite number
of steps,.

80) R. Nelson (op.cit.) has investigated the existence of this
speclal class of sequences for more general processes, He
has also produced a counter example of a procesas for which
the special class does not exist.
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starting from the most probable, a set of sequences. Let
Nr(>i) denote the smallest number of sequences such that
their total probability P satisfies P= ) (0<A<l). These
sequences form the "high probability" class, The "high pro-
bability" class is sharply defined in the following sense.

Theorem II: For an ergodic Markov chain

im log Np(A) =gy ()#1,0)
r

Y-y o0

where H 1s independent of A , and 1s defined by Eq. (4-2).

Thus in the limit of long sequences (large r) the number of
Sequences in the "high probability" class is approximately
oTH independent of how we choose to define "high probability"
(e;g. whether we choose A = .0l or .99). )
A relat;ed theorem deals with the probabilities assoclated

with this selected class of "high probability" sequences.

Theorem IIl: Given any € >0 and %0, we can find an ry

such that the sequences of any length r 2 r, fall into two
claases:
l. A set whose total probability is less than € (the
"low probability" class),
2, The remainder (the "high probability" class), all
of whose members have probabilities f’(r), Eq. (A-3),
satisfying the Inequality
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-1
lOE i(r) -H ) Z S

Thus the probabllity assoclated with almost all high proba-
blllty sequences 1s very close to e"Hr, when r is large.,
These two theorems imply that for most purposes it 1s
possible t6 treat the long sequences of r states as though
there were just 2EF of them, eac];t with a probability 2~Hr,
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APPENDIX B
The Energy Density of States Function for a Spin System

Let N(E)A E be the number of global guantum states lying
in the energy interval (E, E + A E). N(E) is called the
energy density of states function, We wish to calculate N(E)
for a system of N spins located in a rigid lattice. First
conslder the case of non-interacting spins. If the lattice
13 located in an external field H, the ensryy of the spin
system is

ya
F=-al 2 N, # (B-1)
Vahdes
N, represents the number of apins having a z-component of
angular momentum m, m takes on the 2I+l values «I to +I.

The magnetic moment of a spin is aIl, For a system compésed

of N spins
I
o N = (B-2)
m=-I

The energy density of states function for this system of non-

interacting spins 1is
_ y I -/
N(E) = L T /V.’[ T ’V,m-’] (B-3)
A (W) an=-T |

The sum is over the sets (N,) which satisfy Eqs. (B-1) and
(B"a) .
The sum, Eq. (B-3), can be evaluzted using the Darwin-
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Fowler method.el) Define the generating function

I I
L E Eh) s

Ir
WfX,J) = 2 /V’[7T /VM,] X =z j pne-T

(New) =T

where the summation is unrestricted. Now imagine that the

generating function W(x,y) is expénded in a power series

PR
Wixg) = 2 W,y X" 4

The sum in Eq. (B-~3) is given by the coefficient for which

V=N and ) '-'-/“-Eﬁ. Using the theory of complex variables we

have

2 W()(,;)
W = () 8";'&"’* — (B-5)
U 2T XM)OL/(/%”)

where the contours are taken countérclockwise about the origin,
It 1s assumed they lie within the circles of convergence of
W(x,y).

Summing Eq. (B=4) we obtain

Wi g) = vl e* Fop (g-b)
where
x ZIH!
fgr = 2 977 = b 1) (e
=L oA () -

81) R. H. Fowler, Statlstical Mechanics (Cambridge Univ. Press,
London, 1936),
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The x~integral in Eq. (B-5) can be done by inspection and we

obtain

w"’ erc cg 07 l«?’

/l/f (-—'H)

(B-8)

This integral 1s evaluated by the method of steepest descent.

Define g(y) by the relation,

ef;g‘é" _ -}”cg)
0(/ (;{’;—-H)
Then
W ~ 6,2" gc;.)
Ny

where y, 1s determined by the condition

j’c;,) =0

In terms of £ Eq. (B=1l) becomes

£ ‘45 Ao H
Using Eq. (B-7) thls becomes

" 23
(zn;‘% 9 §2 )

(B=9)

(B-10)

(B-11)

(B-12)



T B, = 77 (B-13)

where By ( 70) is the Brillouin function

. I |
BIU]O) = 21+t C"’%(ZI;"IJ 'jf‘!”ﬂii% (B-1L)

2T 2

v, = I,A«Gy,

For small 70, BI( on) may be expanded

. (B-15)
By 1) = L1 (I+/)/£q07°
Substituting (B=-15) into (B-13) we ob'tain/ﬂqyo..
3 £ (B-16)

/é"ab“ - NMNal I (T+)

For the magnetic fleld strengths of interest M« NulI. There-
rore/&y°<'~ 1 and the expansion (B-15) is an excellent approxi-
mation,

The calculation is completed by evaluating g(y,) and
g"(y,). We find

__5,}6;01 = WAzt — T F - A
ol N HPL (T4)

MaHI (x+1)

.
9 .
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‘Subéfituting these expressions into Eq. (B=10) and dividing

by MH we obtaln the energy density of states function

Y ool ]
NE) = RIH) 2Pl zpy > T (141 (B-17)

(27 N H T (T+) )'/L
‘ 3

We note that N(E) is correctly normalized

oD

(N(E)JE = (ZI+1) o
since we have assumed that the individual spins can be distin-
gulshed by theilr lattlce sltes,
We cannot use this procedurs to detérmine N(E) when the
spins are coupled by a dipole~dipole interaction. For this
case 1t is convenient to define the energy denaity of states

in terms of the partition function.

fr/\l (£) c'PiIE - T e P (B-18)
where
H=-HM+D (B-19)
N P
M= Z. Iz(- D = Z j_. ('/) I T

i=t ‘71

The partition functlon can be formally expanded in powers of -

(f? « This corresponds to the "high temperature approximation
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and will lead to physical results which are vallid when the
energy per spin 1s small compared to kT. Noting that Tr A= 0,

we obtain in lowest order

oL

_pE ‘ -
(,wf)_e Pode = T4 (1*;':/’5’?{(«) (B~20)
- A

Since TrMD = O,

Ta A~ _ pe (H+ M) (B-21)
Ta 1

where C 1s Curle's constant

o (I+
T/ WA e &  (B-22)
A Ta1 3 4

and Hy is the local dipole-dipole field defined by

#"-.: T2 D (B=23)
¢ Tam*™ ,,
We solve Eq. (B-20) by the Anaatz o
EL
weEy = 2 e ® (B-24)
: mh Ak
The Integral becomes
(,wzuf = M e (B-25)
— o0

Expand this in powers OfIB' and equate coefficients with the
right-hand side of Eq, (B-20). We find to order f?a
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N, = Tit
A _— ZAC (H2+ #Lt)

(B-26)

We conclude by noting several propertles of N(E), Egs.
(B-244) and (B-26). Using Gibbs' second esnalogy definitlon of

temperature

_a_i_l_ /&1/‘/(.5) = - ﬁE
AT  dE ACLH S HT)

Therefore, the energy is given in terms of T and H by,
[: ——_,_c__'_,[Hl'f' //Ll)
T

This is just the energy relationship obtained from the density

matrix

_ pH _ |
7 AT
2 ()
using the "high temperature" approximation., In the limiting
case H&;*O; N(E) for the 1n£eracting system reduces to the
energy density of states function for the non-interacting
system, Eq. (B=17). In the approximation used, the spin-spin
interaction mwrels'émoadens the distribution of energy levels
H

. L
by a factor (1 + — ) . It does not affect its Gaussian

e

Sh.ape .
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APPENDIX C
Black-Body Correlatioh Function Integxfals

The integrals occurring in the electromagnetic field cor-

relation functions can be obtained by differentiating I(a).

o0
I = (dy aomg o T (ehma - L)
~° e’ —1 = re

This integral is evaluated by expanding the denominator

J = Zo{e-‘my

e’ -1/ M=

carrying out thse y integration

od
- =
I(a) = 2_ z
m=, ATEMT
and summing the series
o4 2 | T n
= = — c,fﬂﬂ —_
L g ar+mv 2 ( = 7Fa~)

The serles is summed by converting it to an integral in

the complex plane, -
o (=]
I ey
-
M= A"+ m* = =_ ooa tom &
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+
Y
1
v

k —¢ a_

The contour C can be contlnuously deformed into circles

around the poles +ia.

;n &J% 7ra¢:ﬁl£7f =__/gu.ﬂ MTxaeA T2 . ﬂaaj‘nz
¢ .
AT+ 2T Z2—>cia Zt e 25— ca ey
= - T g AiTa
¢

7T egh 7ra

i

The integrals appearing in {ExEx(X,t)) are:

ﬁ‘
il

J 2erm o (hY) _ __{f____ —___n ,_-_n .
J‘é'?—f——'zey_I 7277 iy (-7 ¢d+9) +17°C )

¢ ep— —_—
——

[-eoATE 1 s emhnE 1
. 43”[;_ 7,—3[_;_3 ] ﬁ’ﬁ'/: -”3['3

277

~ 30,y . 2/ '
ho= %Lc’gr Iy J29 = 2 (Twky) -Tatn)

2Ty

L (T o) + T o)) ~ (T'(ren) +2'(4p))
1 Iz e 17"
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s
J
Y
(n’

,:_.____L._GMWC_F';_L)

miy i Gk I me

an/L
M.A
— I M ’-Z ) 4 PV A M [
33 . , 3 313
LA TT mar] AT T

B )
S 9myr | gakwn | TR gkl pepe
where /;: r'* ¥ and 1'(a) = %é- I(a). For the case r = o

only the first integral contributes. It becomes

-Lf—— Sc’lj 07 ‘!aa’o“; = /5 3 + 2 3 )

° ed-; PRV TSy Pz,
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