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ABSTRACT : We study the Lorentz-Sharpley and Lorentz-Orlicz spaces from point of view of their

convexity, concavity and interpolation properties.

1. Introduction

The spaces A(w,p) were introduced 1951 by G.G.Lorentz [L1] as the class of
measurable functions f : IRy — IR such that :

s = | " f(a)Pw(s)ds < oo (1)

where f* is the non-increasing rearrangement of f. Here w is a given positive, non-
increasing weight, such that fol w(s)ds < oo and [;°w(s)ds = oo. (It was shown in
[L1] that the condition "w non-increasing” is necessary and sufficient for || |[,, , to be a
norm, i.e. to satisfy the triangle inequality).

This generalization of L, 4 Lorentz spaces was studied by authors interested either
in their applications to interpolation theory or in their Banach spaces properties.

To the first family belongs the paper of R.Sharpley [S] (1972), which studies the
spaces A(w, p) with non monotone weights. Sharpley’s spaces Ao(X) are connected to
rearrangement invariant spaces X, but in fact are nothing but spaces A(w,p), defined
by (1), with p = 1/a and w(s) = ﬁ‘—i—‘ﬁi (where Ax is the fundamental function of the
r.i. space X). The monotonicity condition for w is replaced in [S] by two conditions on
Ax :

sup Ax(pu) <oo (2) and: sup Ax(puw)

<oo (3)
235 P"Ax(u) et PPAx(u)
where 0 < 8 < 4 < 1. A remarkable fact showed in [S] is that the class of A4(X)
spaces (0 < a < 1; Ax verifying (2) and (3)) is self-dual, and more precisely
Au(X)* = Aq,(X*), with ax = 1 — a, and equivalent norms. In particular Ao(X)
is reflexive (extending in this case a result of [L1] for monotone weights, where an
isometric description of the dual is given).

The authors of the second aforementioned category were generally interested in
Lorentz spaces with non-increasing weights. Apart from Halperin [H] (who investigated
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uniform convexity of functional Lorentz spaces) they studied mostly the sequential
version, often denoted by d(w, p). We may quote in particular Ruckle, Sargent, Garling
in the 60’s (see the references in [G]); and Altshuler, Bor-Luh-Lin, Casazza (together or
separately) in the 70’s, who were interested in particular in symmetric bases in spaces
d(w,p) : see £.i. [ACB].

Let us also quote the paper [CD] (1988) which studies the geometry of Ly 4 spaces.

Here we are more concerned with convexity or concavity properties of A(w,p)
spaces, which were studied by Reisner [Re] (1981), Novikov [N] (1982) and Schiitt [Sch]
(1989), generalizing results of J .Creekmore [C] (1981) relative to L, 4 spaces. Recall that
a Banach (or quasi-Banach) lattice is said p-conves if :

AC,Vzy, .y Tn € X (Z |~’0i|p)l/p
i=1

< =il
X i=1
It is said g-concave if

> (Y el

X =1

de > 0,V7y, .y Zn € X

(3 lacl®) e

In particular, A(w,p) is p-convex (resp p-concave) iff w is, up to an admissible change
(see the precise definition below), non-increasing (resp non-decreasing).
Let us recall now f.i. the characterization of 2-concave Lorentz spaces given by

[Sch] :

Theorem. Let w be a non increasing weight and 1 < p < 2. Then A(w,p) is 2-concave
iff there exists a constant C > 0 such that :

Yz >0, / w(t)t 7P dt < Cm‘f’ﬂ/ w(t) dt.
0 0
Of similar nature is the result of Arifio, Eldeeb, Peck [AEP] (1988) which studied
non locally convex spaces with increasing weight : when p > 1, d(w, p) is convexifiable
(i.e. has an equivalent quasi-norm which is a norm) iff :

1 L 1 1
wup LS (S wp ) <o, S 1=1
n T k=1 k=1 p q

- (which is interpreted as an "(4,) condition”).

In section 2 we extend this kind of result to spaces A(w,p) with arbitrary (i.e.
non-monotone) weight and then in section 4 to Lorentz-Orlicz spaces L(W, ), where ¢
is a moderate Orlicz function. Unlike the preceding ones (except that of [N]), the proof
here is almost ”calculous-free”. (The very concise proof of [N] does not seem to extend
to the present case). :

The preceding result of Schiitt was used by him to characterize 2-concave Lorentz
spaces A(w,p),1 < p < 2 (with decreasing weights) as those A(w,p) spaces which
isomorphically embed as Banach spaces in L. His argument involves an extension of
a result of C.Merucci [M] (1983) who represents the space A(w, p) as an interpolation
space with function parameter (Lye, Lp,)spik when the Boyd indices of A{w,p) are
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strictly between po and p;. In [Sch], the space A(w, p) is represented as (L,,, Ly, )ApiKs
an interpolation space with "measure parameter” A = dw(t"), % = ;1; — -;-
In section 3 we give other representations of A(w,p) as interpolation spaces
(of Orlicz spaces) with applications to duality. In view of this kind of results, this
generalization of the "usual” Lorentz spaces appears as far from being artificial.
In Section 5 we identify the spaces of multiplicators between Lorentz-Sharpley

spaces and apply to (Calderon) interpolation of Lorentz-Sharpley spaces.

Aknowledgments
We thank F.L.Hernandez and M.Mastylo for bringing several bibliographical refer-
ences to our attention.

2. Convexity and concavity of Lorentz-Sharpley spaces.

We set W (i) = fot w(s) ds and remark that if Wy, W3 are equivalent functions (W; ~
W) then A(ws, p) = A(ws, p) with equivalent norms : for || F[I?, = — [ W(s) d(f*(s)?)
.We say that the change from w; to w, is admissible if W, and W, are equivalent.

Note that the fundamental function of the r.i. space A(w,p) is ||Il[0,t]” = W(t)1/»,

We say that a non-decreasing function A, which vanishes at 0, is y-quasi-concave
(resp f-quasi-convex) if it verifies condition (2) (resp (3)) of section 1 (in place of Ax),
which means that it is equivalent to an y-concave, resp. #-convex function.

Theorem 1. Let p > 1.The following assertions are equivalent :
i} A{w, p) is convexifiable ;

i) For any f € A(w,p), Ifll ~ IlF| ; |
iii) There exists € > 0 such that W(t)'/? is (1 — €)-quasi-concave.

Proof : (ii) = (i) is trivial. (iii) = (ii) : it is well known that the quasilinear operator
M : f— f**is bounded on L,,1 < r < co. Note that (iii) implies that the lower Boyd
index of A(w,p) is strictly greater than 1. A suitable version of Boyd interpolation
theorem ([LT II},2.b.11) proves the implication.

The main point of the Theorem is thus (i) = (iii). To simplify we will consider the
sequence case d(w, p) but the proof is the same for the function space case.

If d(w,p) is convex, the sequence wilr = “]1[0,,1]” is (up to equivalence) concave
(i.e. the restriction of a concave function on IR). We now use the following observation
of Lindberg [L] (given for Orlicz functions).

Lemma 2. If p is a concave increasing function on [0, o] which is never q-quasiconcave
on [1, 00], for any ¢ < 1, then there exists a sequence (z;) of real positive numbers such
that :
Yv > 0, M—)v as 1 — 0o
e(z:)

Coming back to the Lorentz space d(w, p), suppose that nlpvﬁ is not equivalent to
a decreasing sequence, for any € > 0.

Applying the Lindberg lemma to the sequence (W,y P)n, we find a sequence (m;);
of integers, m; — oo, such that :

W, k

. tA kP .
N, i
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Let us show that d(w,p) contains the n-dimensional Lorentz spaces £7, uniformly, as
sublattices ; which means that for any n € IN, and any € > 0 we can find disjoint vectors
@, ...,z in d(w, p), such that :

i aiw(i)

> IV (GO
=

d(w,p)
with equivalence constants less than 1+ €.

For any z = (ZTa)np1 € R®™ and m € N,m > 0, we put : Dpz(k) = [x]-
Then :

i(Dm,- )P wn =Y (D @ Vot0n =
n=1 n

= Zmzp[an,' - W(n—-l).m_;] = z(mff - m:&-l)an;
n n

v Wy D& —aha)an? = Wy 3 S aif (7 = (= 1) = W [l
n n

hence :

1

WAl

vz € RY, Dy, =

= Nl
d(w,p)
which by compacity can be obtained uniformly for x in the unit ball of £7 ,.

Now, as is well known, £, ; is not convex, or equivalently the £7 , are not uniformly
isomorphic to normed spaces (see [LT], II, ex.1.£.9, or [C)), hence the contradiction. g

For the sake of completeness we give the proof of Lindberg’s lemma 2. By

hypothesis :
A
Vg <1, inf X"’q(—ﬁ =
228 Aele)

Let ¥(z) = ‘aiz) , which defines a non-increasing function.

We have : ewi ,
Ve>0, inf 2vda) _
20 $le)
this implies :
. P(6z)
<
V6>0, ;r;fl 5@ S 1
) ¢
[for,if 6 = ;I;f1 d:p((:)) >1,sete= —iZi 5 which is positive as we have necessarily

§ < 1. Then for A = §",n € Z , we have : \* = 6 ",and :

Ap(Az) _ g T D) —ngn —
o = Ed)(&j"lz) > g7 =1
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in the general case A = §".p, with § < p < 1, hence :

o ATP(Az) o PYP(pz) e 1
RO & L N

So for each i we can find x; such that :

1< ! < 14=
() i
As 9 is non-increasing, we obtain :
1. Y(uz;) 1
< 1< <14-.
we [ s <

Finally :
Ps) |, plus)

—

V’u € (0) OO) ? 1,[)(«'171) i—oo L (P(xi) i—voo

u.

hence lemma 2. []

Theorem 1 has the following analog, with plainly analogous proof :

Proposition 3. Let p > r. The following assertions are equivalent :

i) A(w,p) is r-convex ;

. 1/r
i) For any f € A(w,p), |If]| ~ [IM, f||, where M, f(£) = (% i fsyrds) ™
iii) There exists € > 0 such that W/P is (% — £)-quasi-concave.

Proposition 3 has in turn the following companion :

Proposition 4. Let p < q and suppose that W has some concavity (is a-quasi-concave,
for some o > 0). The following assertions are equivalent :

1) A(w,p) is q-concave.

o0 1

ii) For any f € A(w,p) , ||f]] ~ |Ng fll , where N, f(t) = (%.ftoof*(s)q ds) /q;

iii) There exists € > 0 such that the function W/? i (% + €)-quasi-convex.

Proof : (i) = (iii) has a very analogous proof to that of the same implication in Th.1 ;
one uses the convex function version of Lindberg lemma instead of the concave one.
For (iii) = (ii), we may suppose that A(w,p) is convex (after suitable convexification
procedure, see [LT] IL.1.d); note that N, f > D2 f* , hence [Ny £l > & || f|l. Then :

i
N, f(t) = ZG /2” f*(s)qu) < S akapr(at

k>0 E>0

hence :

INo A < D240 [Dya ) < (32263181 < C Sl

k>0 k>0
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where ¢q; < ¢ is any real strictly greater than the second Boyd index g of A(w, p) (which
is strictly less than q). Finally for (ii) = (i), we note that, £i. in the case ¢ = 1, we have
for any integrable positive functions f,g :

NS +0) = [ (r+or@yds= [ "oy - [T+

> (" s [T o - [ reas | g(5)ds)

=t.(Nif+Nig),

hence for any f,9 € A(w,p), f,9 20, we have Ny (f+¢) = N1 f +Nig which implies
as p < 1 that [Ny (f +9)ll 2 |V £l + | N1 gl|, by reverse Minkowski inequality. []

Remark. It follows clearly from the preceding propositions that if A(w,p) is convex
(resp. r-convex, resp. q-concave) and p > 1 (resp. p > 1, resp. p > q) then it is (1 + €)-
convex (resp. (r + €)-convex, resp (g — €)-concave) for some positive e.

3. Representation of spaces A{w,p) by interpolation of Orlicz spaces.

By Orlicz function we mean here a non-decreasing continuous function ¢ : Ry —
R, with ¢(0) = 0 and @(t) — oo as t — oo. We also suppose that ¢ has "some
non-trivial convexity”, i.e. is a-quasi-convex for some a > 0. In this case the Orlicz
space L, is a-convex. We denote by A, the fundamental function of L,. Recall that
Ap(t) = ZFll('%—)‘ To any function f : R4 +— IRy we associate the function f : Ry — Ry

Fla) — 1
defined by f(t) = ye5)

Theorem 5. Suppose that ¢, are Orlicz functions such for some € > 0 , the function
1—¢

% is equivalent to a non-decreasing function. Then (Ly,Ly)op = A(w,p) (with
equivalent norms), where w is defined by its primitive W : W()/? = A‘p(t)l"a.)\,p(t)o.

Proof : We use a result of J.Arazy [A] concerning the K-functional for rearrangement
invariant spaces (see also [Ma 2] for a refinement of this result). If E, F' are two r.i
spaces, let M = Mult(F, E) be the space of multipliers from F' to E, i.e. of functions
g such that the associated multiplication operator M, : f + f.g is bounded from F
into E. M is equipped with the norm Nollae = sup{llg-fll / llfllz < 1}. Suppose that
E = M.F and that M is a r.i. space (in the sense of [L.T.JII) with fundamental function
Ap verifying }13(1) Am(t)=0, tll.n;o Ap(t) = oo. Then the K-functional of interpolation

K(t, f; E,F) is given by :

K@) ~ oo+t [ luco,ca-f e (2.1)

u(t) being defined by the equation Ag(u(t)) = tAr(u(t)), ie. Ap(u(t)) =t
We apply Arazy’s result to the case E=L, F=LyIn this case M (L, Ly) =

L, where the Orlicz function M is defined (up to equivalence) by the relation :

Ao(t) ~ Au(t)-Au(t)
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and moreover L, = L,.Lp. This seems to have been observed first by B.Maurey [Mau]
(1974). In this case the function u appearing in (2.1)is defined by : u(t) = M(¢t) := _Aﬁl_)

¢

Write A(t, f) = ]l[o,M(t))'f*“<P and B(t, f) = ”]I[M(t),oo)'f*(t)”d}’ and let us first
evaluate 4 = ([C(t7PA(t, £))P 4)1/p,

oo
If ¢ is convex, we have : A(¢, f) < Zl ]I[M(Z“(H'l)t),M(Z*kt)]'f*
k=0

' . ( If ¢ is only
©
a-convex, a < 1, we would use the a-norm triangle inequality). Then, if p =1, we have :

1/
4t
w ot

4= Z[/o O LT T

k

= [ e ] 4]

1/p

A 1/p
Conversely we have clearly 4 > [fooo(t*o ”]1[1\;!(%) M(t)]'f*“ )P #} .
! @

Now we estimate this last quantity. We have :

0 dt
_a - . * -
/0 (t “]IIM(%),M(t)]'f e

IA

| e e ey

IA

or [Tet sy 2
dt

s /0 T )T )P -

where C' = sup /\—P—OM{—@—Q
t>0 A oM (%)
M)

Ay(M(s)) Ap(M(s))e

< 00, as the hypothesis implies that

is a non-increasing function of s (hence C < 21/¢),

On the other hand,we have :

AP = /Om{t"” ”]l[o,zra(t)lf*“9‘,]1’%E

and finally we obtain :

v

| ooy 2

AP o /Ow[t—of*(M(t))Aw(M(t))]pgltf /0 w[AM(u)_%(u)f*(u)]p Dae()

Ap(u)

= [ B rp el
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Set A(u) = Ap(u)! " Ay(u)?. The hypothesis implies (up to a change of ¢, 1 to equivalent
functions) that :

d\, diy
—g)—L — —= >
(1-¢) * Sy Z 0
diy  dr, dhy dX, diy  dA,
= 2 ¥ > e % thus —— ~ —2 and finally :
hence Y X, o —E)VP’ hus s o and finally
dA dA dA dX dAy
2= (1_nite b . .
I vl ks walllls waladiy v

Coming back to the preceding expression of AP, we find :

w2~ [Towrr S =1 [T paraowe) = i,

It remains to evaluate the contribution B of the term B(t, f) of K(¢, f) in ||f]|0’p.
We have :

B(t,f) S tz ”]I[M(Zkt),M(2k+lt]f*H¢
k=0

Hence :

&
N

(o] e di 1/p
[/o > [t srarsnin ] 7 T}

N k(10 -0 a)
Sl el
k=0 0 '

dt 1/p
0

IA

IA

o / (0 ) A ()

[ i/p
~ o | [ e rurenareny 51;]

<

<cC

[ poo 0 . . dt 1/p
[ et e o) 4]
Finally we obtain B < A, hence [|f||9’p ~ A~ ]|f[|w,p. 0

Remark 6. The preceding proof remains clearly valid if one replaces Orlicz spaces by
1—e
E

r.i. spaces E, F verifying E = M.F | Ag(t) s 0, )\E(t)t—> 0o and equivalent

to a non-decreasing function. (I was told by M.Mastylo that a similar result was known
to him [private communication]).
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Corollary 7. If the Orlicz function ¢ is r-quasi-convex, for some r > 1 then :
(Llano)é’,p = A(’U),p) ’ with Wl/p(t) = tl_o)‘ﬁa(t)g'

Corollary 8. For any Otlicz function (not necessarily convex), such that \,(t) = 0,
Ap(t) o, 00 we have :

(Lgm L00)9,p = A(w,p) , with Wl/p(t) = )‘lﬂ(t)l_g'

Corollary 9. a) Every convex and g-concave space A(w,p), 1 < p < ¢ < o0, is a
Lions-Peetre interpolation space between Ly and a convex, g-concave Orlicz space.

b) Every convex space A(w,p) , p > 1, is a Lions-Peetre interpolation
space between a convex Orlicz space and L.

Corollary 10. The space A(w,p) , p > 1, when convex, is reflexive.

Proof : By the preceding corollary, A(w,p) = (Ly, Loo)s,p for some convex nom-
degenerate Orlicz function ¢ (0 < ¢(t) < oo , Vt € (0,00) ). By [B], th.IIL.1.1, the
reflexivity of Ly, Lo )s,p is independant of p, 1 < p < co. But choosing r = Tifo' we have
(L, Loo)a,r = A(u,r) whith U ~ A, ,which is quasiconcave : hence u can be supposed
non-increasing, and A(u,r) is thus reflexive by [L1]. []

Using the duality theorem for Lions-Peetre interpolation method, and the preceding
corollaries, we obtain immediately Sharpley’s duality formula : A(w,p)* = A(wy, q)
(% + % =1, WYP.W.(t)'/? = t), when p > 1 and A(w,p) has some non-trivial
concavity (this last condition is necessary, at least for non-increasing weights, as was
shown in [Re2]).

Let us derive A(w,p)* when no concavity condition on A(w,p) is given. We first
introduce the following :
Notation. L is the space of measurable functions f such that f** € A(w,p); this
space is equipped with the norm : || fllzu., = [|f**[|5(w -

Then Corollary 7 has the following extension :
Proposition 11. Let p > 1 and ¢ be an Orlicz function such that @tjo 0, and
“p—(ttl I o Then : (L1, Ly)gp = L®P where % is connected to the function W of cor.7
(W(t)YP = 19X (t)?) by the relation :
at) =p - Wy
Proof : We have :
Kt fi L1, Ly) ~ A, f) + B(t, f)

with = A(t, f) = [T 6. o f*, and B, £) =1 | Uip .00/,

where ¢, is the Young conjugate of ¢.
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We shall prove that the contribution B of B(t, f) in the interpolation norm is
dominated by that of A(t, f). As in the proof of Th.5, we have :

0 Lt
BP < Cy /0 ¢ o, 2e2n )7 5

Set : C(t, f) = ||, (6), 5. 203} || ; then :
K(t, Lo, g, 20)) f*) ~ A(t, £) + C(¢, f) 5

on the other hand :
K (t, Ijo,5. 20nf*) < |[1po,6. 20 7|, = A28, F).
Hence C(t, f) S A(2t, f) and finally :
|ercenr S5 [Cetacny d
< [Cetawnyr s

Now we have :
utty=a= ([ o) e [7 ([ row) s
= e e - [ ave

with :

- ! dr,, (s) 1 sP top ot g
= p__TeeN ] | K = 4
WO= [ 5 g |, 5 ), e
»
and as — o ~ s () = W(t), we obtain :

Ag.(8)0P
W(t) ~ —W (1) -I-p‘/0 W(s)d / ( ( Wis) — w(s))ds.

14 w
Note that the modified weight @(s) = p-ﬂ — w(s) is non-negative because SEJS) is
s
non-increasing. []
Corollary 12. If1 < p < co and if A(w, p) is convex, then A(w,p)* = L™ where w,
7

is the modified weight associated to W,(t) = W(t)q/l’

Proof : Use cor.7, the duality theorem for Lions-Peetre interpolation and prop.10. []
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As an application we give the following :

Corollary 13. The Banach envelope Z » of the Lorentz space £y p is the space £%:?
kPt
(1+41log k)»°

Proof : We have £} , = d(w,, q) with w,; = w;q/p = % (see [AEP]) ; hence Wyt ~ log k

with Wy, =

AW al d finally : @ Weur ke
S ek ™ Qog pypra PN IR E ek = PR = W v e

Let us mention that prop.11 has a simpler counterpart in the case p=1

Proposition 14. a) For any convex Orlicz function ¢ one has (L1,Ly)oy = A(w,1)
with W(s) = s170) (5)°.

b) Consequently any A(w, 1) which is convex and has some non-trivial
concavity can be represented as some interpolation space (Ll, (P)g’l

Proof : We first suppose that ¢() e 0 and ‘P(t) 0

As in the case of Prop 11, only the contnbutlon of A(t, f) in the interpolation norm
has to be computed. We have

/Ooot_eA(t,f) _‘i_t — /Ooot_g <A¢*(t) f*(s)d5> %t- = /u°° </}\:j(a) t;il) f*(s)ds
=5 | A= | rentas

with w(s) = s7%X,(s)?. Then sw(s) = s'~ Px4(s)? is equivalent to a concave, (1 — §)-
convex function ; hence :

W(t) = /Otw(s)ds ~tw(t) = 170N (¢)°.

Now if f.1. ﬁt—) 2.0 0, we may suppose (passing to an equivalent Orlicz function)
that ©(¢) = ¢ for ¢t < 1. In this case it is possible to prove that :

K@ f) ~ [Yop.anf|, +1. [p,000 5", fort<i
K@) ~Nfll,  fore>1

and the same calculous than before leads to :

/16,1 N/o Fr(s)w(s)ds + || fll; ~ /Ooof*(S)w(S)ds :

The proof of assertion b) of the proposition is easy and left to the reader. ]
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As usual, prop 14 has easy analogs in the p-convex or g-concave cases :

Proposition 15. a) For any p-quasi-convex (resp p-quasi-concave) Orlicz function ¢
1—¢
one has (Lp,Ly)gp = A(w, p) with W(t) = t77 A(t)0.
b) Consequently any space A(w, p) which is p-convex and r-concave
(resp p-concave and r-convex) can be represented as (Lp, L,)e , for some 0 < 6 <1 and
some p-convex, r-concave (resp p-concave, r-convex) Orlicz function.

Corollary 9, its p-convex analog and Proposition 15 have the following immediate
consequence on the embeddability of Lorentz-Sharpley spaces in Lebesgue spaces.

Proposition 16. If po < p < p;1 (resp. po < p = p1), and A(w, p) is po-convex, p;-
concave, then it is lattice embeddable in £,(Lyo(€p,)) (resp. in £p(Lpo(Ly)).
In particular if A(w,p) is 2-concave and po-convex, it embeds (as Banach space) in

eP(LIIo)'
Proof : Suppose f.i. pp < p < p1. We can choose pg < pj) < p < pi < p1 such that,

again, A(w, p) is py-convex, pj-concave. Then, using the p-convex version of cor.9, we
1 1

s
can find a pg-convex, p;-concave ¢ such that A(w, p) = (Lpy, L)s,p (choose § = ).

PO p1
But now A{w, p) identifies to an £,-direct sum of spaces X; normed by the K-functionals

K(2,.,Lpy,Ly), (j € Z). The X,’s can be shown to be uniformly isomorphic to Orlicz
spaces Ly, , where the ¢;’s are (uniformly) py-convex, p;-concave Orlicz function given
up to equivalence by : .

Pj(s) ~ 5P A p(27s).

Such Orlicz spaces are sublattices of Ly (Ly,) (and even of L, (¢,,) , if one manages
to choose ¢ p”;-concave, with p”; < p1) : see [R] for this result, which is an easy
consequence of a famous result of Bretagnolle and Dacunha-Castelle [BDC]. The cases
P = pg, p = p; are treated using prop 15. []

4. Extension of the results to Orlicz-Lorentz spaces

Lorentz-Orlicz spaces are, roughly speaking, generalizations of the spaces A(w, p)
when ”p is replaced by an Orlicz function ¢”. Two versions of this generalization (at
least) appear in the litterature.

The first one was introduced by A.Torchinsky [T] : .

LWe)= (f€ Lo/ | oW (@).£0) % < oo)

where W is a given continuous increasing function, with W(0) = 0, W(t) o, 00 Note
—00

that W is moreover concave in Torchinsky’s setting. L(W,¢) is equipped with the
quasinorim :

I llw,e = W £l ()

which is associated to the "modular” @ :

w0~ [ ewormT .
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The second version of Lorentz-Orlicz spaces appears in [Ma 1] (see also [K1], [K2],
[Mas]) : -
Awp)={f e/ [~ o @mi)dt <o)
0

where w is a weight function such that W(t) = fotw(s) ds exists, W(t)t——> oo. (w is

moreover non-increasing in [Ma. 1]). We do not conserve here the notations of [T] or [Ma,
1]. We will consider below only the first version of Lorentz-Oxrlicz spaces, which is (by
far) easier to handle with. We denote by £ w, the sequential version of L(W, ).

From now on we suppose the following hypothesis (H) on W, ¢ to be satisfied :

(H) : W is a-quasiconves, B-quasiconcave (0 < a < f§ < o) and ¢ has some
non-triviel convezity.

Lemma 17. The fundamental function of L(W, ) is equivalent to W.

Proof : Under hypothesis (H), we have fol cp(u)%" < o0, and we may suppose
adt < B (s) < B4, Let a,b > 0 be defined by INZO) 4% = o and fobgo(u)dT“ = A.

hen :
a [t aW(s). ds <1 [t a.W(s),dW(s)
*(wgten) = [ P 251 [ W) W)
1

é du
= 5/0 %(u)‘u—=1

hence Ay ,(t) < L-Va(i) Similarly Aw,(t) > KV# 0

Lemma 18 . Under hypothesis (H), if the _sequential Orlicz spaces £, and £y, are
equal (i.e. ¢ and + are equivalent over [0, 1]), then L(W, ) = L(W, ) (with equivalent
norms).

Proof : We can suppose that (1) = () for 0 <t < A, where A is determined below.
I ”f”Wm <1, we have : [ @(f*(s)W(s)) & < 1, hence in particular :

¢ ds
12 [N D 2 ol mw(E)m2
hence f*(t)W (%) < "N (i23) and FXOW(H) < A = supwi((%Lp"l(ln%). Then we have :
t>0 2

Iflw, =1= ¥(f)=2(f) =1 = |Iflly, =10
The same reasoning proves that if £, C Ly then L(W, ) C L(W, ).
Lemma 19. Under condition (H), £, embeds in both £w,, and L(W, ) as sublattice.

Proof : This is the analog of a classical result for the case w(t) =P,
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a) We consider first the sequential version £y .

IMCP

For any N there exists Kn such that supjw% < 27N (as W has some

convexity).Set Ay = H K;and zy = —VWm]l[AN—hAN] . We have :
I<N

m * m
S aven) = 3 anew
N=1 N=1

as soon as VN, 2 < 2N,
In case (*) is verlﬁed then for each p > 0 :

cp(pzaNzN) Z / WV‘(’X)) mE

AN1

which, as ¢ and W have some convexity, can be majorized by :

c Z / W(g) jan)dt =0 Z [so(paN) ¢(p V[(,?XI;)I )
<C th(pazv) <Y @(Cyr.pan)
N N

and conversely :

@(pZaN:cN)>Z/ (pW((t) - _Z (p W;[S'?:/;)
> Zcp(Cz.p.aN).
N

o)

)

If (+) is not verified for certain N € {1,..,m}, we modify the an’s by setting

aly = sup(2~FN
k>0

an4&) which is easily seen not to modify substantially the norm of

a normalized vector of the space spanned by the zx’s either in £, orin Ly .

b) case of L(W, )

Here we set fy = 'W(T}—A_N)]]'[I/AN+1,1/AN] and we repeat the preceding argument. []

Corollary 20. Under condition (H), if L(W,¢) is convex (resp p-convex, resp q-

concave) so is £,,.

We denote by L, the space L(W, ) with W(t) = t.
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t
Lemma 21. If ¢ is (equivalent to) a convex function on [0,1] and %in(l)—(‘%l =0, then

L, ,, is not convexifiable.

Proof : The counterexample is the same as in the case of Ly, or 8y p.
We consider fy defined by : fn(t) = (3 A N).Ij 4 in the case of L ,([0,1]), and

V) defined by : xSCN) = 71; ifk<N,=0if k> N in the case of ¢ .
If L, , is convexifiable, we have :

111, = el fwll;

for some constant ¢ > 0.But :
b1
I fnll, = / (;AN)dt=1+InN
0

while :

I L Z1AENY dt YN tN '\ dt ! 1 dt
® =/ ¢ - = @ -+ 2 -
clnN 0 clnN J ¢ 0 clnN ) ¢ yyn \clnN/ ¢

where the first term is majorized (by convexity of ) by :

1 [N dt 1 [t du
tN) — = —— =
clnN/o P(tN) t clnN/o w(u) U N———:ooo

and the second by :

M) = oy

which tends to 0 as N goes to infinity by hypothesis. []

Proposition 22. Let ¢ be a convex Orlicz function such that @ = 0, and assume

condition (H). The following assertions are equivalent :
i) L(W, ) is convexifiable ;

ii) For any f € L(W, o), If**llw,,, ~ 1 fllw, ;
iii) W is (1 — €)-quasiconcave, for some € > 0.

Proof : (i) = (iii) : As for proposition 1 we prove that if it is not the case then Ly, is
"crudely” finitely representable in L(W, v) (i.e. finite dimensional subspaces of the first
space are uniformly isomorphic to subspaces of the second one), which is impossible by
lemma 21. Let us show it in the case of £ w,,- Note that by lemmma 17, W is quasiconcave.
If W is quasiconcave, but not (1—¢)-quasiconcave for any € > 0 , we can find a sequence

. Wua‘ .
@; ~+ oo in IN such that Vu € R4 —~V[V—1-]- — u. For any x € R™), consider the vector
aj ]_)m

() — ﬁ-Da,- z. We have :
Pl

ka;

g 5 i

k21 f=(k~1)a;+1
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which, as ¢ and W have some convexity, can be majorized as follows :

OF 50 [o( et - ()]

k l:(k——l)aj-l-l

Wha; Wik-1)q;
Z Wa, * W,

I

k
< C; Wi, ;VZ.(k-l)aj o (wmf/f: mt) jjooczk: %g;(lwz)
Hence . 1
li?iiip 3z < zk: ESO(C]WZ)
Conversely :

ka;

N>y 2}"9”(1?”)

k>1 f=(k—1)a;+1

ajy ka;
Wa; /e ~ 1 Wik—1)a g 1
> i * = MR It
_<P< WL, xl) Z g+k>2¢( W, Tk Z 7

t=q; [e £=(k—1)a; +1)

[

1, . k
o e(=al) + Yo e((k—1)z})In P
’ k>2

Hence :

. 1 1
“ . ( ) nd - *
h]mmf O(zV) > kg)} ktp(ekxk).

(iil) = (ii) : Because the lower Boyd index of L(W, ) is strictly larger than 1. []

Proposition 23. (*) Suppose that ¢ is a p-quasiconvex function, with p > 1. Then
(L1, Ly)o,p = L(W, ), with W(t) = t1=0(t)°. '

Consequently every space L(W,¢), where W is a-quasiconvex, (3-quasiconcave,
0 < a < B <1, is representable as a space (Ll,Ld,)g,‘P.

Proof : As in section 3, we decompose the K-functional : K(t, f) = A(,f) +
B(t, f) hence ”t_oK(t,f)Hw ~ ”t"gA(if,f)”1 + ”t_eli’(t,f)”(,p and we show as for the
usual (#, p)-interpolation that the second term is controlled by the first one and that
||t‘0A(t, f)“tp ~ ”t_oC(t,f)”q’ with : C(¢, f) = ﬁ*(t)f*(#:*(t)). Hence the interpolation

norm is determined by the modular :

#)= [ el p o) &

(*) T was advised by L. Maligranda that a similar result is stated in the paper [EFM]
(in proof at the time of writing this footnote)
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but as ¥ is convex and has some concavity, %1 ~

dip.

R

o0 -0 ox du o0 . du

= [ et urr @y~ [T )
0 0

B(f) ~ / T (B0 (1))

I

Proposition 24. Suppose that 1 is a p-convex, g-concave Orlicz function, with
0<p<g<oo. Then (Ly,Leo)s,e = L(W, ), with W(t) ~ X, (¢)*~°.

Consequently under the same assumptions on W as in the preceding proposition 21,
L(W, ) is representable as an interpolation space (Ly, Loo)s,,-

Proof : We follow the same lines as in the preceding proposition, but the role of t, is

now played by . []

Remark 24a The proof of prop.24 suggests that the "good” definition of the modular
of L(W, ) for a W without non-trivial convexity would be :

5= [ o) e

5. Multiplicators and Interpolation of Lorentz-Sharpley Spaces

Recall that if F,G are two quasi-normed Kéthe function spaces, the space of
multiplicators Mult(G, F') is the space of measurable functions h such that the associated
multiplication operator M, : g + h.g is bounded from G to F (a systematic study of
these spaces is done in [MaP]).

Proposition 25. Consider three Lorentz-Sharpley spaces A(w,r), A(wo, po), AM(w1,p1)

with 0 < r,pg,p1 < 0o, % =‘pi0 + PIT’ and w'/" = wé/’m.wi/p‘. If moreover A(wq, po)
and A(w,r) have non-trivial concavity then the space Mult(A(wo, po), A(w, 7)) of

multiplicators from A(wo,po) into A(w,r) equals A(w,,p;).

Proof : a) We have ||g.h[,,, < Cllgllwg,p - |7ll sy , as a simple Hélder argument
shows :

| arrr@uess [T e GrnGyu
< CAwg*(s)rh*(s)'w(s)ds (if W(2s) < CW(s))

= C/ g*(s)rh*(s)rw;/”"wl(s)r/”‘ ds
0

T/po r/p1

<o|[Tremasa) [ [T r e



224 Y. RAYNAUD IMCP

b) Conversely let h € A(wy,p;) and set :

g(s) = h*(s)7o-r (ﬂ) FoF

wo(s)

(with the usual convention 0/0=0). We have :

[ yras= [ ieE (22 )_ w(s)ds

wos)

= [T s

as py = ﬁ_—'; ; similarly :

[ steremtas= [T () T o ds

- /0 " ()P wa(s) ds.

Hence :

(/Ooc(gh*)r(S)w(S)a‘!s)]‘/r _ (/0009"°(3)w0(3)ds>1/p0 ‘ </0°° h*(S)plwl(s)dS)lfpl

Now we regularize g to a non-increasing g (following a procedure of [S]), setting :

3(s) = [ / " g—(?—rdt]l/r = u(s)/".
We obtain :
[ sty s = [ gty ams) = - [T i) agtoye
= - /ooo Wo(s) du(s)?o/™ = —% /Ooo Wo(s)u(s)™ = du(s)

= ‘%)-/Ooo Wo(s)u(s)%o“q@ ds ~ /Ooog(s)m_rg(s)rwo(s) ds

< [ / mg(s)f’owo(s)ds] i [ / mg(s)mwl(s)ds] g

hence : ||g||w0’p0 < C.|lgll g po- On the other hand :

/ooo(g(S)h*(s))rw(s)ds = /Ooo (/m g(t)r%) B (s)w(s) ds
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> /0 " ( / oog(t)rh*(t)'%) AW (s) = /0 T W(s)g(s) B

S

~ /Ooog(s)rh*(s)'w(s) ds

which shows that :
o0 1/1‘
lgh*]l,, , > C- (/ g(s)rh*(s)rw(s)ds) ,
0

hence : ”gh*“w,r 2 C ”g”wo,po * ”h*”wl Pt D

Now recall that the equality F' = G.H between three quasi-Banach Kéthe function
spaces F, G, H means that : '

F={gh/ge@G he H}
and F' is equipped with the quasi-norm :

Ifllp =inf{llgllg-Ntlly / f=g.h, g€ G, he H}.

Note that if F, G, H are rearrangement invariant, and verify the preceding relation
F = G.H, then their fundamental functions verify Ay = Ag.\g.

Proposition 26. Suppose that the spaces A(wo,po) and A(wy, p1) have non-trivial
concavity. Then A(wo,po)-A(wi,p1) = A(w,r), where 1 = plo + p% and Wi/t =

WUI/POWII/PI .

Remark 27 The relation between the functions W, Wy, W; is nothing but the afore
mentioned multiplication relation between fundamental functions of the three r.i.
spaces, and is thus a necessary condition. It identifies to the condition on weights
w,wo, wy given in prop.25 provided that the three spaces have non-trivial concavity,
but if W(s) ¢ swy(s), one obtains under the hypotheses of prop.25 that : A(w,r) #
A(wo, po)-Awy, p1).

Proof of prop.26 : We obtain prop.26 from prop.25 using the following duality
argument whose proof is straightforward :

Lemma 28. Let F,G two Koéthe Banach function spaces and E=F.G . Denote by

E',F',@" their Nakano conjugates (spaces of order-continuous linear forms). Then
E' = Mult(F, G") = Mult(G, F").

We may, by standard convexification procedure, suppose that all the Lorentz spaces
here have Lorentz spaces as duals. Then by prop.25 :

Awy,ry) = Mult(A(wa, po)-A(wix, P1x)),

where % + ;1: =1= pll + p:‘ Wy = w T g, = wl_p"‘/p‘. Then dualize by Lemma
28. ]
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Corollary 29. If A(wo,po) and A(w,p1) have some non-trivial concavity, then :

A(‘U), p) = A(wo’pﬂ)l_aA(wl’pl)e

(with equivalent norm), where w = wl™%w?, Il—) = 11;,0 pil

Proof : This is obtained from prop 27 by a standard convexification argument. []

Remark Corollary 29 could also be deduced from [Ca,sec.13.5 (where the hypothese
are slightly too restrictive). Note also that as the Lorentz spaces are order-continuous the
preceding result is in the convex case equivalent to a result on complex interpolation (by
equivalence of complex interpolation and Calderon’s lattice interpolation methods, see
[Ca)). This last one was also obtained (and generalized) by E.Hernandez and J.Soria (this
same conference) by a different method (using commutation of complex interpolation
and real interpolation with function parameter).

A remark on equality between Lorentz-Sharpley spaces and Orlicz
spaces.

G.G.Lorentz [L2] gave a necessary and sufficient condition for the space A(w, p)
to be equal to an Orlicz space, when w is a decreasing weight. Supposing that w has an
inverse function w1, this condition may be written :

e 1
Jy>0 s.t. /0 w—_—Wdt < 0 (4.1)

Now using the duality between A(w,2) and A(L,2), we see that for increasing weights
the same condition holds. Note also that if w verifies (4.1) then so does any power
w® (a€eR, a>0).

It is natural to ask for a characterization of Lorentz-Sharpley spaces that are equal
to Orlicz spaces in the case of non-monotone weights.

"The preceding results give us a simple sufficient criterion. (See also MS]).

Corollary 30. The following conditions are equivalent and are sufficient for Alw, p),
0 < p < 00) to be equal to an Orlicz space :

i) —V@ ~ wi(t).ws(t) where w, is non-increasing, w, is non-decreasing, and each one
veri fies Lorentz condition (4.1).

i) A(w,p) = A(w1,p1)® A(we,p2)' %, where 0 < 6 < 1 and A(wy,p1), Alws,ps) are
both equal to some Orlicz space.

The proof of this corollary is straightforward using the preceding results.
We formulate now the following :

Question. Are the sufficient conditions of corollary 30 also necessary 7 (¥)

(*) A positive answer to this question was given after the first draft of this paper by
S. J. Montgomery-Smith [MS]
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